1
|
Liver ischaemia-reperfusion injury: a new understanding of the role of innate immunity. Nat Rev Gastroenterol Hepatol 2022; 19:239-256. [PMID: 34837066 DOI: 10.1038/s41575-021-00549-8] [Citation(s) in RCA: 177] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/29/2021] [Indexed: 02/08/2023]
Abstract
Liver ischaemia-reperfusion injury (LIRI), a local sterile inflammatory response driven by innate immunity, is one of the primary causes of early organ dysfunction and failure after liver transplantation. Cellular damage resulting from LIRI is an important risk factor not only for graft dysfunction but also for acute and even chronic rejection and exacerbates the shortage of donor organs for life-saving liver transplantation. Hepatocytes, liver sinusoidal endothelial cells and Kupffer cells, along with extrahepatic monocyte-derived macrophages, neutrophils and platelets, are all involved in LIRI. However, the mechanisms underlying the responses of these cells in the acute phase of LIRI and how these responses are orchestrated to control and resolve inflammation and achieve homeostatic tissue repair are not well understood. Technological advances allow the tracking of cells to better appreciate the role of hepatic macrophages and platelets (such as their origin and immunomodulatory and tissue-remodelling functions) and hepatic neutrophils (such as their selective recruitment, anti-inflammatory and tissue-repairing functions, and formation of extracellular traps and reverse migration) in LIRI. In this Review, we summarize the role of macrophages, platelets and neutrophils in LIRI, highlight unanswered questions, and discuss prospects for innovative therapeutic regimens against LIRI in transplant recipients.
Collapse
|
2
|
Zito G, Miceli V, Carcione C, Busà R, Bulati M, Gallo A, Iannolo G, Pagano D, Conaldi PG. Human Amnion-Derived Mesenchymal Stromal/Stem Cells Pre-Conditioning Inhibits Inflammation and Apoptosis of Immune and Parenchymal Cells in an In Vitro Model of Liver Ischemia/Reperfusion. Cells 2022; 11:cells11040709. [PMID: 35203355 PMCID: PMC8870407 DOI: 10.3390/cells11040709] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023] Open
Abstract
Ischemia/reperfusion injury (IRI) represents one of the leading causes of primary non-function acute liver transplantation failure. IRI, generated by an interruption of organ blood flow and the subsequent restoration upon transplant, i.e., reperfusion, generates the activation of an inflammatory cascade from the resident Kupffer cells, leading first to neutrophils recruitment and second to apoptosis of the parenchyma. Recently, human mesenchymal stromal/stem cells (hMSCs) and derivatives have been implemented for reducing the damage induced by IRI. Interestingly, sparse data in the literature have described the use of human amnion-derived MSCs (hAMSCs) and, more importantly, no evidence regarding hMSCs priming on liver IRI have been described yet. Thus, our study focused on the definition of an in vitro model of liver IRI to test the effect of primed hAMSCs to reduce IRI damage on immune and hepatic cells. We found that the IFNγ pre-treatment and 3D culture of hAMSCs strongly reduced inflammation induced by M1-differentiated macrophages. Furthermore, primed hAMSCs significantly inhibited parenchymal apoptosis at early timepoints of reperfusion by blocking the activation of caspase 3/7. All together, these data demonstrate that hAMSCs priming significantly overcomes IRI effects in vitro by engaging the possibility of defining the molecular pathways involved in this process.
Collapse
Affiliation(s)
- Giovanni Zito
- Research Department, IRCSS ISMETT (Instituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (V.M.); (R.B.); (M.B.); (A.G.); (G.I.); (D.P.); (P.G.C.)
- Correspondence: ; Tel.: +39-091-21-92-649
| | - Vitale Miceli
- Research Department, IRCSS ISMETT (Instituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (V.M.); (R.B.); (M.B.); (A.G.); (G.I.); (D.P.); (P.G.C.)
| | | | - Rosalia Busà
- Research Department, IRCSS ISMETT (Instituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (V.M.); (R.B.); (M.B.); (A.G.); (G.I.); (D.P.); (P.G.C.)
| | - Matteo Bulati
- Research Department, IRCSS ISMETT (Instituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (V.M.); (R.B.); (M.B.); (A.G.); (G.I.); (D.P.); (P.G.C.)
| | - Alessia Gallo
- Research Department, IRCSS ISMETT (Instituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (V.M.); (R.B.); (M.B.); (A.G.); (G.I.); (D.P.); (P.G.C.)
| | - Gioacchin Iannolo
- Research Department, IRCSS ISMETT (Instituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (V.M.); (R.B.); (M.B.); (A.G.); (G.I.); (D.P.); (P.G.C.)
| | - Duilio Pagano
- Research Department, IRCSS ISMETT (Instituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (V.M.); (R.B.); (M.B.); (A.G.); (G.I.); (D.P.); (P.G.C.)
| | - Pier Giulio Conaldi
- Research Department, IRCSS ISMETT (Instituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (V.M.); (R.B.); (M.B.); (A.G.); (G.I.); (D.P.); (P.G.C.)
