1
|
Mbitta Akoa D, Sicard L, Hélary C, Torrens C, Baroukh B, Poliard A, Coradin T. Role of Physico-Chemical and Cellular Conditions on the Bone Repair Potential of Plastically Compressed Collagen Hydrogels. Gels 2024; 10:130. [PMID: 38391460 PMCID: PMC10887598 DOI: 10.3390/gels10020130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
Since their first description nearly 20 years ago, dense collagen hydrogels obtained by plastic compression have become popular scaffolds in tissue engineering. In particular, when seeded with dental pulp stem cells, they have demonstrated a great in vivo potential in cranial bone repair. Here, we investigated how physico-chemical and cell-seeding conditions could influence the formation and in vitro mineralization of these cellularized scaffolds. A qualitative assessment demonstrated that the gel stability before and after compression was highly sensitive to the conditions of fibrillogenesis, especially initial acid acetic and buffer concentrations. Gels with similar rheological properties but different fibrillar structures that exhibited different stabilities when used for the 3D culture of Stem cells from Human Exfoliated Deciduous teeth (SHEDs) could be prepared. Finally, in our optimal physico-chemical conditions, mineralization could be achieved only using human dental pulp stem cells (hDPSCs) at a high cell density. These results highlight the key role of fibrillogenic conditions and cell type/density on the bone repair potential of cell-laden plastically compressed collagen hydrogels.
Collapse
Affiliation(s)
- Daline Mbitta Akoa
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, 75005 Paris, France
| | - Ludovic Sicard
- Université de Paris, UR2496 Pathologies, Imagerie et Biothérapies Orofaciales, FHU-DDS-Net, Dental School, 92120 Montrouge, France
- AP-HP Service de Médecine Bucco-Dentaire, Hôpital Bretonneau, 75018 Paris, France
| | - Christophe Hélary
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, 75005 Paris, France
| | - Coralie Torrens
- Université de Paris, UR2496 Pathologies, Imagerie et Biothérapies Orofaciales, FHU-DDS-Net, Dental School, 92120 Montrouge, France
| | - Brigitte Baroukh
- Université de Paris, UR2496 Pathologies, Imagerie et Biothérapies Orofaciales, FHU-DDS-Net, Dental School, 92120 Montrouge, France
| | - Anne Poliard
- Université de Paris, UR2496 Pathologies, Imagerie et Biothérapies Orofaciales, FHU-DDS-Net, Dental School, 92120 Montrouge, France
| | - Thibaud Coradin
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, 75005 Paris, France
| |
Collapse
|
2
|
Li G, Shen W, Chu M, Mo G, Yao L, Xu W. Effect of inoculation density of bone marrow mesenchymal stem cells cultured on calcium phosphate cement scaffold on osteogenic differentiation. Biomed Mater Eng 2023; 34:111-121. [PMID: 35871314 DOI: 10.3233/bme-221394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Calcium phosphate cements (CPCs) are biocompatible materials that have been evaluated as scaffolds in bone tissue engineering. At present, the stem cell density of inoculation on CPC scaffold varies. OBJECTIVE The aim of this study is to analyze the effect of seeding densities on cell growth and osteogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs) on a calcium phosphate cements (CPCs) scaffold. METHODS BMMSCs derived from minipigs were seeded onto a CPC scaffold at three densities [1 million/mL (1M), 5 million/mL (5M) and 25 million/mL 25M)], and cultured for osteogenic induction for 1, 4 and 8 days. RESULTS Well adhered and extended BMMSCs on the CPC scaffold showed significantly different proliferation rates within each seeding density group at different time points (P < 0.05). The number of live cells per unit area in 1M, 5M and 25M increased by 3.5, 3.9 and 2.5 folds respectively. The expression of ALP peaked at 4 days post inoculation with the fold-change being 2.6 and 2.8 times higher in 5M and 25M respectively as compared to 1M. The expression levels of OC, Coll-1 and Runx-2 peaked at 8 days post inoculation. CONCLUSIONS An optimal seeding density may be more conducive for cell proliferation, differentiation, and extracellular matrix synthesis on scaffolds. We suggest the optimal seeding density should be 5 million/mL.
Collapse
Affiliation(s)
- Guangjun Li
- Department of Orthopedics, Deqing People's Hospital, Deqing, Zhejiang, China
| | - Wen Shen
- Department of Radiology, Deqing People's Hospital, Deqing, Zhejiang, China
| | - Minghui Chu
- Department of Orthopedics, Deqing People's Hospital, Deqing, Zhejiang, China
| | - Guowei Mo
- Department of Orthopedics, Deqing People's Hospital, Deqing, Zhejiang, China
| | - Liqin Yao
- Department of Orthopedics, Deqing People's Hospital, Deqing, Zhejiang, China
| | - Weidong Xu
- Department of Orthopedics, Deqing People's Hospital, Deqing, Zhejiang, China
| |
Collapse
|
3
|
Zou J, Wang W, Nie Y, Xu X, Ma N, Lendlein A. Microscale roughness regulates laminin-5 secretion of bone marrow mesenchymal stem cells. Clin Hemorheol Microcirc 2019; 73:237-247. [PMID: 31561334 DOI: 10.3233/ch-199205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Laminin-5 (Ln-5), an important extracellular matrix (ECM) protein, plays a critical role in regulating the growth and differentiation of mesodermal tissues, including bone. Ln-5 can be secreted by the mesenchymal stem cells (MSCs), and Ln-5 promotes MSCs osteogenic differentiation. It has been demonstrated that a substrate's surface topography could regulate MSC secretion and differentiation. A better understanding of the mechanism of how Ln-5 and surface roughness regulate MSC osteogenic differentiation would guide the design of surface topography and coatings of orthopedic implants and cell culture substrates. However, few studies have investigated the relationship between surface roughness and the secretion of Ln-5 in MSC osteogenic differentiation. Whether substrate surface topography regulates MSC differentiation via regulating Ln-5 secretion and how surface topography contributes to the secretion of Ln-5 are still not known. In this study, the influence of microscale roughness at different levels (R0, R1 and R2) on the secretion of Ln-5 of human bone marrow MSCs (hBMSCs) and subsequent osteogenic differentiation were examined. hBMSCs spreading, distribution and morphology were greatly affected by different roughness levels. A significantly higher level of Ln-5 secretion was detected on R2, which correlated to the local cell density regulated by the rough surface. Ln-5 binding integrins (α2 and α3) were strongly activated on R2. In addition, the results from hBMSCs on R0 inserts with different cell densities further confirmed that local cell density regulated Ln-5 secretion and cell surface integrin activation. In addition, the mineralization level of MSCs on R2 was remarkably higher than that on R0 and R1. These results suggest that hBMSC osteogenic differentiation level on R2 roughness was enhanced via increased Ln-5 secretion that was attributed to rough surface regulated local cell density. Thus, the microroughness could serve as effective topographical stimulus in cell culture devices and bone implant materials.
