1
|
Marzulli M, Mazzacurati L, Zhang M, Goins WF, Hatley ME, Glorioso JC, Cohen JB. A Novel Oncolytic Herpes Simplex Virus Design based on the Common Overexpression of microRNA-21 in Tumors. ACTA ACUST UNITED AC 2018; 3. [PMID: 30465046 PMCID: PMC6241327 DOI: 10.13188/2381-3326.1000007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background Recognition sequences for microRNAs (miRs) that are down-regulated in tumor cells have recently been used to render lytic viruses tumor-specific. Since different tumor types down-regulate different miRs, this strategy requires virus customization to the target tumor. We have explored a feature that is shared by many tumor types, the up-regulation of miR-21, as a means to generate an oncolytic herpes simplex virus (HSV) that is applicable to a broad range of cancers. Methods We assembled an expression construct for a dominant-negative (dn) form of the essential HSV replication factor UL9 and inserted tandem copies of the miR-21 recognition sequence (T21) in the 3' untranslated region. Bacterial Artificial Chromosome (BAC) recombineering was used to introduce the dnUL9 construct with or without T21 into the HSV genome. Virus was produced by transfection and replication was assessed in different tumor and control cell lines. Results Virus production was conditional on the presence of the T21 sequence. The dnUL9-T21 virus replicated efficiently in tumor cell lines, less efficiently in cells that contained reduced miR-21 activity, and not at all in the absence of miR-21. Conclusion miR-21-sensitive expression of a dominant-negative inhibitor of HSV replication allows preferential destruction of tumor cells in vitro. This observation provides a basis for further development of a widely applicable oncolytic HSV.
Collapse
Affiliation(s)
- M Marzulli
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh
| | - L Mazzacurati
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh
| | - M Zhang
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh
| | - W F Goins
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh
| | - M E Hatley
- Department of Oncology, St. Jude Children's Research Hospital, USA
| | - J C Glorioso
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh
| | - J B Cohen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh
| |
Collapse
|
2
|
Abstract
Engineered transcription activator-like effectors, or TALEs, have emerged as a new class of designer DNA-binding proteins. Their DNA recognition sites can be specified with great flexibility. When fused to appropriate transcriptional regulatory domains, they can serve as designer transcription factors, modulating the activity of targeted promoters. We created tet operator (tetO)-specific TALEs (tetTALEs), with an identical DNA-binding site as the Tet repressor (TetR) and the TetR-based transcription factors that are extensively used in eukaryotic transcriptional control systems. Different constellations of tetTALEs and tetO modified chromosomal transcription units were analyzed for their efficacy in mammalian cells. We find that tetTALE-silencers can entirely abrogate expression from the strong human EF1α promoter when binding upstream of the transcriptional control sequence. Remarkably, the DNA-binding domain of tetTALE alone can effectively counteract trans-activation mediated by the potent tettrans-activator and also directly interfere with RNA polymerase II transcription initiation from the strong CMV promoter. Our results demonstrate that TALEs can act as highly versatile tools in genetic engineering, serving as trans-activators, trans-silencers and also competitive repressors.
Collapse
Affiliation(s)
- Jeannette Werner
- Helmholtz-Zentrum Geesthacht (HZG), Institute of Biomaterial Science, Teltow 14513, Germany Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Föhrer Strasse 15, 13353 Berlin, Germany
| | - Manfred Gossen
- Helmholtz-Zentrum Geesthacht (HZG), Institute of Biomaterial Science, Teltow 14513, Germany Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Föhrer Strasse 15, 13353 Berlin, Germany
| |
Collapse
|
3
|
Zhang P, Xie L, Balliet JW, Casimiro DR, Yao F. A herpes simplex virus 2 (HSV-2) glycoprotein D-expressing nonreplicating dominant-negative HSV-2 virus vaccine is superior to a gD2 subunit vaccine against HSV-2 genital infection in guinea pigs. PLoS One 2014; 9:e101373. [PMID: 24979708 PMCID: PMC4076306 DOI: 10.1371/journal.pone.0101373] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 06/05/2014] [Indexed: 12/18/2022] Open
Abstract
We recently constructed a novel non-replicating dominant-negative HSV-2 recombinant viral vaccine (CJ2-gD2) capable of expressing various HSV-2 antigens that are dominant targets of HSV-2-specific CD8 T-cell response. Importantly, CJ2-gD2 expresses gD2, the HSV-2 major antigen glycoprotein D, as efficiently as wild-type HSV-2 infection and can lead to a nearly 500-fold reduction in wild-type HSV-2 viral replication in cells co-infected with CJ2-gD2 and wild-type HSV-2. In this report, we show that CJ2-gD2 elicits a strong antibody response to various HSV-2 antigens and is highly effective in the prevention of primary and recurrent HSV-2 genital infection and disease in the immunized guinea pigs. The direct comparison study between CJ2-gD2 and a gD2 subunit vaccine (gD2-alum/MPL) with a formulation akin to a vaccine tested in phase III clinical trials shows that CJ2-gD2 is 8 times more effective than the gD2-alum/MPL subunit vaccine in eliciting an anti-HSV-2 specific neutralizing antibody response and offers significantly superior protection against primary and recurrent HSV-2 genital infections. Importantly, no challenge wild-type HSV-2 viral DNA was detectable in dorsal root ganglia DNA isolated from CJ2-gD2-immunized guinea pigs on day 60 post-challenge. CJ2-gD2 should be an excellent HSV-2 vaccine candidate for protection against HSV-2 genital infection and disease in humans.