| |
Collapse
|
3
|
Ma L, Ambalavanan N, Liu H, Sun Y, Jhala N, Bradley WE, Dell'Italia LJ, Michalek S, Wu H, Steele C, Benza RL, Chen Y. TLR4 regulates pulmonary vascular homeostasis and remodeling via redox signaling. Front Biosci (Landmark Ed) 2016; 21:397-409. [PMID: 26709781 DOI: 10.2741/4396] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pulmonary arterial hypertension (PAH) contributes to morbidity and mortality of patients with lung and heart diseases. We demonstrated that hypoxia induced PAH and increased pulmonary arterial wall thickness in wild-type mice. Mice deficient in toll-like receptor 4 (TLR4-/-) spontaneously developed PAH, which was not further enhanced by hypoxia. Echocardiography determined right ventricular hypertrophy and decreased pulmonary arterial acceleration time were associated with the development of PAH in TLR4(-/-) mice. In pulmonary arterial smooth muscle cells (PASMC), hypoxia decreased TLR4 expression and induced reactive oxygen species (ROS) and Nox1/Nox4. Inhibition of NADPH oxidase decreased hypoxia-induced proliferation of wild-type PASMC. PASMC derived from TLR4(-/-) mice exhibited increased ROS and Nox4/Nox1 expression. Our studies demonstrate an important role of TLR4 in maintaining normal pulmonary vasculature and in hypoxia-induced PAH. Inhibition of TLR4, by genetic ablation or hypoxia, increases the expression of Nox1/Nox4 and induces PASMC proliferation and vascular remodeling. These results support a novel function of TLR4 in regulating the development of PAH and reveal a new regulatory axis contributing to TLR4 deficiency-induced vascular hypertrophy and remodeling.
Collapse
Affiliation(s)
- Liping Ma
- Department of Pathology, University of Alabama at Birmingham, Birmingham AL 35294, *current address: Sun Yat-Sen Memorial Hospital ,Sun Yat-Sen University, Guangzhou 510120, China
| | | | - Hui Liu
- Department of Medicine, University of Alabama at Birmingham, Birmingham AL 35294
| | - Yong Sun
- Department of Pathology, University of Alabama at Birmingham, Birmingham AL 35294
| | - Nirag Jhala
- Department of Pathology, University of Alabama at Birmingham, Birmingham AL 35294
| | - Wayne E Bradley
- Department of Medicine, University of Alabama at Birmingham, Birmingham AL 35294
| | - Louis J Dell'Italia
- Department of Medicine, University of Alabama at Birmingham, Birmingham AL 35294; VA Medical Center, Birmingham AL 35294
| | - Sue Michalek
- Department of Microbiology, University of Alabama at Birmingham, Birmingham AL 35294
| | - Hui Wu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham AL 35294; Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham AL 35294
| | - Chad Steele
- Department of Medicine, University of Alabama at Birmingham, Birmingham AL 35294
| | - Raymond L Benza
- Department of Medicine, University of Alabama at Birmingham, Birmingham AL 35294
| | - Yabing Chen
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294; VA Medical Center, Birmingham AL 35294,
| |
Collapse
|
4
|
Zhang Y, Zhang X, Shan P, Hunt CR, Pandita TK, Lee PJ. A protective Hsp70-TLR4 pathway in lethal oxidant lung injury. THE JOURNAL OF IMMUNOLOGY 2013; 191:1393-403. [PMID: 23817427 DOI: 10.4049/jimmunol.1300052] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Administering high levels of inspired oxygen, or hyperoxia, is commonly used as a life-sustaining measure in critically ill patients. However, prolonged exposures can exacerbate respiratory failure. Our previous study showed that TLR4 confers protection against hyperoxia-induced lung injury and mortality. Hsp70 has potent cytoprotective properties and has been described as a TLR4 ligand in cell lines. We sought to elucidate the relationship between TLR4 and Hsp70 in hyperoxia-induced lung injury in vitro and in vivo and to define the signaling mechanisms involved. Wild-type, TLR4(-/-), and Trif(-/-) (a TLR4 adapter protein) murine lung endothelial cells (MLECs) were exposed to hyperoxia. We found markedly elevated levels of intracellular and secreted Hsp70 from wild-type mice lungs and MLECs after hyperoxia. We confirmed that Hsp70 and TLR4 coimmunoprecipitate in lung tissue and MLECs. Hsp70-mediated NF-κB activation appears to depend upon TLR4. In the absence of TLR4, Hsp70 loses its protective effects in endothelial cells. Furthermore, these protective properties of Hsp70 are TLR4 adapter Trif dependent and MyD88 independent. Hsp70-deficient mice have increased mortality during hyperoxia, and lung-targeted adenoviral delivery of Hsp70 effectively rescues both Hsp70-deficient and wild-type mice. To our knowledge, our studies are the first to define an Hsp70-TLR4-Trif cytoprotective axis in the lung and endothelial cells. This pathway is a potential therapeutic target against a range of oxidant-induced lung injuries.
Collapse
Affiliation(s)
- Yi Zhang
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|
5
|
Gao B, Wang H, Lafdil F, Feng D. STAT proteins - key regulators of anti-viral responses, inflammation, and tumorigenesis in the liver. J Hepatol 2012; 57:430-41. [PMID: 22504331 PMCID: PMC3399024 DOI: 10.1016/j.jhep.2012.01.029] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 12/15/2011] [Accepted: 01/02/2012] [Indexed: 12/12/2022]
Abstract
Since its discovery in the early 1990s, the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway has been found to play key roles in regulating many key cellular processes such as survival, proliferation, and differentiation. There are seven known mammalian STAT family members: STAT1, 2, 3, 4, 5a, 5b, and 6. In the liver, activation of these STAT proteins is critical for anti-viral defense against hepatitis viral infection and for controlling injury, repair, inflammation, and tumorigenesis. The identification of functions for these STAT proteins has increased our understanding of liver disease pathophysiology and treatments, while also suggesting new therapeutic modalities for managing liver disease.
