1
|
Helper-dependent adenovirus-mediated gene transfer of a secreted LDL receptor/transferrin chimeric protein reduces aortic atherosclerosis in LDL receptor-deficient mice. Gene Ther 2019; 26:121-130. [PMID: 30700805 DOI: 10.1038/s41434-019-0061-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/02/2018] [Accepted: 11/23/2018] [Indexed: 01/05/2023]
Abstract
Familial hypercholesterolemia (FH) is a genetic hyperlipidemia characterized by elevated concentrations of plasma LDL cholesterol. Statins are not always effective for the treatment of FH patients; unresponsive patients have poor prognosis and rely on LDL apheresis. In the past, we developed safe and effective gene therapy strategies for the expression of anti-atherogenic proteins using PEGylated helper-dependent adenoviral (HD-Ad) vectors. We recently developed a HD-Ad vector for the expression of the soluble form of the extracellular portion of the human LDL receptor (LDLR) fused with a rabbit transferrin dimer (LDLR-TF). We evaluated the efficacy of the LDLR-TF chimeric protein in CHOLDLA7, a cell line lacking LDLR expression, restoring the ability to uptake LDL. Subsequently, we administered intravenously 1 × 10E13 vp/kg of this vector in LDLR-deficient mice and observed amelioration of lipid profile and reduction of aortic atherosclerosis. Finally, we studied LDL distribution after HD-Ad vector-mediated expression of LDLR-TF in LDLR-deficient mice and found LDL accumulation in liver, and in heart and intestine. These results support the possibility of lowering LDL-C levels and reducing aortic atherosclerosis using a secreted therapeutic transgene; the present strategy potentially can be modified and adapted to non-systemic gene transfer with expression of the secreted chimeric protein in muscle or other tissues. Intramuscular or local administration strategies could improve the safety profile of this strategy and facilitate applicability.
Collapse
|
2
|
Al-Allaf FA, Coutelle C, Waddington SN, David AL, Harbottle R, Themis M. LDLR-Gene therapy for familial hypercholesterolaemia: problems, progress, and perspectives. Int Arch Med 2010; 3:36. [PMID: 21144047 PMCID: PMC3016243 DOI: 10.1186/1755-7682-3-36] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 12/13/2010] [Indexed: 12/03/2022] Open
Abstract
Coronary artery diseases (CAD) inflict a heavy economical and social burden on most populations and contribute significantly to their morbidity and mortality rates. Low-density lipoprotein receptor (LDLR) associated familial hypercholesterolemia (FH) is the most frequent Mendelian disorder and is a major risk factor for the development of CAD. To date there is no cure for FH. The primary goal of clinical management is to control hypercholesterolaemia in order to decrease the risk of atherosclerosis and to prevent CAD. Permanent phenotypic correction with single administration of a gene therapeutic vector is a goal still needing to be achieved. The first ex vivo clinical trial of gene therapy in FH was conducted nearly 18 years ago. Patients who had inherited LDLR gene mutations were subjected to an aggressive surgical intervention involving partial hepatectomy to obtain the patient's own hepatocytes for ex vivo gene transfer with a replication deficient LDLR-retroviral vector. After successful re-infusion of transduced cells through a catheter placed in the inferior mesenteric vein at the time of liver resection, only low-level expression of the transferred LDLR gene was observed in the five patients enrolled in the trial. In contrast, full reversal of hypercholesterolaemia was later demonstrated in in vivo preclinical studies using LDLR-adenovirus mediated gene transfer. However, the high efficiency of cell division independent gene transfer by adenovirus vectors is limited by their short-term persistence due to episomal maintenance and the cytotoxicity of these highly immunogenic viruses. Novel long-term persisting vectors derived from adeno-associated viruses and lentiviruses, are now available and investigations are underway to determine their safety and efficiency in preparation for clinical application for a variety of diseases. Several novel non-viral based therapies have also been developed recently to lower LDL-C serum levels in FH patients. This article reviews the progress made in the 18 years since the first clinical trial for gene therapy of FH, with emphasis on the development, design, performance and limitations of viral based gene transfer vectors used in studies to ameliorate the effects of LDLR deficiency.