Collapse
Affiliation(s)
- Pengwei Zhang
- Department of Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lining Xie
- Department of Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, United States of America
| | - John W. Balliet
- Vaccine Research, Merck Research Laboratories, Merck & Co., Inc., West Point, Pennsylvania, United States of America
| | - Danilo R. Casimiro
- Vaccine Research, Merck Research Laboratories, Merck & Co., Inc., West Point, Pennsylvania, United States of America
| | - Feng Yao
- Department of Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
4
|
Hagen CJ, Titong A, Sarnoski EA, Verardi PH. Antibiotic-dependent expression of early transcription factor subunits leads to stringent control of vaccinia virus replication. Virus Res 2014; 181:43-52. [PMID: 24394294 DOI: 10.1016/j.virusres.2013.12.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 12/12/2013] [Accepted: 12/17/2013] [Indexed: 12/31/2022]
Abstract
The use of vaccinia virus (VACV) as the vaccine against variola virus resulted in the eradication of smallpox. VACV has since been used in the development of recombinant vaccine and therapeutic vectors, but complications associated with uncontrolled viral replication have constrained its use as a live viral vector. We propose to improve the safety of VACV as a live-replicating vector by using elements of the tet operon to control the transcription of genes that are essential for viral growth. Poxviruses encode all enzymes and factors necessary for their replication within the host cell cytoplasm. One essential VACV factor is the vaccinia early transcription factor (VETF) packaged into the viral core. This heterodimeric protein is required for expression of early VACV genes. VETF is composed of a large subunit encoded by the A7L gene and a small subunit encoded by the D6R gene. Two recombinant VACVs were generated in which either the A7L or D6R gene was placed under the control of tet operon elements to allow their transcription, and therefore viral replication, to be dependent on tetracycline antibiotics such as doxycycline. In the absence of inducers, no plaques were produced but abortively infected cells could be identified by expression of a reporter gene. In the presence of doxycycline, both recombinant viruses replicated indistinguishably from the wild-type strain. This stringent control of VACV replication can be used for the development of safer, next-generation VACV vaccines and therapeutic vectors. Such replication-inducible VACVs would only replicate when administered with tetracycline antibiotics, and if adverse events were to occur, treatment would be as simple as antibiotic cessation.
Collapse
Affiliation(s)
- Caitlin J Hagen
- Department of Pathobiology and Veterinary Science and Center of Excellence for Vaccine Research, College of Agriculture and Natural Resources, University of Connecticut, Storrs, CT 06269, United States
| | - Allison Titong
- Department of Pathobiology and Veterinary Science and Center of Excellence for Vaccine Research, College of Agriculture and Natural Resources, University of Connecticut, Storrs, CT 06269, United States
| | - Ethan A Sarnoski
- Department of Pathobiology and Veterinary Science and Center of Excellence for Vaccine Research, College of Agriculture and Natural Resources, University of Connecticut, Storrs, CT 06269, United States
| | - Paulo H Verardi
- Department of Pathobiology and Veterinary Science and Center of Excellence for Vaccine Research, College of Agriculture and Natural Resources, University of Connecticut, Storrs, CT 06269, United States.
| |
Collapse
|
5
|
Abstract
BACKGROUND In the past two decades, regenerative surgeons have focused increasing attention on the potential of gene therapy for treatment of local disorders and injuries. Gene transfer techniques may provide an effective local and short-term induction of growth factors without the limits of other topical therapies. In 2002, Tepper and Mehrara accurately reviewed the topic: given the substantial advancement of research on this issue, an updated review is provided. METHODS Literature indexed in the National Center for Biotechnology Information database (PubMed) has been reviewed using variable combinations of keywords ("gene therapy," "regenerative medicine," "tissue regeneration," and "gene medicine"). Articles investigating the association between gene therapies and local pathologic conditions have been considered. Attention has been focused on articles published after 2002. Further literature has been obtained by analysis of references listed in reviewed articles. RESULTS Gene therapy approaches have been successfully adopted in preclinical models for treatment of a large variety of local diseases affecting almost every type of tissue. Experiences in abnormalities involving skin (e.g., chronic wounds, burn injuries, pathologic scars), bone, cartilage, endothelia, and nerves have been reviewed. In addition, the supporting role of gene therapies to other tissue-engineering approaches has been discussed. Despite initial reports, clinical evidence has been provided only for treatment of diabetic ulcers, rheumatoid arthritis, and osteoarthritis. CONCLUSIONS Translation of gene therapy strategies into human clinical trials is still a lengthy, difficult, and expensive process. Even so, cutting-edge gene therapy-based strategies in reconstructive procedures could soon set valuable milestones for development of efficient treatments in a growing number of local diseases and injuries.