Collapse
Affiliation(s)
- Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Hua Wang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA, 20892
| | - Fouad Lafdil
- Laboratory of Liver Pathophysiology, INSERM, U955, Créteil, F-94000 France,Université Paris-Est, Faculté de Médecine, UMR-S955, Créteil, F-94000 France
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA, 20892
| |
Collapse
|
6
|
McFadden JP, Basketter DA, Dearman RJ, Kimber IR. Extra domain A-positive fibronectin-positive feedback loops and their association with cutaneous inflammatory disease. Clin Dermatol 2011; 29:257-65. [PMID: 21496732 DOI: 10.1016/j.clindermatol.2010.11.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cutaneous inflammation can show Th1 or Th2 predominance, but the precise mechanisms by which such selectivity is determined are unknown. A recent study has demonstrated that Th1 cells, but not Th2 cells, produce an endogenous ligand for Toll-like receptor (TLR) 4, namely extradomain A+ fibronectin containing extra type III domain A (FnEDA+). As TLR4 stimulation leads to production of proinflammatory cytokines that recruit (via altered endothelial adhesion molecule expression and chemokine production) more Th1/Th17 cells, a positive feedback mechanism for Th1/Th17 inflammation exists. We propose that FnEDA+ positive feedback loops are a potential driver of Th1/Th17 inflammation. Conversely, the inflammatory EDA+ fibronectin loop is negatively regulated in atopic dermatitis, Th2 cytokines actively suppress TLR4 expression of Th1 cytokines, and recruited Th2 cells do not produce FnEDA+. In psoriasis, there are multiple FnEDA+ loops, comprising inflammatory, keratinocyte, and autoimmune loops. In allergic contact dermatitis, a single inflammatory loop operates. In atopic dermatitis, the FnEDA+ loop is actively suppressed by Th2 cytokines, and recruited Th2 cells do not "feedback" FnEDA+. We review endogenous ligands for TLR in relation to inflammatory disease, FnEDA+ function, and the potential role for FnEDA+ in psoriasis, allergic contact dermatitis, and atopic dermatitis.
Collapse
Affiliation(s)
- John P McFadden
- Department of Cutaneous Allergy, St John's Institute of Dermatology, St Thomas' Hospital, SE1 7EH London, UK.
| | | | | | | |
Collapse
|
7
|
Interleukin-13 protects mouse intestine from ischemia and reperfusion injury through regulation of innate and adaptive immunity. Transplantation 2011; 91:737-43. [PMID: 21311412 DOI: 10.1097/tp.0b013e31820c861a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Ischemia-reperfusion (I/R) injury is a major factor leading to intestinal dysfunction or graft loss after intestinal surgery or transplantation. This study investigated the cytoprotective effects and putative mechanisms of interleukin (IL)-13 after intestinal I/R injury in the mouse. METHODS Mouse warm intestinal I/R injury induced by clamping the superior mesenteric artery for 100 min with tissue analysis at 4 and 24 hr after reperfusion. Treated animals received intravenous recombinant murine IL-13 (rIL-13) and anti-IL-13 antibody, whereas controls received saline. RESULTS rIL-13 administration markedly prolonged animal survival (100% vs. 50% in saline controls) and resulted in near normal histopathological architecture. rIL-13 treatment also significantly decreased myeloperoxidase activity. Mice conditioned with rIL-13 had a markedly depressed Toll-like receptor-4 expression and increased the expression of Stat6, antioxidant hemeoxygenase-1, and antiapoptotic A20, Bcl-2/Bcl-xl, compared with that of controls. Unlike in controls, the expression of mRNA coding for IL-2/interferon-γ, and interferon-γ-inducible protein (IP)-10/monocyte chemotactic protein-1 remained depressed, whereas that of IL-13/IL-4 reciprocally increased in the mice treated with rIL-13. Administration of anti-IL13 antibody alone or in combination with rIL-13 resulted in outcomes similar to that seen in controls. CONCLUSIONS This study demonstrates for the first time that IL-13 plays a protective role in intestinal warm I/R injury and a critical role in the regulation of Stat6 and Toll-like receptor-4 signaling. The administration of IL-13 exerts cytoprotective effects in this model by regulating innate and adaptive immunity while the removal of IL-13 using antibody therapy abrogates this effect.
Collapse
|
8
|
Teoh NC. Hepatic ischemia reperfusion injury: Contemporary perspectives on pathogenic mechanisms and basis for hepatoprotection-the good, bad and deadly. J Gastroenterol Hepatol 2011; 26 Suppl 1:180-7. [PMID: 21199530 DOI: 10.1111/j.1440-1746.2010.06584.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatic ischemia reperfusion (IR) injury is an important clinical problem complicating liver surgery and transplantation. The pathogenesis underlying reperfusion injury after warm ischemia is complex, encompassing a multitude of different cell types and signalling mechanisms innate and/or mobilized to the liver. Since the author's 2003 review in the Journal, considerable progress has been achieved in enhancing our understanding of some of the pathogenic pathways and crucial mediators of hepatic inflammation such as the heme oxygenase system, CXC chemokines, Toll-like receptors as well as the mode of parenchymal cell death in IR injury. A better appreciation of these mechanisms will accelerate efforts in designing optimal interventions to prevent hepatic IR injury and improve outcomes after liver transplantation.
Collapse
Affiliation(s)
- Narci C Teoh
- Australian National University Medical School at the Canberra Hospital, Australian Capital Territory, Australia.
| |
Collapse
|
9
|
Abu-Amara M, Yang SY, Tapuria N, Fuller B, Davidson B, Seifalian A. Liver ischemia/reperfusion injury: processes in inflammatory networks--a review. Liver Transpl 2010; 16:1016-32. [PMID: 20818739 DOI: 10.1002/lt.22117] [Citation(s) in RCA: 261] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Liver ischemia/reperfusion (IR) injury is typified by an inflammatory response. Understanding the cellular and molecular events underpinning this inflammation is fundamental to developing therapeutic strategies. Great strides have been made in this respect recently. Liver IR involves a complex web of interactions between the various cellular and humoral contributors to the inflammatory response. Kupffer cells, CD4+ lymphocytes, neutrophils, and hepatocytes are central cellular players. Various cytokines, chemokines, and complement proteins form the communication system between the cellular components. The contribution of the danger-associated molecular patterns and pattern recognition receptors to the pathophysiology of liver IR injury are slowly being elucidated. Our knowledge on the role of mitochondria in generating reactive oxygen and nitrogen species, in contributing to ionic disturbances, and in initiating the mitochondrial permeability transition with subsequent cellular death in liver IR injury is continuously being expanded. Here, we discuss recent findings pertaining to the aforementioned factors of liver IR, and we highlight areas with gaps in our knowledge, necessitating further research.