Collapse
Affiliation(s)
- Faisal A Al-Allaf
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Al-Abedia Campus, P, O, Box 715, Makkah 21955, Saudi Arabia.
| | | | | | | | | | | |
Collapse
|
3
|
Keefe D, Parng C, Lundberg D, Ray S, Martineau-Bosco J, Leng C, Tzartos S, Powell J, Concino M, Heartlein M, Lamsa J, Josiah S. In vitrocharacterization of an acetylcholine receptor–transferrin fusion protein for the treatment of myasthenia gravis. Autoimmunity 2010; 43:628-39. [DOI: 10.3109/08916931003599070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
4
|
Abstract
The impact of hydrodynamic injection on liver structure was evaluated in mice using various microscopic techniques. Upon hydrodynamic injection of approximately 9% of body weight by volume, the liver rapidly expanded, reaching maximal size at the end of the injection and returned to its original size in 30 min. Histological analysis revealed a swollen appearance in the peri-central region of the liver where delivery of genes and fluorescence-labeled markers was observed. Scanning and transmission electron microscopy showed enlargement and rupture of endothelium that in about 24-48 h regains its morphology and normal function as a barrier against infection by adenovirus viral particles. At the cellular level in hydrodynamically treated animals, four types of hepatocytes were seen: cells with normal appearance; cells with enriched vesicles in the cytoplasm; cells with lightly stained cytosol; and cells with significant dilution of the cytoplasm. In addition, red blood cells and platelets were observed in the space of Disse and even inside hepatocytes. Vesicle formation is triggered by hydrodynamic injection and resembles the process of macropinocytosis. These results, whereas confirming the physical nature of hydrodynamic delivery, are important for a better understanding of this efficient method for intrahepatic gene and small interfering RNA delivery.
Collapse
Affiliation(s)
- T Suda
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
5
|
Hen G, Bor A, Simchaev V, Druyan S, Yahav S, Miao CH, Friedman-Einat M. Expression of foreign genes in chicks by hydrodynamics-based naked plasmid transfer in vivo. Domest Anim Endocrinol 2006; 30:135-43. [PMID: 16024214 DOI: 10.1016/j.domaniend.2005.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Revised: 06/02/2005] [Accepted: 06/03/2005] [Indexed: 10/25/2022]
Abstract
The study of gene function in vivo is considered one of the top achievements of modern biology, inasmuch as it provides tools to study gene function in the context of the whole animal. In chickens, techniques of DNA-mediated gene transfer are less advanced than in other animal or livestock models, and remain a significant challenge. The study presented here is the first to show that a hydrodynamics-based gene-transfer technique, originally developed for naked DNA transfer in mice, can be applied to chickens. Rapid injection of naked plasmids containing expression cassettes into the jugular vein of 6- to 10-day-old chicks resulted in specific expression of the transgenes. A CMV promoter-driven luciferase reporter gene was expressed at significant levels in the liver during the first 3 days post-injection with lower levels also detected in the kidney. Significantly, all injected birds showed detectable levels of luciferase expression. Similarly, injection of a plasmid containing the secreted human coagulation factor IX (hFIX) gene under the control of human alpha-1-anti-trypsin promoter resulted in detectable levels of the hFIX in the plasma during the first 2 days post-injection. The method described herein has the potential for a quick and simple route for gain and loss-of function experiments in chicken liver and kidney, as well as for studying systemic effects of secreted proteins and hormones.