Collapse
Affiliation(s)
- Jie Zou
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
- Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| | - Weiwei Wang
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Yan Nie
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Xun Xu
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Nan Ma
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
- Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
- Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
- Institute of Chemistry, University of Potsdam, Potsdam, Germany
| |
Collapse
|
4
|
Evaluation of Proliferation and Osteogenic Differentiation of Human Umbilical Cord-Derived Mesenchymal Stem Cells in Porous Scaffolds. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1084:207-220. [PMID: 31214911 DOI: 10.1007/5584_2019_343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Human umbilical cord-derived mesenchymal stem cells (UCMSCs) are multiple potential stem cells that can differentiate into various kinds of functional cells, including adipocytes, osteoblasts, and chondroblasts. Thus, UCMSCs have recently been used in both stem cell therapy and tissue engineering applications to produce various functional tissues. This study aimed to evaluate the proliferation and differentiation of UCMSCs on porous scaffolds. METHODS UCMSCs were established in a previous study and kept in liquid nitrogen. They were thawed and expanded in vitro to yield enough cells for further experiments. The cells were characterized as having MSC phenotype. They were seeded onto culture medium-treated porous scaffolds or on non-treated porous scaffolds at different densities of UCMSCs (105, 2.1 × 105, and 5 × 105 cells/0.005 g scaffold). The existence of UCMSCs on the scaffold was evaluated by nucleic staining using Hoechst 33342 dye, while cell proliferation on the scaffold was determined by MTT assay. Osteogenic differentiation was evaluated by changes in cellular morphology, accumulation of extracellular calcium, and expression of osteoblast-specific genes (including runx2, osteopontin (OPN), and osteocalcin (OCN)). RESULTS The data showed that UCMSCs could attach, proliferate, and differentiate on both treated and non-treated scaffolds but were better on the treated scaffold. At a cell density of 105 cells/0.005 g scaffold, the adherent and proliferative abilities of UCMSCs were higher than that of the other densities after 14 days of culture (p < 0.05). Adherent UCMSCs on the scaffold could be induced into osteoblasts in the osteogenic medium after 21 days of induction. These cells accumulated calcium in the extracellular matrix that was positive with Alizarin Red staining. They also expressed some genes related to osteoblasts, including runx2, OPN, and OCN. CONCLUSION UCMSCs could adhere, proliferate, and differentiate into osteoblasts on porous scaffolds. Therefore, porous scaffolds (such as Variotis) may be suitable scaffolds for producing bone tissue in combination with UCMSCs.
Collapse
|
5
|
Najafabadi MM, Bayati V, Orazizadeh M, Hashemitabar M, Absalan F. Impact of Cell Density on Differentiation Efficiency of Rat Adipose-derived Stem Cells into Schwann-like Cells. Int J Stem Cells 2016; 9:213-220. [PMID: 27788569 PMCID: PMC5155717 DOI: 10.15283/ijsc16031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2016] [Indexed: 01/20/2023] Open
Abstract
Background and Objectives Schwann-like (SC-like) cells induced from adipose-derived stem cells (ASCs) may be one of the ideal alternative cell sources for obtaining Schwann cells (SCs). They can be used for treating peripheral nerve injuries. Co-culture with SCs or exposure to glial growth factors are commonly used for differentiation of ASCs to SC-like cells. However, the effect of initial cell density as an inductive factor on the differentiation potential of ASCs into the SC-like cells has not been yet investigated. Methods and Results ASCs were harvested from rat and characterized. The cells were seeded into the culture flasks at three different initial cell densities i.e. 2×103, 4×103 and 8×103 cells/cm2 an overnight and differentiated toward SC-like cells using glial growth factors. After two weeks, the differentiation rate of ASCs to SC-like cells at different densities was assessed by immunofluorescence, fluorescence-activated cell sorting analysis and real time RT-PCR. Expression of the typical SCs markers, S-100 proteins and glial fibrillary acidic protein (GFAP) protein, was observed in all cell densities groups although the number of S100-positive and GFAP-positive cells, and the expression of p75NTR mRNA, another SC marker, were significantly higher at the density of 8×103 cells/cm2 when compared with the other cell densities groups (p<0.001). Conclusions The results suggest that the higher differentiation rate of ASCs to SC-like cells can be obtained at initial cell density of 8×103 cells/cm2, possibly via increased cell-cell interaction and cell density-dependent influence of glial growth factors.
Collapse
Affiliation(s)
- Mahtab Maghzi Najafabadi
- Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Vahid Bayati
- Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahmoud Orazizadeh
- Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahmoud Hashemitabar
- Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Forouzan Absalan
- Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
6
|
Di Luca A, Longoni A, Criscenti G, Mota C, van Blitterswijk C, Moroni L. Toward mimicking the bone structure: design of novel hierarchical scaffolds with a tailored radial porosity gradient. Biofabrication 2016; 8:045007. [DOI: 10.1088/1758-5090/8/4/045007] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Qi Y, Niu L, Zhao T, Shi Z, Di T, Feng G, Li J, Huang Z. Combining mesenchymal stem cell sheets with platelet-rich plasma gel/calcium phosphate particles: a novel strategy to promote bone regeneration. Stem Cell Res Ther 2015; 6:256. [PMID: 26689714 PMCID: PMC4687276 DOI: 10.1186/s13287-015-0256-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 07/21/2015] [Accepted: 12/02/2015] [Indexed: 12/30/2022] Open
Abstract
Background Promotion of bone regeneration is important for successful repair of bony defects. This study aimed to investigate whether combining bone marrow-derived mesenchymal stem cell (BMSC) sheets with platelet-rich plasma (PRP) gel/calcium phosphate particles could promote bone formation in the femoral bone defects of rats. Methods The proliferation and differentiation of BMSCs or BMSC sheets cultured with calcium phosphate particles and/or PRP were investigated in in vitro. In vivo, 36 2.5 × 5 mm bone defects were randomly divided into groups and treated with either BMSCs/PRP gel, calcium phosphate particles, PRP gel/calcium phosphate particles, a BMSC sheet/calcium phosphate particles, a BMSC sheet/PRP gel/calcium phosphate particles, or were left untreated (n = 6/group). A further 15 bone defects were treated with chloromethyl-benzamidodialkylcarbocyanine (CM-Dil)-labelled BMSC sheet/PRP gel/calcium phosphate particles and observed using a small animal in vivo fluorescence imaging system to trace the implanted BMSCs at 1 day, 3 days, 7 days, 2 weeks, and 4 weeks after surgery. Results The expression of collagen type I and osteocalcin genes of BMSCs or BMSC sheets treated with PRP and calcium phosphate particles was significantly higher than that of BMSCs or BMSC sheets treated with calcium phosphate particles or the controls (P <0.05). PRP can promote gene expression of collagen III and tenomodulin by BMSCs and in BMSC sheets. The VEGF, collagen I and osteocalcin gene expression levels were higher in the BMSC sheet than in cultured BMSCs (P <0.05). Moreover, alizarin red staining quantification, ALP quantification and calcein blue fluorescence showed the osteogenic potential of BMSCs treated with PRP and calcium phosphate particles The implanted BMSCs were detectable at 1 day, 3 days, 7 days, 2 weeks and 4 weeks after surgery by a small animal in vivo fluorescence imaging system and were visualized in the defect zones by confocal microscopy. At 4 weeks after implantation, the defects treated with the BMSC sheet/PRP gel/calcium phosphate particles showed significantly more bone formation than the other five groups. Conclusions Incorporation of an BMSC sheet into the PRP gel/calcium phosphate particles greatly promoted bone regeneration. These BMSC sheet and tissue engineering strategies offer therapeutic opportunities for promoting bone defect repair clinically.