Collapse
Affiliation(s)
- Mahmoud Abu-Amara
- Liver Transplantation and Hepatobiliary Unit, Royal Free Hospital, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
Heme oxygenase-1 (HO-1) is the rate-limiting enzyme in heme catabolism that converts heme to Fe++, carbon monoxide and biliverdin. HO-1 acts anti-inflammatory and modulates apoptosis in many pathological conditions. In transplantation, HO-1 is overexpressed in organs during brain death, when undergoing ischemic damage and rejection. However, intentionally induced, it ameliorates pathological processes like ischemia reperfusion injury, allograft, xenograft or islet rejection, facilitates donor specific tolerance and alleviates chronic allograft changes. We herein consistently summarize the huge amount of data on HO-1 and transplantation that have been generated in multiple laboratories during the last 15years and suggest possible clinical implications and applications for the near future.
Collapse
Affiliation(s)
- Robert Öllinger
- Department of Visceral, Transplant and Thoracic Surgery, Medical University Innsbruck, Innsbruck, Austria.
| | | |
Collapse
|
11
|
Cao Z, Yuan Y, Jeyabalan G, Du Q, Tsung A, Geller DA, Billiar TR. Preactivation of NKT cells with alpha-GalCer protects against hepatic ischemia-reperfusion injury in mouse by a mechanism involving IL-13 and adenosine A2A receptor. Am J Physiol Gastrointest Liver Physiol 2009; 297:G249-58. [PMID: 19556359 PMCID: PMC2724078 DOI: 10.1152/ajpgi.00041.2009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatic preconditioning has emerged as a promising strategy of activating natural pathways to augment tolerance to liver ischemia-reperfusion (IR) injury. Liver-resident natural killer T (NKT) cells play an important role in modulating the local immune and inflammatory responses. This work was aimed to investigate whether preactivation of NKT cells could provide a beneficial "preconditioning" effect to ameliorate the subsequent hepatic IR injury. To selectively activate NKT cells, C57BL/6 mice were treated intraperitoneally with the glycolipid antigen alpha-galactosylceramide (alpha-GalCer) 1 h prior to hepatic ischemia. Significantly reduced liver IR injury was observed in mice pretreated with alpha- GalCer, and this protective effect was specifically abrogated by a CD1d blocking antibody. Serum TNF-alpha, IFN-gamma, and IL-13 levels were markedly increased shortly after alpha-GalCer injection. Pretreatment with a neutralizing antibody against TNF-alpha or IFN-gamma did not influence the protective effect of alpha-GalCer preconditioning, whereas preadministration of an IL-13 neutralizing antibody completely abolished the effect. Treatment with alpha-GalCer also led to an increased expression of adenosine A2A receptor (A2AR) in the liver, and blockade of A2AR by SH58261 diminished alpha-GalCer pretreatment-mediated attenuation of liver IR injury. In contrast, administration of the selective A2AR agonist CGS21680 reversed the counteracting effect of the IL-13 neutralizing antibody on alpha-GalCer preconditioning. Additionally, alpha-GalCer pretreatment was associated with a decreased neutrophil accumulation in the ischemic liver. These findings provide the first evidence that hepatic preconditioning by preactivation of NKT cells with alpha-GalCer protects the liver from IR injury via an IL-13 and adenosine A2AR-dependent mechanism.
Collapse
Affiliation(s)
- Zongxian Cao
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Youzhong Yuan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Geetha Jeyabalan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Qiang Du
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David A. Geller
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
12
|
Ito K, Ozasa H, Noda Y, Koike Y, Arii S, Horikawa S. Effect of non-essential amino acid glycine administration on the liver regeneration of partially hepatectomized rats with hepatic ischemia/reperfusion injury. Clin Nutr 2008; 27:773-80. [PMID: 18692283 DOI: 10.1016/j.clnu.2008.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Revised: 06/04/2008] [Accepted: 06/28/2008] [Indexed: 11/27/2022]
Abstract
BACKGROUND & AIMS Liver regeneration after partial hepatectomy or transplantation is a critical problem to affect prognosis. Ischemia/reperfusion (I/R) is an unavoidable process during liver resection or transplantation. The aim of this study was to investigate the effect of glycine on the regeneration of the remnant liver with I/R injury after partial hepatectomy. METHODS Partially hepatectomized rat with liver I/R injury was prepared by a two-thirds partial hepatectomy following 30 min of total hepatic ischemia. Glycine (5% in water) was orally administered to rats for 3 days as drinking water before the surgery. RESULTS Mortality rate in partially hepatectomized rats with severe hepatic I/R injury was so high compared to that in the rats with partial hepatectomy alone. However, when glycine was given to the partially hepatectomized rats with hepatic I/R injury, the survival rate, the recovery rate of the remnant liver weight, and the liver injury were obviously improved. On the other hand, when glycine-treated rats underwent partial hepatectomy without hepatic I/R, the recovery rate of the remnant liver weight was decreased as compared with that of the rats with partial hepatectomy alone. In these settings, glycine administration prevented the elevation of serum TNF-alpha levels and liver TNF-alpha mRNA expression. CONCLUSIONS Glycine improved the regeneration of the remnant liver with severe I/R injury after partial hepatectomy. This improvement may be at least partly due to the amelioration of the hepatic I/R injury by glycine. Glycine seems to be clinically beneficial to the prognosis of patients with liver resection.