Collapse
|
6
|
Jiang Y, Wei N, Zhu J, Zhai D, Wu L, Chen M, Xu G, Liu X. A new approach with less damage: intranasal delivery of tetracycline-inducible replication-defective herpes simplex virus type-1 vector to brain. Neuroscience 2011; 201:96-104. [PMID: 22101000 DOI: 10.1016/j.neuroscience.2011.10.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 10/14/2011] [Accepted: 10/22/2011] [Indexed: 11/25/2022]
Abstract
Gene therapy holds great potential for treating neurological disorders. However, delivering gene vectors to the brain has been either invasive or inefficacious in most studies to date. The aim of this study was to develop a safe and efficacious strategy for delivering gene vectors to the brain. A tetracycline-inducible replication-defective herpes simplex virus type-1 vector, QR9TO-LacZ, was administered to rats intranasally. QR9TO-LacZ could infect primary cortical neurons and express the reporter gene without detectable replication. QR9TO-LacZ was observed in the olfactory bulb, hippocampus, striatum, cortex, medulla, cerebellum, ventricles, and nasal septum after intranasal administration. Expression of the reporter gene could be controlled effectively by tetracycline. In vitro, introduction of QR9TO-LacZ did not change the structure of transfected neurons. In vivo, QR9TO-LacZ did not increase apoptosis in neurons and did not alter levels of interleukin 6 and tumor necrosis factor α in the brain after intranasal delivery. Our data suggest that intranasally applied QR9TO-LacZ has a wide distribution and expresses the reporter gene in the brain under the control of tetracycline with less cytotoxicity than intravenous or stereotactic delivery methods.
Collapse
Affiliation(s)
- Y Jiang
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, PR China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Within the past 10 years, RNA interference has emerged as a powerful experimental tool as it allows rapid gene function analysis. Unique features such as reversibility of gene silencing and simultaneous targeting of several genes characterize the approach. In this chapter, transgenic RNAi techniques in reverse mouse genetics are discussed and protocols are provided.
Collapse
|
8
|
Hoeller Obrigkeit D, Baron JM. Impfstoffe gegen Herpes-simplex-Virus-Infektionen. Hautarzt 2007; 58:465-6. [PMID: 17450340 DOI: 10.1007/s00105-007-1345-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- D Hoeller Obrigkeit
- Klinik für Dermatologie und Allergologie, Universitätsklinikum der RWTH Aachen, 52074, Aachen.
| | | |
Collapse
|
9
|
Rupp B, Ruzsics Z, Buser C, Adler B, Walther P, Koszinowski UH. Random screening for dominant-negative mutants of the cytomegalovirus nuclear egress protein M50. J Virol 2007; 81:5508-17. [PMID: 17376929 PMCID: PMC1900260 DOI: 10.1128/jvi.02796-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Inactivation of gene products by dominant-negative (DN) mutants is a powerful tool to assign functions to proteins. Here, we present a two-step procedure to establish a random screen for DN alleles, using the essential murine cytomegalovirus gene M50 as an example. First, loss-of-function mutants from a linker-scanning library were tested for inhibition of virus reconstitution with the help of FLP-mediated ectopic insertion of the mutants into the viral genome. Second, DN candidates were confirmed by conditional expression of the inhibitory proteins in the virus context. This allowed the quantification of the inhibitory effect, the identification of the morphogenesis block, and the construction of DN mutants with improved activity. Based on these observations a DN mutant of the homologous gene (UL50) in human cytomegalovirus was predicted and constructed. Our data suggest that a proline-rich sequence motif in the variable region of M50/UL50 represents a new functional site which is essential for nuclear egress of cytomegalovirus capsids.