Collapse
Affiliation(s)
- Yiying Qi
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Lie Niu
- Department of Orthopedic Surgery, People's Hospital of Dongping County, Shandong, China.
| | - Tengfei Zhao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Zhongli Shi
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Tuoyu Di
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Gang Feng
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Junhua Li
- Department of Orthopedic Surgery, Hangzhou TCM Hospital, Hangzhou, China.
| | - Zhongming Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
8
|
Yassin MA, Leknes KN, Pedersen TO, Xing Z, Sun Y, Lie SA, Finne-Wistrand A, Mustafa K. Cell seeding density is a critical determinant for copolymer scaffolds-induced bone regeneration. J Biomed Mater Res A 2015; 103:3649-58. [PMID: 26013960 PMCID: PMC4744655 DOI: 10.1002/jbm.a.35505] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/06/2015] [Accepted: 05/11/2015] [Indexed: 12/15/2022]
Abstract
Constructs intended for bone tissue engineering (TE) are influenced by the initial cell seeding density. Therefore, the objective of this study was to determine the effect of bone marrow stromal stem cells (BMSCs) density loaded onto copolymer scaffolds on bone regeneration. BMSCs were harvested from rat's bone marrow and cultured in media with or without osteogenic supplements. Cells were seeded onto poly(l‐lactide‐co‐ε‐caprolactone) [poly(LLA‐co‐CL)] scaffolds at two different densities: low density (1 × 106 cells/scaffold) or high density (2 × 106 cells/scaffold) using spinner modified flasks and examined after 1 and 3 weeks. Initial attachment and spread of BMSC onto the scaffolds was recorded by scanning electron microscopy. Cell proliferation was assessed by DNA quantification and cell differentiation by quantitative real‐time reverse transcriptase‐polymerized chain reaction analysis (qRT‐PCR). Five‐millimeter rat calvarial defects (24 defects in 12 rats) were implanted with scaffolds seeded with either low or high density expanded with or without osteogenic supplements. Osteogenic supplements significantly increased cell proliferation (p < 0.001). Scaffolds seeded at high cell density exhibited higher mRNA expressions of Runx2 p = 0.001, Col1 p = 0.001, BMP2 p < 0.001, BSP p < 0.001, and OC p = 0.013. More bone was formed in response to high cell seeding density (p = 0.023) and high seeding density with osteogenic medium (p = 0.038). Poly (LLA‐co‐CL) scaffolds could be appropriate candidates for bone TE. The optimal number of cells to be loaded onto scaffolds is critical for promoting Extracellular matrix synthesis and bone formation. Cell seeding density and osteogenic supplements may have a synergistic effect on the induction of new bone. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 3649–3658, 2015.
Collapse
Affiliation(s)
- Mohammed A Yassin
- Faculty of Medicine and Dentistry, Department of Clinical Dentistry, Center for Clinical Dental Research, University of Bergen, Årstadveien 19, N-5009, Bergen, Norway
| | - Knut N Leknes
- Faculty of Medicine and Dentistry, Department of Clinical Dentistry, Center for Clinical Dental Research, University of Bergen, Årstadveien 19, N-5009, Bergen, Norway
| | - Torbjorn O Pedersen
- Faculty of Medicine and Dentistry, Department of Clinical Dentistry, Center for Clinical Dental Research, University of Bergen, Årstadveien 19, N-5009, Bergen, Norway
| | - Zhe Xing
- Faculty of Medicine and Dentistry, Department of Clinical Dentistry, Center for Clinical Dental Research, University of Bergen, Årstadveien 19, N-5009, Bergen, Norway
| | - Yang Sun
- Department of Fibre and Polymer Technology, School of Chemical Science and Engineering, KTH Royal Institute of Technology, Teknikringen 42, SE-100 44, Stockholm, Sweden
| | - Stein A Lie
- Faculty of Medicine and Dentistry, Department of Clinical Dentistry, Center for Clinical Dental Research, University of Bergen, Årstadveien 19, N-5009, Bergen, Norway
| | - Anna Finne-Wistrand
- Department of Fibre and Polymer Technology, School of Chemical Science and Engineering, KTH Royal Institute of Technology, Teknikringen 42, SE-100 44, Stockholm, Sweden
| | - Kamal Mustafa
- Faculty of Medicine and Dentistry, Department of Clinical Dentistry, Center for Clinical Dental Research, University of Bergen, Årstadveien 19, N-5009, Bergen, Norway
| |
Collapse
|
9
|
Nosikova Y, Santerre JP, Grynpas MD, Kandel RA. Annulus fibrosus cells can induce mineralization: an in vitro study. Spine J 2013; 13:443-53. [PMID: 23332388 DOI: 10.1016/j.spinee.2012.11.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 06/28/2012] [Accepted: 11/17/2012] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT There is still no consensus as to whether the calcification observed in degenerate intervertebral discs (IVDs) is a cause or a consequence of disc degeneration. PURPOSE To investigate the mineralization potential of healthy (independent of other associated changes) annulus fibrosus (AF) cells under controlled in vitro conditions. STUDY DESIGN/SETTING In vitro study to investigate the mineralization potential of the AF cells. METHODS Annulus fibrosus cells, isolated from bovine IVDs, were grown in monolayer. The effect of cell density, culture time, age of cell source, and passage on the percentage of AF cells with alkaline phosphatase activity (ALPa) was evaluated. Gene expression of mineralization-associated markers was determined. Cells were immunostained for Type I, II, and X collagens. To study mineralization potential, AF cells and AF cells that were sorted into two populations, high (top 5% ± 1%) or low (bottom 5% ± 1%) ALPa expressors, were grown in the presence of β-glycerophosphate for 2 weeks. RESULTS The percentage of AF cells that express ALPa changes with time in culture and seeding density for primary immature and mature cell sources but not for passaged cells. Gene expression of ALP, matrix metallopeptidase-13 (MMP-13), osteopontin, and runt-related transcription factor 2 was upregulated by Day 7. Under mineralization-inducing conditions, high ALPa expressors and unsorted AF cells formed von Kossa-positive nodules, composed of hydroxyapatite as determined by electron diffraction analysis. Low ALPa expressors had significantly fewer von Kossa-positive nodules (p<.01) compared with high ALPa expressors. Cells showed colocalization of Type I collagen and ALPa. No Type II collagen was detected suggesting that these were AF cells and not chondrocytes. CONCLUSIONS Annulus fibrosus cells have mineralizing capability and form hydroxyapatite crystalline deposits when cultured under appropriate conditions. This system could be used to investigate mineralization mechanisms in the AF during pathological calcification and at the AF-bone interface in disc degeneration.