Collapse
Affiliation(s)
- G Hen
- Department of Animal Science, Agricultural Research Organization, Volcani Center, Derech Hamacabim st., P.O. Box 6, Bet Dagan 50-250, Israel
| | | | | | | | | | | | | |
Collapse
|
6
|
Chiu JJ, Lee PL, Chang SF, Chen LJ, Lee CI, Lin KM, Usami S, Chien S. Shear stress regulates gene expression in vascular endothelial cells in response to tumor necrosis factor-alpha: a study of the transcription profile with complementary DNA microarray. J Biomed Sci 2006; 12:481-502. [PMID: 15971008 DOI: 10.1007/s11373-005-4338-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Accepted: 03/22/2005] [Indexed: 11/26/2022] Open
Abstract
We investigate the role of shear stress in regulating the gene expression in endothelial cells (ECs) in response to tumor necrosis factor-alpha (TNF-alpha). ECs were kept in static condition or pre-exposed to a high level (HSS, 20 dynes/cm2) or a low level of shear stress (LSS, 0.5 dynes/cm2) for 24 h, and TNF-alpha was added under static condition for 4 h. In static ECs, DNA microarray showed that TNF-alpha caused a significant increase in expression of 102 genes and a significant decrease in expression of 12 genes. Pre-shearing of ECs decreased the TNF-alpha-responsiveness of many pro-inflammatory, pro-coagulant, proliferative, and pro-apoptotic genes, whereas it increased the responsiveness of some antioxidant, anti-coagulant, and anti-apoptotic genes. LSS showed less regulatory effects than HSS on EC gene expression in response to TNF-alpha. The microarray data were confirmed by reverse-transcription polymerase chain reaction for 64 selected genes. Pre-shearing of ECs at HSS significantly inhibited the TNF-alpha-induced p65 and p50 mRNA expressions and nuclear factor-kappaB (NF-kappaB)-DNA binding activity. Inhibition of NF-kappaB activity with the p65-antisense or lactacystin under static condition blocked the expression of most of the genes that are TNF-alpha-inducible and shear stress-down-regulated. Our findings suggest that laminar shear stress serves protective functions against atherogenesis.
Collapse
Affiliation(s)
- Jeng-Jiann Chiu
- Division of Medical Engineering Research, National Health Research Institutes, Miaoli, 350, Taiwan, ROC.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Kobayashi N, Nishikawa M, Takakura Y. The hydrodynamics-based procedure for controlling the pharmacokinetics of gene medicines at whole body, organ and cellular levels. Adv Drug Deliv Rev 2005; 57:713-31. [PMID: 15757757 DOI: 10.1016/j.addr.2004.12.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Accepted: 12/18/2004] [Indexed: 10/25/2022]
Abstract
Hydrodynamics-based gene delivery, involving a large-volume and high-speed intravenous injection of naked plasmid DNA (pDNA), gives a significantly high level of transgene expression in vivo. This has attracted a lot of attention and has been used very frequently as an efficient, simple and convenient transfection method for laboratory animals. Until recently, however, little information has been published on the pharmacokinetics of the injected DNA molecules and of the detailed mechanisms underlying the efficient gene transfer. We and other groups have very recently demonstrated that the mechanism for the hydrodynamics-based gene transfer would involve, in part, the direct cytosolic delivery of pDNA through the cell membrane due to transiently enhanced permeability. Along with the findings in our series of studies, this article reviews the cumulative reports and other intriguing information on the controlled pharmacokinetics of naked pDNA in the hydrodynamics-based gene delivery. In addition, we describe various applications reported so far, as well as the current attempts and proposals to develop novel gene medicines for future gene therapy using the concept of the hydrodynamics-based procedure. Furthermore, the issues associated with the clinical feasibility of its seemingly invasive nature, which is probably the most common concern about this hydrodynamics-based procedure, are discussed along with its future prospects and challenges.
Collapse
Affiliation(s)
- Naoki Kobayashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | |
Collapse
|
8
|
Al-Dosari MS, Knapp JE, Liu D. Hydrodynamic Delivery. NON-VIRAL VECTORS FOR GENE THERAPY, SECOND EDITION: PART 2 2005; 54:65-82. [PMID: 16096008 DOI: 10.1016/s0065-2660(05)54004-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hydrodynamic delivery has emerged as a near-perfect method for intracellular DNA delivery in vivo. For gene delivery to parenchymal cells, only essential DNA sequences need to be injected via a selected blood vessel, eliminating safety concerns associated with current viral and synthetic vectors. When injected into the bloodstream, DNA is capable of reaching cells in the different tissues accessible to the blood. Hydrodynamic delivery employs the force generated by the rapid injection of a large volume of solution into the incompressible blood in the circulation to overcome the physical barriers of endothelium and cell membranes that prevent large and membrane-impermeable compounds from entering parenchymal cells. In addition to the delivery of DNA, this method is useful for the efficient intracellular delivery of RNA, proteins, and other small compounds in vivo. This review discusses the development, current application, and clinical potential of hydrodynamic delivery.
Collapse
Affiliation(s)
- Mohammed S Al-Dosari
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|