Collapse
Affiliation(s)
- Brigitte Rupp
- Max von Pettenkofer Institut für Virologie, Ludwig-Maximilians-Universität München, Pettenkoferstrasse 9a, 80336 Munich, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
Possibilities of using the skin for somatic gene therapy have been investigated for more than 20 years. Strategies have included both direct gene transfer into the skin and indirect gene transfer utilizing cultured cells as an intermediate step for gene manipulation. Viral as well as nonviral vectors have been used, and both gene addition and gene editing have been performed. Although cutaneous gene therapy has now begun translating into clinical medicine (as seen by the first clinical gene therapy project of an inherited skin disorder) further developments are still required.
Collapse
|
11
|
Jia J, Wang Y, Zhou L, Jin S. Expression of Pseudomonas aeruginosa toxin ExoS effectively induces apoptosis in host cells. Infect Immun 2006; 74:6557-70. [PMID: 16966406 PMCID: PMC1698105 DOI: 10.1128/iai.00591-06] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Revised: 05/31/2006] [Accepted: 09/04/2006] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that primarily infects immunocompromised individuals and patients with cystic fibrosis. Invasive strains of P. aeruginosa are known to induce apoptosis at a high frequency in HeLa cells and in many other cell lines, a process that is dependent on the ADP-ribosylation (ADPRT) activity of a type III secreted protein ExoS. In our previous report, it was proposed that P. aeruginosa secreting ExoS, upon infection, shuts down host cell survival signal pathways by inhibiting ERK1/2 and p38 activation, and it activates proapoptotic pathways through activation of JNK1/2, leading ultimately to cytochrome c release and activation of caspases. In this study, we demonstrate that the expression of ExoS in HeLa cells by eukaryotic expression vector effectively caused apoptosis in an ADPRT activity-dependent manner, indicating that ExoS alone is sufficient to trigger apoptotic death of host cells independent of any other bacterial factors. By expressing an EGFP-ExoS fusion protein, we were able to directly correlate the death of HeLa cells with the presence of intracellular ExoS and further proved the dependence of this process on both JNK activation and mitochondrial proapoptotic event. The cellular pathway responsible for the ExoS-induced cytotoxicity appears to be well conserved, since the expression of the ADPRT-competent ExoS also induced rapid cell death in the Drosophila melanogaster S2 cell lines. The presented study not only highlights the ability of ExoS ADPRT to modulate host cell signaling, eventually leading to apoptosis, but also establishes ExoS as a valuable tool, in principle, for the elucidation of apoptosis mechanisms.
Collapse
Affiliation(s)
- Jinghua Jia
- Department of Molecular Genetics and Microbiology, P.O. Box 100266, University of Florida, Gainesville, FL 32610, USA
| | | | | | | |
Collapse
|
12
|
Huang JS, Dong L, Le Breton GC. Mass-dependent signaling between G protein coupled receptors. Cell Signal 2006; 18:564-76. [PMID: 16125366 DOI: 10.1016/j.cellsig.2005.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Accepted: 06/10/2005] [Indexed: 12/14/2022]
Abstract
The present study provides evidence that G protein coupled receptor (GPCR) signaling pathways participate in an interactive signaling network governed by the principles of mass action. Using an inducible thromboxane A2 receptor (TPR)/platelet activating factor receptor (PAFR) co-expressing cell model, TPR or PAFR expression was independently up-regulated. Immunostaining and radioligand binding experiments demonstrated that this receptor up-regulation resulted in increased GPCR:G protein mass ratios. This increase in mass ratio impacted both TPR and PAFR ligand affinity. Specifically, up-regulating TPR expression not only decreased TPR ligand affinity, but also decreased the ligand affinity of PAFRs. A similar effect on ligand affinities was observed when PAFRs were up-regulated. In addition, increasing the GPCR:G protein mass ratio for TPRs led to desensitization of the calcium mobilization response to PAFR activation, and increasing PAFR mass desensitized the TPR-mediated calcium response. Finally, it was observed that an increased TPR:G protein mass ratio was associated with a shift in the TPR signaling response, and revealed an additional TPR signaling pathway through G(S). Collectively, these results describe a novel mechanism, i.e., mass-dependent GPCR signaling, by which cells can modulate their GPCR signaling pathways and signaling priorities.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Animals
- Azepines/pharmacology
- Blood Platelets/drug effects
- CHO Cells
- Calcium/metabolism
- Cricetinae
- Humans
- Ligands
- Platelet Membrane Glycoproteins/antagonists & inhibitors
- Platelet Membrane Glycoproteins/metabolism
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/drug effects
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Thromboxane A2, Prostaglandin H2/agonists
- Receptors, Thromboxane A2, Prostaglandin H2/antagonists & inhibitors
- Receptors, Thromboxane A2, Prostaglandin H2/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Time Factors
- Triazoles/pharmacology
- Up-Regulation
Collapse
Affiliation(s)
- Jin-Sheng Huang
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, 835 S. Wolcott Ave. (mail code 868), Chicago, IL 60612, USA
| | | | | |
Collapse
|
13
|
Abstract
Every year, millions of people experience burns, suffer from nonhealing wounds, or have acute wounds that become complicated by infection, dehiscence or problematic scarring. Effective wound treatment requires carefully considered interventions often requiring multiple clinic or hospital visits. The resulting costs of wound care are staggering, and more efficacious and cost-effective therapies are needed to decrease this burden. Unfortunately, the expenses and difficulties encountered in performing clinical trials have led to a relatively slow growth of new treatment options for the wound management. Research efforts attempting to examine wound pathophysiology have been hampered by the lack of an adequate chronic wound healing model, and the complexity of the wound healing cascade has limited attempts at pharmacological modification. As such, currently available wound healing therapies are only partially effective. Therefore, many new therapies are emerging that target various aspects of wound repair and the promise of new therapeutic interventions is on the immediate horizon.