Collapse
Affiliation(s)
- Yaroslavna Nosikova
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Room 407, Toronto, M5S 3G9 Ontario, Canada
| | | | | | | |
Collapse
|
10
|
Kavlock KD, Whang K, Guelcher SA, Goldstein AS. Degradable segmented polyurethane elastomers for bone tissue engineering: effect of polycaprolactone content. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 24:77-93. [PMID: 22304961 DOI: 10.1163/156856212x624985] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Segmented polyurethanes (PURs), consisting of degradable poly(a-hydroxy ester) soft segments and aminoacid-derived chain extenders, are biocompatible elastomers with tunable mechanical and degradative properties suitable for a variety of tissue-engineering applications. In this study, a family of linear PURs synthesized from poly(ϵ-caprolactone) (PCL) diol, 1,4-diisocyanobutane and tyramine with theoretical PCL contents of 65-80 wt% were processed into porous foam scaffolds and evaluated for their ability to support osteoblastic differentiation in vitro. Differential scanning calorimetry and mechanical testing of the foams indicated increasing polymer crystallinity and compressive modulus with increasing PCL content. Next, bone marrow stromal cells (BMSCs) were seeded into PUR scaffolds, as well as poly(lactic-co-glycolic acid) (PLGA) scaffolds, and maintained under osteogenic conditions for 14 and 21 days. Analysis of cell number indicated a systematic decrease in cell density with increasing PUR stiffness at both 14 and 21 days in culture. However, at these same time points the relative mRNA expression for the bone-specific proteins osteocalcin and the growth factors bone morphogenetic protein-2 and vascular endothelial growth factor gene expression were similar among the PURs. Finally, prostaglandin E2 production, alkaline phosphatase activity and osteopontin mRNA expression were highly elevated on the most-crystalline PUR scaffold as compared to the PLGA and PUR scaffolds. These results suggest that both the modulus and crystallinity of the PUR scaffolds influence cell proliferation and the expression of osteoblastic proteins.
Collapse
Affiliation(s)
- Katherine D Kavlock
- School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0211, USA
| | | | | | | |
Collapse
|
11
|
Takahashi Y, Tabata Y. Effect of the fiber diameter and porosity of non-woven PET fabrics on the osteogenic differentiation of mesenchymal stem cells. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 15:41-57. [PMID: 15027842 DOI: 10.1163/156856204322752228] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs) was investigated in three-dimensional non-woven fabrics prepared from polyethylene terephthalate (PET) fiber with different diameters. When seeded into the fabrics of cell scaffold, more MSC attached in the fabric of thicker PET fibers than that of thinner ones, irrespective of the fabric porosity. The morphology of cells attached became more spreaded with an increase in the fiber diameter of fabrics. The rate of MSC proliferation depended on the PET fiber diameter and porosity of fabrics: the bigger the fiber diameter of fabrics with higher porosity, the higher their proliferation rate. When the alkaline phosphatase (ALP) activity and osteocalcin content of MSC cultured in different types of fabrics was measured to evaluate the ostegenic differentiation, they became maximum for the non-woven fabrics with a fiber diameter of 9.0 microm, although the values of low-porous fabrics were significantly high compared with those of high porous fabrics. We concluded that the attachment, proliferation and bone differentiation of MSC was influenced by the fiber diameter and porosity of non-woven fabrics as the scaffold.
Collapse
Affiliation(s)
- Yoshitake Takahashi
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | | |
Collapse
|
12
|
Qi Y, Wang Y, Yan W, Li H, Shi Z, Pan Z. Combined Mesenchymal Stem Cell Sheets and rhBMP-2-Releasing Calcium Sulfate–rhBMP-2 Scaffolds for Segmental Bone Tissue Engineering. Cell Transplant 2012; 21:693-705. [PMID: 22236577 DOI: 10.3727/096368911x623844] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Repair of segmental bone defects remains a major challenge for orthopedic surgeons. This study aimed to investigate whether recombinant human bone morphogenetic protein-2 (rhBMP-2)-loaded calcium sulfate (CS) combined with mesenchymal stem cell (MSC) sheets could accelerate bone regeneration in ulnar segmental defects of rabbits. In vitro, the osteogenic differentiation of MSCs cultured on rhBMP-2-loaded CS was investigated. Forty complete 1.2-cm bone defects were treated with CS (group A), rhBMP-2-loaded CS (group B), MSC sheet-wrapped CS (group C), and MSC sheet-wrapped rhBMP-2-loaded CS (group D). At 4 and 8 weeks after implantation, the samples were treated by X-ray, microcomputed tomography, and histological observation. The rhBMP-2 could be released from the rhBMP-2-loaded CS scaffolds and maintain its bioactivity. The alkaline phosphatase (ALP) of MSCs cultured on rhBMP-2-loaded CS was significantly higher than that of CS at both 7 and 14 days ( p < 0.05). The defects treated with MSC sheet-wrapped rhBMP-2-loaded CS showed significantly higher scores by X-ray analysis and more bone formation determined by both histology and microcomputed tomography than the other three groups at both 4 and 8 weeks after implantation ( p < 0.05). No significant difference in X-ray score and bone formation was found between groups B and C, both significantly higher than group A ( p < 0.05). The results suggested that MSC sheet-wrapped rhBMP-2-loaded CS may be an effective approach to promote the repair of segmental bone defects and has great potential for repairing large segmental bone defects in clinic.