Collapse
Affiliation(s)
- Koji Ito
- Division of Pathophysiology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Weimbs T. Polycystic kidney disease and renal injury repair: common pathways, fluid flow, and the function of polycystin-1. Am J Physiol Renal Physiol 2007; 293:F1423-32. [PMID: 17715262 DOI: 10.1152/ajprenal.00275.2007] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The root cause for most cases of autosomal-dominant polycystic kidney disease (ADPKD) is mutations in the polycystin-1 (PC1) gene. While PC1 has been implicated in a perplexing variety of protein interactions and signaling pathways, what its normal function is and why its disruption leads to the proliferation of renal epithelial cells are unknown. Recent results suggest that PC1 is involved in mechanotransduction by primary cilia measuring the degree of luminal fluid flow. PC1 has also recently been shown to regulate the mTOR and signal transducers and activators of transcription (STAT) 6 pathways. These two pathways are normally dormant in the healthy kidney but are activated in response to injury and appear to drive a proliferative repair response. This review develops the idea that a critical function of PC1 and primary cilia in the adult kidney may be to sense renal injury by detecting changes in luminal fluid flow and to trigger proliferation. Constitutive activation of these pathways in ADPKD would lead to the futile attempt to repair a nonexisting injury, resulting in cyst growth. The existence of many known cellular and molecular similarities between renal repair and ADPKD supports this model.
Collapse
Affiliation(s)
- Thomas Weimbs
- Dept. of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, Univ. of California, Santa Barbara, CA 93106-9610, USA.
| |
Collapse
|
14
|
Shen XD, Ke B, Zhai Y, Gao F, Tsuchihashi SI, Lassman CR, Busuttil RW, Kupiec-Weglinski JW. Absence of toll-like receptor 4 (TLR4) signaling in the donor organ reduces ischemia and reperfusion injury in a murine liver transplantation model. Liver Transpl 2007; 13:1435-43. [PMID: 17902130 DOI: 10.1002/lt.21251] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study analyzes how toll-like receptor 4 (TLR4) signaling in the donor organ affects the ischemia and reperfusion injury (IRI) sequel following liver transplantation. Isogenic orthotopic liver transplantations (OLTs) with rearterialization were performed in groups of wild-type (WT) and TLR4 knockout (KO) mice after donor liver preservation in University of Wisconsin solution at 4 degrees C for 24 hours. Unlike WT OLTs, TLR4-deficient OLTs transplanted to either WT or TLR4 KO recipients suffered significantly less hepatocellular damage, as evidenced by serum alanine aminotransferase levels, and histological Suzuki's grading of liver IRI. Disruption of TLR4 signaling in OLTs decreased local neutrophil sequestration, CD4+ T cell infiltration, interferon (IFN)-gamma-inducible protein 10 (CXCL10) and an intercellular adhesion molecule (ICAM-1), as well as tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, IL-2, and IFN-gamma, yet increased IL-4 and IL-10 expression. The well-functioning OLTs from TLR4 KO donors revealed attenuated activity of capase-3, and enhanced heme oygenase-1 (HO-1) expression, along with decreased levels of apoptotic endothelial cells/hepatocytes, as compared with WT OLTs with intact TLR4 signaling. Thus, the functional sentinel TLR4 complex in the donor organ plays a key role in the mechanism of hepatic IRI after OLT. Disruption of TLR4 pathway downregulated the early proinflammatory responses and ameliorated hepatic IRI. These results provide the rationale to locally modify innate TLR4 signaling in the donor organ to more efficiently control the adaptive posttransplantation IRI-dependent responses.
Collapse
Affiliation(s)
- Xiu-Da Shen
- Dumont-University of California, Los Angeles (UCLA) Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Tsuchihashi SI, Zhai Y, Bo Q, Busuttil RW, Kupiec-Weglinski JW. Heme Oxygenase-1 Mediated Cytoprotection Against Liver Ischemia and Reperfusion Injury: Inhibition of Type-1 Interferon Signaling. Transplantation 2007; 83:1628-34. [PMID: 17589347 DOI: 10.1097/01.tp.0000266917.39958.47] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Toll-like receptor (TLR)-4 signaling plays a key role in initiating exogenous antigen-independent innate immunity-dominated liver ischemia/reperfusion injury (IRI). Heme oxygenase (HO)-1, a heat-shock protein 32, exerts potent adaptive anti-oxidant and anti-inflammatory functions. Signal transducers and activator of transcription (STAT)-1 activation triggers interferon (IFN)-inducible protein 10 (CXCL-10), one of major products of type-1 IFN pathway downstream of TLR4. This study focuses on the role of type-1 IFN pathway in the mechanism of HO-1 cytoprotection during liver IRI. METHODS AND RESULTS Cobalt protoporphyrin (CoPP)-induced HO-1 overexpression ameliorated liver damage in a well-defined mouse model of liver warm IRI, as evidenced by improved hepatic function (serum alanine aminotransferase levels) and liver histology (Suzuki's scores). HO-1 downregulated phospho-STAT-1 and its key product, CXCL-10. In contrast, TLR4 expression remained elevated regardless of the IRI status. To dissect the mechanism of HO-1 upon CXCL-10, we cultured RW 264.7 (macrophage) cells with exogenous rIFN-beta to stimulate CXCL-10 production via TLR4 pathway in vitro. Indeed, CoPP-induced HO-1 suppressed otherwise highly upregulated rIFN-beta-triggered CXCL-10. Moreover, consistent with our in vitro data, CoPP pretreatment diminished rIFN-beta-induced CXCL-10 production in normal mouse livers. CONCLUSION Hepatic IRI activates TLR4 signaling in vivo to elaborate CXCL-10. HO-1 overexpression downregulates activation of STAT1 via type-1 IFN pathway downstream of TLR4, which in turn decreases CXCL-10 production. This study provides evidence for a novel mechanism by which HO-1 exerts adaptive cytoprotective and anti-inflammatory functions in the context of innate TLR4 activation.