Collapse
Affiliation(s)
- Karen Meier
- S-2221 MCN Vanderbilt School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
14
|
Petrie NC, Vranckx JJ, Hoeller D, Yao F, Eriksson E. Gene delivery of PDGF for wound healing therapy. J Tissue Viability 2005; 15:16-21. [PMID: 16302501 DOI: 10.1016/s0965-206x(05)54002-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nicola C Petrie
- Laboratory of Wound Repair and Gene Transfer, Division of Plastic Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | | |
Collapse
|
15
|
Abstract
Certain neurotropic viruses can invade the nervous system of their hosts and spread in chains of synaptically connected neurons. Consequently, it is possible to identify entire hierarchically connected circuits within an animal. In this review, we discuss the use of neurotropic herpesviruses as neuronal tract tracers. Although a variety of tract tracing viruses are available, each with its own unique infection characteristics, we focus on the widespread use of attenuated strains of pseudorabies virus (PRV), a swine herpesvirus with a broad host range. In particular, we focus on new applications of PRV for tract tracing including use of multiple infections by PRV reporter viruses to test for circuit convergence/divergence within the same animal. We provide examples of these combined application techniques within the context of an animal model to study the naturally occurring reversal of seasonal obesity in Siberian hamsters.
Collapse
Affiliation(s)
- C Kay Song
- Department of Biology, Neurobiology and Behavior Program, Georgia State University, 24 Peachtree Center Ave. NE, Atlanta, GA 30302-4010, USA
| | | | | |
Collapse
|
16
|
Boldogköi Z, Sík A, Dénes A, Reichart A, Toldi J, Gerendai I, Kovács KJ, Palkovits M. Novel tracing paradigms--genetically engineered herpesviruses as tools for mapping functional circuits within the CNS: present status and future prospects. Prog Neurobiol 2004; 72:417-45. [PMID: 15177785 DOI: 10.1016/j.pneurobio.2004.03.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2003] [Accepted: 03/29/2004] [Indexed: 11/17/2022]
Abstract
The mammalian CNS is composed of an extremely complex meshwork of highly ordered interconnections among billions of neurons. To understand the diverse functions of this neuronal network we need to differentiate between functionally related and nonrelated elements. A powerful labeling method for defining intricate neural circuits is based on the utilization of neurotropic herpesviruses, including pseudorabies virus and herpes simplex virus type 1. The recent development of genetically engineered tracing viruses can open the way toward the conception of novel tract-tracing paradigms. These new-generation tracing viruses may facilitate the clarification of problems, which were inaccessible to earlier approaches. This article first presents a concise review of the general aspects of neuroanatomical tracing protocols. Subsequently, it discusses the molecular biology of alpha-herpesviruses, and the genetic manipulation and gene expression techniques that are utilized for the construction of virus-based tracers. Finally, it describes the current utilization of genetically modified herpesviruses for circuit analysis, and the future directions in their potential applications.