Collapse
Affiliation(s)
- Yiying Qi
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yulu Wang
- Department of Orthopedic Surgery, the First Affiliated Hospital, Baotou Medical School, Baotou, China
| | - Weiqi Yan
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hang Li
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhongli Shi
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhijun Pan
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Yang B, Chen G, Li J, Zou Q, Xie D, Chen Y, Wang H, Zheng X, Long J, Tang W, Guo W, Tian W. Tooth root regeneration using dental follicle cell sheets in combination with a dentin matrix - based scaffold. Biomaterials 2012; 33:2449-61. [PMID: 22192537 DOI: 10.1016/j.biomaterials.2011.11.074] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 11/25/2011] [Indexed: 10/14/2022]
Abstract
Stem cell mediated tissue engineering has been acknowledged as a prospective strategy for repairing and replacing damaged and lost tissues. However, the low survival rate of implanted stem cells proves to be a major challenge in the management of transplantation failures. While previous studies have indicated the effectiveness of tissue engineered cell sheets in improving the survival rate of implanted cells, we have recently demonstrated the use of treated dentin matrix (TDM) as a biological scaffold and dental follicle cells (DFCs) as the seeding cells for dentinogenesis and tooth root construction. This study proposes a strategy utilizing TDM with human dental follicle cell sheets (DFCSs) for root regeneration. The biological characteristics and changes of human DFCSs under the effect of TDM were studied with scanning electron microscopy, transmission electron microscopy, immunofluorescence microscopy, immunohistochemistry and quantitative real-time PCR. DFCSs combined with TDM were implanted subcutaneously into the dorsum of mice. Histological examination of the harvested grafts revealed a whirlpool-like alignment of the DFCs in multiple layers that were positive for COLI, integrinβ1, fibronectin and alkaline phosphatase (ALP), suggestive of the formation of a rich extracellular matrix. DFCSs, under the effect of TDM, highly expressed DMP-1 and bone sialoprotein (BSP), indicating their potential for odontogenesis and osteogenesis. Importantly, in vivo, TDM could induce and support DFCSs to develop new dentin-pulp like tissues and cementum-periodontal complexes that were positive for markers such as DSP, nestin and VIII factors, COLI and cementum attachment protein (CAP), implying successful root regeneration. Therefore, DFCSs combined with TDM may prove to be a better strategy for the construction of tooth root, and is a prospective approach that could be utilized for the treatment of root or tooth defect or loss in future.
Collapse
Affiliation(s)
- Bo Yang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kavlock KD, Goldstein AS. Effect of pulse frequency on the osteogenic differentiation of mesenchymal stem cells in a pulsatile perfusion bioreactor. J Biomech Eng 2012; 133:091005. [PMID: 22010740 DOI: 10.1115/1.4004919] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Perfusion bioreactors are a promising in vitro strategy to engineer bone tissue because they supply needed oxygen and nutrients and apply an osteoinductive mechanical stimulus to osteoblasts within large porous three-dimensional scaffolds. Model two-dimensional studies have shown that dynamic flow conditions (e.g., pulsatile oscillatory waveforms) elicit an enhanced mechanotransductive response and elevated expression of osteoblastic proteins relative to steady flow. However, dynamic perfusion of three-dimensional scaffolds has been primarily examined in short term cultures to probe for early markers of mechanotransduction. Therefore, the objective of this study was to investigate the effect of extended dynamic perfusion culture on osteoblastic differentiation of primary mesenchymal stem cells (MSCs). To accomplish this, rat bone marrow-derived MSCs were seeded into porous foam scaffolds and cultured for 15 days in osteogenic medium under pulsatile regimens of 0.083, 0.050, and 0.017 Hz. Concurrently, MSCs seeded in scaffolds were also maintained under static conditions or cultured under steady perfusion. Analysis of the cells after 15 days of culture indicated that alkaline phosphatase (ALP) activity, mRNA expression of osteopontin (OPN), and accumulation of OPN and prostaglandin E(2) were enhanced for all four perfusion conditions relative to static culture. ALP activity, OPN and OC mRNA, and OPN protein accumulation were slightly higher for the intermediate frequency (0.05 Hz) as compared with the other flow conditions, but the differences were not statistically significant. Nevertheless, these results demonstrate that dynamic perfusion of MSCs may be a useful strategy for stimulating osteoblastic differentiation in vitro.
Collapse
Affiliation(s)
- Katherine D Kavlock
- School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0211, USA
| | | |
Collapse
|
15
|
Moczulska M, Bitar M, Swięszkowski W, Bruinink A. Biological characterization of woven fabric using two- and three-dimensional cell cultures. J Biomed Mater Res A 2012; 100:882-93. [PMID: 22275338 DOI: 10.1002/jbm.a.34023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Accepted: 10/21/2011] [Indexed: 11/07/2022]
Abstract
The integration and long-term functional retention of tissue implants are both strongly linked to the implant material characteristics. As a first approach, the cytocompatibility and bioactivity of such materials are evaluated using in vitro-based cell culture models. Typically, in vitro bioactivity is assessed by seeding single cells onto the test material to evaluate certain parameters such as cell adhesion, survival, proliferation, and functional differentiation. Probably, due to the reduction from three dimensional (3D) toward the two dimensional (2D) situation the data obtained from 2D culture models falls short of predicting the in vivo behavior of the biomaterial in question. In this study, a three dimensional (3D) in vitro cell culture model was applied to evaluate the bioactivity of well characterized fiber-based scaffolds using scaffold colonization as a bioactivity indicator. Cell behavior in this culture model was evaluated against a classical comparable, 2D cell culture system using polyethylene terephthalat and polyamide 6.6 fabrics. By using the 3D culture model, however, differences in cell population performance as a function of fiber diameter and mesh angle were evident. The use of 3D cell culture model clearly outperformed typical cell culture setup as means to evaluate cell population-scaffold interaction.