Collapse
Affiliation(s)
- Sei-ichiro Tsuchihashi
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095-7054, USA
| | | | | | | | | |
Collapse
|
16
|
Ke B, Shen XD, Tsuchihashi SI, Gao F, Araujo JA, Busuttil RW, Ritter T, Kupiec-Weglinski JW. Viral interleukin-10 gene transfer prevents liver ischemia-reperfusion injury: Toll-like receptor-4 and heme oxygenase-1 signaling in innate and adaptive immunity. Hum Gene Ther 2007; 18:355-66. [PMID: 17439357 DOI: 10.1089/hum.2007.181] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) contributes to early and late dysfunction of liver transplants. We have shown that sentinel Toll-like receptor-4 (TLR4) plays a key role in the activation of T cell immune responses during hepatic IRI. We have also documented that overexpression of heme oxygenase-1 (HO-1) exerts potent cytoprotective effects. This study analyzes how adenovirus (Ad)-based viral interleukin-10 (vIL-10) gene transfer affects TLR4 and HO-1 signaling in host innate and adaptive immunity during liver IRI. Using a partial lobar warm IRI model, groups of wild-type and HO-1(+/-) knockout (KO) mice were assessed for severity of hepatocellular damage after 90 min of warm ischemia followed by 6 hr of reperfusion. Both wild-type and HO-1 (+/-) KO mice treated with Ad-vIL-10 have shown improved hepatic function (serum glutamic-oxaloacetic transaminase levels), ameliorated histological signs of IRI (Suzuki's score), decreased neutrophil accumulation (myeloperoxidase activity), and depressed tumor necrosis factor-alpha/IL-1beta, IL-2/interferon-gamma, E-selectin, and macrophage inflammatory protein-2 expression. These effects were IL-10 dependent as treatment with neutralizing antibody re-created liver IRI. In contrast, untreated wild-type and HO-1 (+/-) KO mice, as well as wild-type and HO-1 (+/-) KO mice treated with Ad-beta-Gal, showed severe hepatocellular damage due to IRI. Unlike in controls, wild-type and HO-1 (+/-) KO mice treated with Ad-vIL-10 revealed markedly depressed TLR4 and NF-kappaB expression, along with increased HO-1 and Bcl-2/Bcl-x(L) expression, as compared with respective controls. Thus, vIL-10 gene transfer prevents hepatic IRI in association with depressed expression of innate TLR4, and adaptive Th1 cytokine/chemokine programs. The induction of antioxidant HO-1 and anti-apoptotic Bcl-2/Bcl-x(L) by vIL-10 exerts synergistic cytoprotective function against antigen-independent hepatic inflammatory response triggered by IRI.
Collapse
Affiliation(s)
- Bibo Ke
- Dumont-UCLA Transplant Center, Department of Surgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Tang ZY, Loss G, Carmody I, Cohen AJ. TIMP-3 Ameliorates Hepatic Ischemia/Reperfusion Injury Through Inhibition of Tumor Necrosis Factor-Alpha-Converting Enzyme Activity in Rats. Transplantation 2006; 82:1518-23. [PMID: 17164725 DOI: 10.1097/01.tp.0000243381.41777.c7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Tumor necrosis factor (TNF)-alpha and its receptors play a critical role in the inflammatory cascade after hepatic ischemia/reperfusion injury. TNF-alpha converting enzyme (TACE) or disintegrin and metalloproteinase (ADAM)-17 is a metalloproteinase disintegrin that specifically cleaves precursor TNF-alpha to its mature form and is involved in the ectodomain shedding of TNF receptors. The regulation of TACE is poorly understood and its role in liver injury and/or regeneration is unknown. METHODS Male Wistar rats were subjected to 10 or 30 min of partial warm hepatic ischemia followed by 3 to 24 hr of reperfusion. Serum and/or hepatic TACE, TNF-alpha, TNF receptor 1 (TNFR1), and interleukin (IL)-6 levels were assessed by enzyme-linked immunosorbent assay, real-time reverse-transcriptase polymerase chain reaction, and/or Western blot. RESULTS Low levels of TACE were detected in normal liver tissue. Both 10 and 30 min warm ischemia resulted in a rise in TACE expression which peaked six hr after reperfusion. TNF-alpha, TNFR1, and IL-6 levels were up-regulated in a pattern similar to TACE messenger RNA (mRNA) levels. Moreover, selective inhibition of TACE activity by specific inhibitor tissue inhibitor of metalloproteinase (TIMP)-3 at dosages of 100 or 1000 ng/kg body weight showed significant decrease of circulating TNF-alpha and serum alanine transferase (ALT) levels and histological improvement of hepatic ischemia/reperfusion injuries. CONCLUSIONS TACE expression and its activity, as measured by increases in TNF-alpha, TNFR1, and IL-6 levels, are increased following hepatic ischemia/reperfusion injury, implying that TACE plays an important role in hepatic ischemia/reperfusion injury. Amelioration of hepatic ischemia/reperfusion injury after inhibition of TACE activity by TIMP-3 suggests that TACE inhibition may play an important role in preventing liver ischemia/reperfusion injury warranting further experimental and clinical study.