Collapse
Affiliation(s)
- Zsolt Boldogköi
- Laboratory of Neuromorphology, Department of Anatomy, Faculty of Medicine, Semmelweis University and Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Exciting research with the promise of clinical application
Collapse
Affiliation(s)
- E Eriksson
- Division of Plastic Surgery, Brigham and Womens' Hospital, 75 Francis Street, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
18
|
Mitta B, Weber CC, Rimann M, Fussenegger M. Design and in vivo characterization of self-inactivating human and non-human lentiviral expression vectors engineered for streptogramin-adjustable transgene expression. Nucleic Acids Res 2004; 32:e106. [PMID: 15258250 PMCID: PMC484201 DOI: 10.1093/nar/gnh104] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Adjustable transgene expression is considered key for next-generation molecular interventions in gene therapy scenarios, therapeutic reprogramming of clinical cell phenotypes for tissue engineering and sophisticated gene-function analyses in the post-genomic era. We have designed a portfolio of latest generation self-inactivating human (HIV-derived) and non-human (EIAV-based) lentiviral expression vectors engineered for streptogramin-adjustable expression of reporter (AmyS(DeltaS), EYFP, SAMY, SEAP), differentiation-modulating (human C/EBP-alpha) and therapeutic (human VEGF) transgenes in a variety of rodent (CHO-K1, C2C12) and human cell lines (HT-1080, K-562), human and mouse primary cells (NHDF, PBMC, CD4+) as well as chicken embryos. Lentiviral design concepts include (i) binary systems harboring constitutive streptogramin-dependent transactivator (PIT) and PIT-responsive transgene expression units on separate lentivectors; (ii) streptogramin-responsive promoters (P(PIR8)) placed 5' of desired transgenes; (iii) within modified enhancer-free 3'-long terminal repeats; and (iv) bidirectional autoregulated configurations providing streptogramin-responsive transgene expression in a lentiviral one-vector format. Rigorous quantitative analysis revealed HIV-based direct P(PIR)-transgene configurations to provide optimal regulation performance for (i) adjustable expression of intracellular and secreted product proteins, (ii) regulated differential differentiation of muscle precursor cell lines into adipocytes or osteoblasts and (iii) conditional vascularization fine-tuning in chicken embryos. Similar performance could be achieved by engineering streptogramin-responsive transgene expression into an autoregulated one-vector format. Powerful transduction systems equipped with adjustable transcription modulation options are expected to greatly advance sophisticated molecular interventions in clinically and/or biotechnologically relevant primary cells and cell lines.
Collapse
Affiliation(s)
- Barbara Mitta
- Institute of Biotechnology, Swiss Federal Institute of Technology, ETH Hoenggerberg, HPT D74, CH-8093 Zurich, Switzerland
| | | | | | | |
Collapse
|
19
|
Abstract
Wet treatment of wounds has been used as an "irrigation" method since the seventh century. We have developed the concept of an in vivo tissue culture that facilitates wound healing and allows tissue engineering. A transparent, flexible, round chamber provides the wet environment. This system heals clean wounds as fast or faster than any other method, with less scarring. It allows delivery of analgesics, antibiotics, growth factors, growth media, and cells into the chamber, becoming a platform for tissue engineering. Gene therapy of the wound can be done in the chamber with growth factor and other genes. A tetracycline switch allows precise timing and amounts of expression and provides the opportunity for sequential expression of genes delivered at the same time.
Collapse
Affiliation(s)
- Elof Eriksson
- Brigham and Women's Hospital, Division of Plastic Surgery, 75 Frances Street, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
20
|
Augustinova H, Hoeller D, Yao F. The dominant-negative herpes simplex virus type 1 (HSV-1) recombinant CJ83193 can serve as an effective vaccine against wild-type HSV-1 infection in mice. J Virol 2004; 78:5756-65. [PMID: 15140973 PMCID: PMC415800 DOI: 10.1128/jvi.78.11.5756-5765.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
By selectively regulating the expression of the trans-dominant-negative mutant polypeptide UL9-C535C, of herpes simplex virus type 1 (HSV-1) origin binding protein UL9 with the tetracycline repressor (tetR)-mediated gene switch, we recently generated a novel replication-defective and anti-HSV-specific HSV-1 recombinant, CJ83193. The UL9-C535C peptides expressed by CJ83193 can function as a potent intracellular therapy against its own replication, as well as the replication of wild-type HSV-1 and HSV-2 in coinfected cells. In this report, we demonstrate that CJ83193 cannot initiate acute productive infection in corneas of infected mice nor can it reactivate from trigeminal ganglia of mice latently infected by CJ83193 in a mouse ocular model. Given that CJ83193 is capable of expressing the viral alpha, beta, and gamma1 genes but little or no gamma2 genes, we tested the vaccine potential of CJ83193 against HSV-1 infection in a mouse ocular model. Our studies showed that immunization with CJ83193 significantly reduced the yields of challenge HSV in the eyes and trigeminal ganglia on days 3, 5, and 7 postchallenge. Like in mice immunized with the wild-type HSV-1 strain KOS, immunization of mice with CJ83193 prevents the development of keratitis and encephalitis induced by corneal challenge with wild-type HSV-1 strain mP. Delayed-type hypersensitivity (DTH) assays demonstrate that CJ83193 can elicit durable cell-mediated immunity at the same level as that of wild-type HSV-1 and is more effective than that induced by d27, an HSV-1 ICP27 deletion mutant. Moreover, mice immunized with CJ83193 developed strong, durable HSV-1-neutralizing antibodies at levels at least twofold higher than those induced by d27. The results presented in this report have shed new light on the development of effective HSV viral vaccines that encode a unique safety mechanism capable of inhibiting the mutant's own replication and that of wild-type virus.