Collapse
Affiliation(s)
- M Moczulska
- Faculty of Materials Science of Engineering, Warsaw University of Technology, Warsaw, Poland
| | | | | | | |
Collapse
|
16
|
Zhou H, Weir MD, Xu HHK. Effect of cell seeding density on proliferation and osteodifferentiation of umbilical cord stem cells on calcium phosphate cement-fiber scaffold. Tissue Eng Part A 2011; 17:2603-13. [PMID: 21745111 DOI: 10.1089/ten.tea.2011.0048] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Calcium phosphate cement (CPC) can fill complex-shaped bone defects and set in situ to form a scaffold with intimate adaptation to neighboring bone. The objectives of this study were to determine (1) the effects of fiber length and alginate microbead volume fraction on CPC mechanical properties, and (2) the effect of cell seeding density of human umbilical cord mesenchymal stem cells (hUCMSCs) on their proliferation and osteodifferentiation on CPC. Adding microbeads to CPC degraded the strength. However, increasing the fiber length improved the mechanical properties. Strength and elastic modulus of CPC-microbead-fiber scaffold matched those reported for cancellous bone. When the cell seeding density was increased from 50k to 300k, the cell viability, osteodifferentiation, and bone mineral synthesis also increased. When the seeding density was further increased to 500k, the osteodifferentiation and mineralization decreased. Hence, the 300k seeding density was optimal for CPC-microbead-fiber under the specified conditions. At day 8, alkaline phosphatase (ALP) gene expression of hUCMSCs with seeding density of 300k was threefold the ALP at 150k, and 200-fold the ALP at 50k. At day 14, osteocalcin and runt-related transcription factor 2 with cell seeding density of 300k was fourfold those at 50k. At day 14, mineralization by hUCMSCs at seeding density of 300k was 5-fold the mineralization at 150k, and 25-fold that at 50k. In conclusion, the effect of stem cell seeding density on CPC was determined for the first time. At low cell densities, cell viability and mineralization increased with seeding density. However, a higher seeding density was not necessarily better, and an optimal seeding density on CPC resulted in the best osteodifferentiation and mineralization. The stem cell-seeded CPC-fiber scaffold with excellent osteodifferentiation and mineralization is promising for orthopedic and craniofacial applications.
Collapse
Affiliation(s)
- Hongzhi Zhou
- Department of Endodontics, Prosthodontics, and Operative Dentistry, Biomaterials and Tissue Engineering Division, University of Maryland Dental School, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|
17
|
Ma D, Yao H, Tian W, Chen F, Liu Y, Mao T, Ren L. Enhancing bone formation by transplantation of a scaffold-free tissue-engineered periosteum in a rabbit model. Clin Oral Implants Res 2011; 22:1193-1199. [PMID: 21303418 DOI: 10.1111/j.1600-0501.2010.02091.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES The periosteum plays an important role in bone regeneration. However, the harvesting of autogenous periosteum is associated with disadvantages such as donor site morbidity and limited donor sources. This study uses an osteogenic predifferentiated cell sheet to fabricate a scaffold-free tissue-engineered periosteum (TEP). MATERIAL AND METHODS We generated an osteogenic predifferentiated cell sheet from rabbit bone marrow stromal cells (BMSCs) using a continuous culture system and harvested it using a scraping technique. Then, the in vitro characterization of the sheet was investigated using microscopy investigation, quantitative analysis of alkaline phosphatase (ALP) activity, and RT-PCR. Next, we demonstrated the in vivo osteogenic potential of the engineered sheet in ectopic sites together with a porous β-tricalcium phosphate ceramic. Finally, we evaluated its efficiency in treating delayed fracture healing after wrapping the cell sheet around the mandible in a rabbit model. RESULTS The engineered periosteum showed sporadic mineralized nodules, elevated ALP activity, and up-regulated gene expression of osteogenic markers. After implantation in the subcutaneous pockets of the donor rabbits, the in vivo bone-forming capability of the engineered periosteum was confirmed by histological examinations. Additionally, when wrapping the engineered periosteum around a mandibular fracture gap, we observed improved bone healing and reduced amounts of fibrous tissue at the fracture site. CONCLUSION The osteogenic predifferentiated BMSC sheet can act as a scaffold-free TEP to facilitate bone regeneration. Hence, our study provides a promising strategy for enhancing bone regeneration in clinical settings.
Collapse
Affiliation(s)
- Dongyang Ma
- Department of Oral and Maxillofacial Surgery, Lanzhou General Hospital, Lanzhou Command of PLA, Gansu, ChinaDepartment of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Shaanxi, ChinaRege Lab of Tissue Engineering, Department of Bioscience, Faculty of Life Science, Northwest University, Shaanxi, ChinaDepartment of Orthodontics, School of Stomatology, Lanzhou University, Gansu, China
| | - Hong Yao
- Department of Oral and Maxillofacial Surgery, Lanzhou General Hospital, Lanzhou Command of PLA, Gansu, ChinaDepartment of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Shaanxi, ChinaRege Lab of Tissue Engineering, Department of Bioscience, Faculty of Life Science, Northwest University, Shaanxi, ChinaDepartment of Orthodontics, School of Stomatology, Lanzhou University, Gansu, China
| | - Wenyan Tian
- Department of Oral and Maxillofacial Surgery, Lanzhou General Hospital, Lanzhou Command of PLA, Gansu, ChinaDepartment of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Shaanxi, ChinaRege Lab of Tissue Engineering, Department of Bioscience, Faculty of Life Science, Northwest University, Shaanxi, ChinaDepartment of Orthodontics, School of Stomatology, Lanzhou University, Gansu, China
| | - Fulin Chen
- Department of Oral and Maxillofacial Surgery, Lanzhou General Hospital, Lanzhou Command of PLA, Gansu, ChinaDepartment of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Shaanxi, ChinaRege Lab of Tissue Engineering, Department of Bioscience, Faculty of Life Science, Northwest University, Shaanxi, ChinaDepartment of Orthodontics, School of Stomatology, Lanzhou University, Gansu, China
| | - Yanpu Liu
- Department of Oral and Maxillofacial Surgery, Lanzhou General Hospital, Lanzhou Command of PLA, Gansu, ChinaDepartment of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Shaanxi, ChinaRege Lab of Tissue Engineering, Department of Bioscience, Faculty of Life Science, Northwest University, Shaanxi, ChinaDepartment of Orthodontics, School of Stomatology, Lanzhou University, Gansu, China