Collapse
Affiliation(s)
- Zhen-Ya Tang
- Transplantation Research Laboratory, Ochsner Clinic Foundation, New Orleans, LA 70121, USA
| | | | | | | |
Collapse
|
18
|
Abstract
The systemic inflammatory response syndrome initiated by infection shares many features in common with the trauma-induced systemic response. The toll-like receptors (TLRs) stand at the interface of innate immune activation in the settings of both infection and sterile injury by responding to a variety of microbial and endogenous ligands alike. Recently, a body of literature has evolved describing a key role for TLRs in acute injury using rodent models of hemorrhagic shock, ischemia and reperfusion, tissue trauma and wound repair, and various toxic exposures. This review will detail the observations implicating a TLR family member, TLR4, as a key component of the initial injury response.
Collapse
Affiliation(s)
- Kevin P Mollen
- Department of Surgery, University of Pittsburgh Medical Center, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
19
|
Tsung A, Stang MT, Ikeda A, Critchlow ND, Izuishi K, Nakao A, Chan MH, Jeyabalan G, Yim JH, Geller DA. The transcription factor interferon regulatory factor-1 mediates liver damage during ischemia-reperfusion injury. Am J Physiol Gastrointest Liver Physiol 2006; 290:G1261-8. [PMID: 16410367 DOI: 10.1152/ajpgi.00460.2005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatic ischemia occurs in the settings of trauma, transplantation, and elective liver resections. The initiating events that account for local organ damage are only partially understood. Interferon (IFN) regulatory factor-1 (IRF-1) is a transcription factor that regulates the expression of a number of genes involved in both innate and acquired immunity; however, its function in liver injury is unknown. Therefore, the purpose of this study was to investigate the role of IRF-1 in hepatic ischemia-reperfusion (I/R) injury. In C57BL/6 mice undergoing 60 min of hepatic ischemia, IRF-1 protein expression increased as early as 1 h after reperfusion. IRF-1 knockout mice were significantly protected from hepatic I/R-induced damage compared with their wild-type controls. Hepatic I/R injury resulted in marked activation of the MAP kinase c-Jun NH(2)-terminal kinase (JNK) in wild-type mice but not IRF-1 knockout mice. IRF-1 knockout mice also exhibited significantly lower hepatic expression of TNF-alpha, IL-6, ICAM-1, and inducible nitric oxide synthase (iNOS) mRNA. Adenoviral delivery of IRF-1 into C57BL/6 mice resulted in increased liver damage even without an ischemic insult. This injury was associated with increased JNK activation and hepatic iNOS expression. Because IRF-1 contributed to liver injury, we also examined for inflammatory signals that regulated IRF-1 gene expression in cultured hepatocytes. Whereas IFN-gamma and IFN-beta were strong inducers of IRF-1 mRNA (>10-fold) in a time- and dose-dependent manner, TNF-alpha and IL-1beta also induced IRF-1 mRNA to a lesser extent (2- to 3-fold). IL-6 and lipopolysaccharide had no effect on IRF-1 expression. This study demonstrates that IRF-1 exerts a harmful role in hepatic I/R injury by modulating the expression of multiple inflammatory mediators. We further show that IRF-1-mediated injury involves the activation of JNK and that hepatocellular IRF-1 expression itself is regulated by specific cytokines.
Collapse
Affiliation(s)
- Allan Tsung
- Department of Surgery, University of Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Qureshi ST, Zhang X, Aberg E, Bousette N, Giaid A, Shan P, Medzhitov RM, Lee PJ. Inducible Activation of TLR4 Confers Resistance to Hyperoxia-Induced Pulmonary Apoptosis. THE JOURNAL OF IMMUNOLOGY 2006; 176:4950-8. [PMID: 16585591 DOI: 10.4049/jimmunol.176.8.4950] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
TLRs are essential mediators of host defense against infection via recognition of unique microbial structures. Recent observations indicate that TLR4, the principal receptor for bacterial LPS, may also be activated by noninfectious stimuli including host-derived molecules and environmental oxidant stress. In mice, susceptibility to ozone-induced lung permeability has been linked to the wild-type allele of TLR4, whereas deficiency of TLR4 predisposes to lethal lung injury in hyperoxia. To precisely characterize the role of lung epithelial TLR4 expression in the host response to oxidant stress, we have created an inducible transgenic mouse model that targets the human TLR4 signaling domain to the airways. Exposure of induced transgenic mice to hyperoxia revealed a significant reduction in pulmonary apoptosis compared with controls. This phenotype was associated with sustained up-regulation of antiapoptotic molecules such as heme oxygenase-1 and Bcl-2, yet only transient activation of the transcription factor NF-kappaB. Specific in vivo knockdown of pulmonary heme oxygenase-1 or Bcl-2 expression by intranasal administration of short interfering RNA blocked the effect of TLR4 signaling on hyperoxia-induced lung apoptosis. These results define a novel role for lung epithelial TLR4 as a modulator of cellular apoptosis in response to oxidant stress.