Collapse
Affiliation(s)
- Hanka Augustinova
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | | | | |
Collapse
|
21
|
Marintcheva B, Weller SK. Existence of transdominant and potentiating mutants of UL9, the herpes simplex virus type 1 origin-binding protein, suggests that levels of UL9 protein may be regulated during infection. J Virol 2003; 77:9639-51. [PMID: 12915576 PMCID: PMC187383 DOI: 10.1128/jvi.77.17.9639-9651.2003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UL9 is a multifunctional protein required for herpes simplex virus type 1 (HSV-1) replication in vivo. UL9 is a member of the superfamily II helicases and exhibits helicase and origin-binding activities. We have previously shown that mutations in the conserved helicase motifs of UL9 can have either a transdominant or potentiating effect on the plaque-forming ability of infectious DNA from wild-type virus (A. J. Malik and S. K. Weller, J. Virol. 70:7859-7866, 1996). In this paper, the mechanisms of transdominance and potentiation are explored. We show that the motif V mutant protein containing a G to A substitution at residue 354 is unstable when expressed by transfection and is either processed to a 38-kDa N-terminal fragment or degraded completely. The overexpression of the MV mutant protein is able to influence the steady-state protein levels of wild-type UL9 and to override the inhibitory effects of wild-type UL9. Potentiation correlates with the ability of the UL9 variants containing the G354A mutation to be processed or degraded to the 38-kDa form. We propose that the MV mutant protein is able to interact with full-length UL9 and that this interaction results in a decrease in the steady-state levels of UL9, which in turn leads to enhanced viral infection. Furthermore, we demonstrate that inhibition of HSV-1 infection can be obtained by overexpression of full-length UL9, the C-terminal third of the protein containing the origin-binding domain, or the N-terminal two-thirds of UL9 containing the conserved helicase motifs and the putative dimerization domain. Our results suggest that transdominance can be mediated by overexpression, origin-binding activity, and dimerization, whereas potentiation is most likely caused by the ability of the UL9 MV mutant to influence the steady-state levels of wild-type UL9. Taken together, the results presented in this paper suggest that the regulation of steady-state levels of UL9 may play an important role in controlling viral infection.
Collapse
Affiliation(s)
- Boriana Marintcheva
- Department of Microbiology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | |
Collapse
|
22
|
Abstract
Gene therapy is a new and emerging technology that has been catalyzed by the progress of the Human Genome Project. It employs the process of manipulating genes to achieve a clinically beneficial alteration in gene product. Wound healing lends itself to the application of gene therapy by virtue of the vast array of proteins involved in its complex cascade. This article provides an overview of the background to gene therapy and describes current techniques in use as applied to wound healing. The authors show the potential role that many candidate genes may offer in the future for optimizing wound healing through gene therapy.
Collapse
Affiliation(s)
- Nicola C Petrie
- Laboratory of Wound Repair and Gene Transfer, Division of Plastic Surgery, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | | | | |
Collapse
|
23
|
Hoeller D, Petrie N, Yao F, Eriksson E. Gene therapy in soft tissue reconstruction. Cells Tissues Organs 2003; 172:118-25. [PMID: 12426488 DOI: 10.1159/000065610] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Gene therapy is defined as the introduction of a therapeutic gene into a cell, whose expression can lead to a cure of a disease or offer a transient advantage for tissue growth and regeneration. The delivery of genes can be undertaken for a number of purposes, usually it is attempted to enhance or add a function to a cell or a tissue or to delete or reduce another function. In this brief overview we describe various vehicles and techniques that have been developed to deliver therapeutic genes into cells, such as viral vectors and physical/chemical gene delivery methods including naked DNA and particle-mediated gene transfer, the microseeding technique and the application of lipids. Furthermore we review the potential utility of gene therapy from the perspective of a reconstructive surgeon. Several tissues will be discussed, particularly muscle, tendon, nerve, bone, skin and wounds.
Collapse
Affiliation(s)
- Daniela Hoeller
- Division of Plastic Surgery, Harvard Medical School, Brigham and Women's Hospital, Boston, Mass 02115, USA
| | | | | | | |
Collapse
|
24
|
Abstract
There is reason to believe that the unfolding revolution in molecular biology and translational research will allow selective targeting of tumor cells, and radically change the way general practitioners and pediatric oncologists treat and follow children with cancer. This article highlights some of the most promising approaches being tested in the field. By learning about the underlying biology, the remaining hurdles, the projected timeline, and the possible impact of new therapies on the practice of pediatric oncology, health care professionals and patients should be better prepared for the future of pediatric oncology.