| | - Tianqiu Mao
- Department of Oral and Maxillofacial Surgery, Lanzhou General Hospital, Lanzhou Command of PLA, Gansu, ChinaDepartment of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Shaanxi, ChinaRege Lab of Tissue Engineering, Department of Bioscience, Faculty of Life Science, Northwest University, Shaanxi, ChinaDepartment of Orthodontics, School of Stomatology, Lanzhou University, Gansu, China
| | - Liling Ren
- Department of Oral and Maxillofacial Surgery, Lanzhou General Hospital, Lanzhou Command of PLA, Gansu, ChinaDepartment of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Shaanxi, ChinaRege Lab of Tissue Engineering, Department of Bioscience, Faculty of Life Science, Northwest University, Shaanxi, ChinaDepartment of Orthodontics, School of Stomatology, Lanzhou University, Gansu, China
| |
Collapse
|
18
|
Popp JR, Laflin KE, Love BJ, Goldstein AS. In vitro evaluation of osteoblastic differentiation on amorphous calcium phosphate-decorated poly(lactic-co-glycolic acid) scaffolds. J Tissue Eng Regen Med 2010; 5:780-9. [DOI: 10.1002/term.376] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 09/02/2010] [Indexed: 11/06/2022]
|
19
|
Synergistic effects of electrospun PLLA fiber dimension and pattern on neonatal mouse cerebellum C17.2 stem cells. Acta Biomater 2010; 6:2960-9. [PMID: 20193781 DOI: 10.1016/j.actbio.2010.02.039] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 02/23/2010] [Accepted: 02/23/2010] [Indexed: 12/13/2022]
Abstract
Topographical features, including fiber dimensions and pattern, are important aspects in developing fibrous scaffolds for tissue engineering. In this study aligned poly(l-lactide) (PLLA) fibers with diameters of 307+/-47, 500+/-53, 679+/-72 and 917+/-84 nm and random fibers with diameters of 327+/-40, 545+/-54, 746+/-82 and 1150+/-109 nm were obtained by optimizing the electrospinning parameters. We cultured neonatal mouse cerebellum C17.2 cells on the PLLA fibers. These neural stem cells (NSCs) exhibited significantly different growth and differentiation depending upon fiber dimension and pattern. On aligned fibers cell viability and proliferation was best on 500 nm fibers, and reduced on smaller or larger fibers. However, on random fibers cell viability and proliferation was best with the smallest (350 nm) and largest (1150 nm) diameter fibers. Polarized and elongated cells were orientated along the fiber direction on the aligned fibers, with focal contacts bridging the cell body and aligned fibers. Cells of spindle and polygonal morphologies were randomly distributed on the random fibers, with no focal contacts observed. Moreover, longer neurites were obtained on the aligned fibers than random fibers within the same diameter range. Thus, the surface topographic morphologies of fibrous scaffolds, including fiber pattern, dimensions and mesh size, play roles in regulating the viability, proliferation and neurite outgrowth of NSCs. Nevertheless, our results indicated that aligned 500 nm fiber are most promising for fine tuning the design of a nerve scaffold.
Collapse
|
20
|
Zaborowska M, Bodin A, Bäckdahl H, Popp J, Goldstein A, Gatenholm P. Microporous bacterial cellulose as a potential scaffold for bone regeneration. Acta Biomater 2010; 6:2540-7. [PMID: 20060935 DOI: 10.1016/j.actbio.2010.01.004] [Citation(s) in RCA: 212] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2009] [Revised: 12/17/2009] [Accepted: 01/04/2010] [Indexed: 10/20/2022]
Abstract
Nanoporous cellulose biosynthesized by bacteria is an attractive biomaterial scaffold for tissue engineering due to its biocompatibility and good mechanical properties. However, for bone applications a microscopic pore structure is needed to facilitate osteoblast ingrowth and formation of a mineralized tissue. Therefore, in this study microporous bacterial cellulose (BC) scaffolds were prepared by incorporating 300-500 microm paraffin wax microspheres into the fermentation process. The paraffin wax microspheres were subsequently removed, and scanning electron microscopy confirmed a microporous surface of the scaffolds while Fourier transform infrared spectroscopy verified the elimination of paraffin and tensile measurements showed a Young's modulus of approximately 1.6 MPa. Microporous BC and nanoporous (control) BC scaffolds were seeded with MC3T3-E1 osteoprogenitor cells, and examined by confocal microscopy and histology for cell distribution and mineral deposition. Cells clustered within the pores of microporous BC, and formed denser mineral deposits than cells grown on control BC surfaces. This work shows that microporous BC is a promising biomaterial for bone tissue engineering applications.
Collapse
|
21
|
The performance of bone marrow mesenchymal stem cell--implant complexes prepared by cell sheet engineering techniques. Biomaterials 2010; 31:3212-21. [PMID: 20132981 DOI: 10.1016/j.biomaterials.2010.01.036] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 01/09/2010] [Indexed: 11/22/2022]
Abstract
This study investigated the hypothesis that cell sheets composed of multilayered rabbit bone marrow derived mesenchymal stem cells (MSC) could be assembled with two kinds of implants (surface-modified titanium and zirconia) for the construction of a MSC-implant. The MSC sheets were harvested from culture flasks, wrapped around implants to construct the complexes, and then cultured in osteogenic medium. The layered cell sheets integrated well with implants and remained viable, with small mineralized nodules visible on the implant surfaces for up to four weeks after culture. Cells on the implants underwent classical in vitro osteogenic differentiation with an associated elevation of alkaline phosphatase activity and bone- and vascular-related protein expression. In vivo, two kinds of cell sheet-implant complexes were transplanted under the skin of SCID mice and cultured for eight weeks. For the MSC sheet titanium implant complex, histological examination revealed that new bone tissue that formed around implants followed a predominantly endochondral pathway, exhibiting histological markers of native bone; for the MSC sheet zirconia implant complex, however, intramembranous ossification appeared to occur on the surface of the zirconia implant, as observed with typical osteocytes embedded in dense matrix and accompanied by both microvessels and marrow cavities. These findings demonstrate that MSC-implants possessing osteogenic and vascularization abilities can be produced using cell sheet engineering techniques in conjunction with routine implant materials, which provide a novel technology to modify the implant surface.