Collapse
Affiliation(s)
- Salman T Qureshi
- McGill Centre For The Study of Host Resistance, Montreal, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Farmer DG, Anselmo D, Da Shen X, Ke B, Carmody IC, Gao F, Lassman C, McDiarmid SV, Shaw G, Busuttil RW, Kupiec-Weglinski JW. Disruption of P-selectin signaling modulates cell trafficking and results in improved outcomes after mouse warm intestinal ischemia and reperfusion injury. Transplantation 2005; 80:828-35. [PMID: 16210972 DOI: 10.1097/01.tp.0000174337.53658.b0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND This study analyzes the role of T lymphocytes and neutrophils (PMN) in intestinal ischemia and reperfusion injury (IRI) using either P-selectin blockade or elimination. METHODS Using a model of severe mouse warm intestinal IRI, the following groups were performed: group 1: wild type C57BL6 no treatment; group 2: wild type treated with r-PSGL1-Ig; group 3: C57BL6 genetically deficient in P-selectin. Survival was assessed at day 7; intestine was assayed for histopathology, apoptosis, myeloperoxidase (MPO), inflammatory cytokines, hemoxygenase-1 (HO-1), and CD3 lymphocytes. Standard statistical comparison was undertaken. RESULTS The survival was significantly (P < 0.01) improved in the treatment groups: group 1, 50%; group 2, 90%; group 3, 100%. Graded histopathology and crypt apoptosis were improved in groups 2 and 3. MPO and CD3 positive cells were significantly reduced in groups 2 and 3. A significant reduction in inflammatory/Th1-type cytokines was seen in groups 2 and 3 as compared to group 1. Conversely, a significant increase in Th2-type cytokines and HO-1 production was seen selectively in groups 2 and 3. CONCLUSIONS This study demonstrates the importance of P-selectin signaling in warm, murine intestinal IRI in that either the blockade of or the genetic deficiency in P-selectin confers a survival advantage and reduction in tissue injury/inflammation. The mechanism involves a reduction of PMN and CD3 T cell infiltration and an alteration in the cytokine microenvironment in favor of a Th2 profile. These data implicate T lymphocyte as an important regulatory cell in this inflammatory process.
Collapse
Affiliation(s)
- Douglas G Farmer
- Department of Surgery, Dumont-UCLA Transplant Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-7054, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhang X, Shan P, Qureshi S, Homer R, Medzhitov R, Noble PW, Lee PJ. Cutting edge: TLR4 deficiency confers susceptibility to lethal oxidant lung injury. THE JOURNAL OF IMMUNOLOGY 2005; 175:4834-8. [PMID: 16210584 DOI: 10.4049/jimmunol.175.8.4834] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
TLRs have been studied extensively in pathogen-mediated host responses. We use a murine model of lethal oxidant-mediated injury to demonstrate for the first time that mammalian TLR4 is required for survival and lung integrity. Administering high levels of inspired oxygen, or hyperoxia, is commonly used as a life-sustaining measure in critically ill patients. However, prolonged exposures can lead to respiratory failure and death. TLR4-deficient mice exhibited increased mortality and lung injury during hyperoxia. The enhanced susceptibility of TLR4-deficient mice to hyperoxia was associated with an inability to up-regulate Bcl-2 and phospho-Akt. Restoration of Bcl-2 and phospho-Akt levels by the exogenous transfer of the antioxidant gene heme oxygenase-1 markedly attenuated hyperoxia-induced injury, apoptosis, and mortality in TLR4-deficient mice. Taken together, our results suggest a protective role of TLR4 in oxidant-mediated injury, providing novel mechanistic links among innate immunity, oxidant stress, and apoptosis.
Collapse
Affiliation(s)
- Xuchen Zhang
- Section of Pulmonary and Critical Care Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Ke B, Shen XD, Gao F, Tsuchihashi S, Farmer DG, Briscoe D, Busuttil RW, Kupiec-Weglinski JW. The CD154-CD40 T-cell co-stimulation pathway in liver ischemia and reperfusion inflammatory responses. Transplantation 2005; 79:1078-83. [PMID: 15880047 PMCID: PMC4470618 DOI: 10.1097/01.tp.0000161248.43481.a2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Ischemia-reperfusion (I/R) injury is a prime antigen-independent inflammatory factor in the dysfunction of liver transplants. The precise contribution of T cells in the mechanism of I/R injury remains to be elucidated. As the CD154-CD40 co-stimulation pathway provides essential second signal in the initiation and maintenance of T-cell-dependent immune responses, this study was designed to assess the role of CD154 signaling in the pathophysiology of liver I/R injury. METHODS A mouse model of partial 90-min warm hepatic ischemia followed by 6 hr of reperfusion was used. Three animal groups were studied: (1) wild-type (WT) mice treated with Ad-(-gal versus Ad-CD40 immunoglobulin; (2) untreated WT versus CD154 (MR1) monoclonal antibody-treated WT mice; and (3) untreated WT versus CD154 knockout mice. RESULTS The disruption of CD154 signaling in all three animal groups ameliorated otherwise fulminant liver injury, as evidenced by depressed serum glutamic oxaloacetic transaminase levels, compared with controls. These beneficial effects were accompanied by depressed hepatic T-cell sequestration, local decrease of vascular endothelial growth factor expression, inhibition of tumor necrosis factor-(and T-helper type 1 cytokine production, and induction of antiapoptotic (Bcl-2/Bcl-xl) but depression of proapoptotic (caspase-3) proteins. CONCLUSIONS By using in parallel a gene therapy approach, pharmacologic blockade, and genetically targeted mice, these findings document the benefits of disrupting CD154 to selectively modulate inflammatory responses in liver I/R injury. This study reinforces the key role of CD154-CD40 T-cell co-stimulation in the pathophysiology of liver I/R injury.
Collapse
Affiliation(s)
- Bibo Ke
- The Dumont-University of California, Los Angeles Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, CA
| | - Xiu-Da Shen
- The Dumont-University of California, Los Angeles Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, CA
| | - Feng Gao
- The Dumont-University of California, Los Angeles Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, CA
| | - Seiichiro Tsuchihashi
- The Dumont-University of California, Los Angeles Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, CA
| | - Douglas G. Farmer
- The Dumont-University of California, Los Angeles Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, CA
| | - David Briscoe
- Division of Nephrology, Children’s Hospital, Harvard Medical School, Boston, MA
| | - Ronald W. Busuttil
- The Dumont-University of California, Los Angeles Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, CA
| | - Jerzy W. Kupiec-Weglinski
- The Dumont-University of California, Los Angeles Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, CA
| |
Collapse
|