Collapse
Affiliation(s)
- Robert J Arceci
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, 1650 Orleans Street, Room 2M51, Baltimore, Maryland 21231, USA.
| | | |
Collapse
|
25
|
Yao F, Eriksson E. Inhibition of herpes simplex virus type 2 (HSV-2) viral replication by the dominant negative mutant polypeptide of HSV-1 origin binding protein. Antiviral Res 2002; 53:127-33. [PMID: 11750938 DOI: 10.1016/s0166-3542(01)00207-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
UL9-C535C, the trans-dominant negative mutant polypeptide of herpes simplex virus type 1 (HSV-1) UL9 origin binding protein, is a potent inhibitor of HSV-1 viral DNA replication. This study focused on testing whether HSV-1 UL9-C535C and a genetically engineered UL9-C535C-encoding HSV-1 recombinant virus CJ83193 could inhibit herpes simplex virus type 2 (HSV-2) infection. First, a stable cell line, R-C535C, expressing a high level of UL9-C535C in the presence of tetracycline and little or no UL9-C535C in the absence of tetracycline was established. The single step growth experiment showed that like HSV-1, the de novo synthesis of HSV-2 could be suppressed approximately 1000-fold by UL9-C535C expressed in R-C535C cells in the presence of tetracycline. Secondly, compared with cells singly infected with HSV-2, co-infection of Vero cells with HSV-2 and CJ83193 reduced the replication efficiency of HSV-2 in co-infected cells by 30-40 fold in a single-step growth assay, which coincided with marked reduction in viral late gene expression, but not the expression of viral immediate-early genes. Taken together, in view of our recent demonstration that CJ83193 can serve as an effective vaccine in preventing HSV-1 infection in mice, one can generate a CJ83193-like HSV-2 recombinant virus that could potentially function as a new therapeutic class of recombinant viral vaccine against HSV-2 infection.
Collapse
Affiliation(s)
- Feng Yao
- Laboratory of Wound Repair and Gene Transfer, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| | | |
Collapse
|
26
|
Affiliation(s)
- N S Markovitz
- M.B. Kovler Viral Oncology Laboratories, University of Chicago, Illinois 60637, USA
| | | |
Collapse
|
27
|
Abstract
With recent advances in molecular biology, the ability to transfer genes to patients is becoming a reality. Ongoing clinical trials using gene transfer techniques have illustrated the potential and pitfalls of this new therapeutic modality for the treatment of a wide variety of disorders. While these techniques are not currently a part of routine clinical practice, it is only a matter of time until some form of gene therapy is approved for general use in the clinic. This review highlights some of the basic methods used in current gene therapy protocols. The objective of this review is to familiarize practitioners with these concepts so they can more effectively follow the progress of this emerging technology and better inform their patients.
Collapse
Affiliation(s)
- E V Badiavas
- Department of Dermatology and Skin Surgery, Roger Williams Medical Center, Boston University School of Medicine, 50 Maude Street, Providence, RI 02908, USA
| | | |
Collapse
|
28
|
Agha-Mohammadi S, Lotze MT. Regulatable systems: applications in gene therapy and replicating viruses. J Clin Invest 2000; 105:1177-83. [PMID: 10791990 PMCID: PMC315455 DOI: 10.1172/jci10027] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- S Agha-Mohammadi
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15261, USA.
| | | |
Collapse
|
29
|
Yao F, Eriksson E. A novel anti-herpes simplex virus type 1-specific herpes simplex virus type 1 recombinant. Hum Gene Ther 1999; 10:1811-8. [PMID: 10446921 DOI: 10.1089/10430349950017491] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A recombinant herpes simplex virus (HSV) capable of inhibiting its own replication as well as the replication of wild-type virus would have greatly increased safety as a general purpose vector for in vivo gene transfer, antitumor therapy, and viral vaccine against HSV infection. By using a tetracycline repressor (tetR)-mediated HSV-1 viral replication switch [Yao and Eriksson (1999). Hum. Gene Ther. 10, 419-427], we have generated a novel anti-HSV-1-specific HSV-1 recombinant (CJ83193) that expresses a trans-dominant negative HSV-1 UL9 origin-binding protein, UL9-C535C. The de novo synthesis of CJ83193 can be suppressed by UL9-C535C by at least 1 x 10(6)-fold in non-tetR-expressing cells, and is subject to tetracycline regulation over a range of four to five orders of magnitude in a tetR-expressing osteosarcoma line. In particular, the UL9-C535C peptides expressed from the CJ83193 genome can inhibit the replication of wild-type HSV-1 by 100- to 200-fold in single-step growth assays. The construction of CJ83193 creates a new general strategy for developing recombinant viral vectors able to function as an intracellular therapy against wild-type viral infections.
Collapse
Affiliation(s)
- F Yao
- Brigham and Women's Hospital, and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|