Collapse
|
22
|
Effect of ibuprofen on osteoblast differentiation of porcine bone marrow-derived progenitor cells. J Oral Maxillofac Surg 2009; 67:2412-7. [PMID: 19837310 DOI: 10.1016/j.joms.2009.05.434] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 05/29/2009] [Indexed: 11/20/2022]
Abstract
PURPOSE Nonsteroidal anti-inflammatory drugs are commonly prescribed to reduce inflammation and pain. However, little is known about the direct effect of these drugs on the differentiation of bone marrow-derived progenitor cells into osteoblasts. The purpose of this study was to determine the effect of ibuprofen on osteoblast differentiation and proliferation in a minipig model. MATERIALS AND METHODS Bone marrow was aspirated from the minipig ilium, and porcine bone marrow-derived progenitor cells (pBMPCs) were isolated and expanded in standard culture medium. The pBMPCs were replated and differentiated into osteoblasts by use of osteogenic supplements (OS). Five groups were studied: negative control--pBMPCs in standard medium only; positive control--pBMPCs, standard culture medium, and OS; and 3 experimental groups--pBMPCs, standard culture medium, OS, and ibuprofen added in doses of 0.1, 1.0, and 3.0 mmol/L. Cell cultures were evaluated quantitatively by alkaline phosphatase (ALP) stain, von Kossa stain, and deoxyribonucleic acid (DNA) content. RESULTS pBMPCs cultured with OS and low-dose ibuprofen (0.1 mmol/L) showed ALP stain, von Kossa stain, and DNA content similar to pBMPCs cultured in OS (positive control). pBMPCs cultured in higher doses of ibuprofen (1.0 and 3.0 mmol/L) produced significantly less positive staining of ALP and von Kossa and decreased DNA content. CONCLUSION The results indicate that high-dose ibuprofen has a deleterious effect on pBMPC differentiation into osteoblasts whereas low-dose ibuprofen does not. The low dose of 0.1 mmol/L is the typical serum level when prescribed for clinical use.
Collapse
|
23
|
Kim K, Dean D, Mikos AG, Fisher JP. Effect of initial cell seeding density on early osteogenic signal expression of rat bone marrow stromal cells cultured on cross-linked poly(propylene fumarate) disks. Biomacromolecules 2009; 10:1810-7. [PMID: 19469498 DOI: 10.1021/bm900240k] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The intercellular signaling mechanisms among a transplanted cell population are largely determined by the cell population itself as well as the surrounding environment. Changes in cell-to-cell paracrine signaling distance can be obtained by altering cell density, and signal expression of growth factors can be enhanced by auto/paracrine signal transduction. To examine these relationships, we investigated the effect of cell seeding density on viability, proliferation, differentiation, and the endogenous osteogenic signal expression among rat bone marrow stromal cells (BMSCs) cultured on a 2D disk. Rat BMSCs were isolated from rats and then cultured for 8 days on biodegradable poly(propylene fumarate) disks with three different seeding densities (0.06, 0.15, and 0.30 million cells/disk). At days 1, 4, and 8, viability by live/dead fluorescent staining, DNA amount, osteogenic differentiation by alkaline phosphatase and osteocalcin mRNA expression, calcium deposition, and osteogenic growth factor mRNA expression were assayed. Osteogenic signal expression was evaluated using quantitative reverse transcriptase-polymerase chain reaction, and signals of interest include bone morphogenetic protein-2, transforming growth factor-β(1), fibroblast growth factor-2, and platelet-derived growth factor-A. The results from this study demonstrate that rat BMSCs were viable over 8 days without being affected by cell density and that both cell proliferation rate and early osteogenic differentiation were stimulated by lower cell seeding density. Most importantly, this study has demonstrated for the first time that the temporal gene expression profiles of endogenous growth factors can be controlled by altering the initial cell seeding density on poly(propylene fumarate) disks. Therefore, our results suggest that changes in the paracrine signal distance by altering cell seeding density may be a useful strategy to optimize the cell-biomaterial construct microenvironments to enhance the osteogenic signal expression.
Collapse
Affiliation(s)
- Kyobum Kim
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland, USA
| | | | | | | |
Collapse
|
24
|
Foroughi F, Aibibu D, Aulin C, Hilborn J, Brown RA. Bulk collagen incorporation rates into knitted stiff fibre polymer in tissue-engineered scaffolds: the rate-limiting step. J Tissue Eng Regen Med 2008; 2:507-14. [DOI: 10.1002/term.126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Sugioka T, Ochi M, Yasunaga Y, Adachi N, Yanada S. Accumulation of magnetically labeled rat mesenchymal stem cells using an external magnetic force, and their potential for bone regeneration. J Biomed Mater Res A 2008; 85:597-604. [PMID: 17806114 DOI: 10.1002/jbm.a.31493] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We evaluated the effect of a novel mesenchymal stem cell (MSC) delivery system using magnetic beads and an external magnetic force, and investigated the osteogenic potential of MSCs coupled with magnetic beads in vitro. MSCs were isolated from the bone marrow of 8-week-old Sprague Dawley green fluorescent protein rats, and expanded in a monolayer culture system. Magnetic beads (Ferri Sphere 100C) with carboxyl groups on the surface were conjugated to anti-rat CD44 mouse monoclonal antibodies by an amide linkage. Expanded MSCs were then combined with the magnetic beads and the MSC-magnetic bead complexes were seeded onto phi100 mm dishes at low density (5 x 10(3) cells/dish) with or without the influence of an external magnetic force provided by a neodymium magnet and supplemented with osteogenic differentiation medium. The complexes could be accumulated effectively by the influence of the external magnetic force. Moreover, the complexes could also differentiate into the osteogenic lineage in the monolayer culture system, as verified by alizarin red staining and RT-PCR for alkaline phosphatase and osteocalcin expression. These findings clearly demonstrate the possibility of a novel cell delivery system using MSCs with magnetic beads and an external magnetic force for bone regeneration. If this treatment option is established, it will be minimally invasive when compared to conventional treatments.
Collapse
Affiliation(s)
- Toshihiro Sugioka
- Department of Orthopaedic Surgery, Programs for Applied Biomedicine, Division of Clinical Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | | | | | | | | |
Collapse
|
26
|
Shimizu K, Ito A, Honda H. Mag-seeding of rat bone marrow stromal cells into porous hydroxyapatite scaffolds for bone tissue engineering. J Biosci Bioeng 2007; 104:171-7. [PMID: 17964479 DOI: 10.1263/jbb.104.171] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 05/28/2007] [Indexed: 11/17/2022]
Abstract
Bone tissue engineering has been investigated as an alternative strategy for autograft transplantation. In the process of tissue engineering, cell seeding into three-dimensional (3-D) scaffolds is the first step for constructing 3-D tissues. We have proposed a methodology of cell seeding into 3-D porous scaffolds using magnetic force and magnetite nanoparticles, which we term Mag-seeding. In this study, we applied this Mag-seeding technique to bone tissue engineering using bone marrow stromal cells (BMSCs) and 3-D hydroxyapatite (HA) scaffolds. BMSCs were magnetically labeled with our original magnetite cationic liposomes (MCLs) having a positive surface charge to improve adsorption to cell surface. Magnetically labeled BMSCs were seeded onto a scaffold, and a 1-T magnet was placed under the scaffold. By using Mag-seeding, the cells were successfully seeded into the internal space of scaffolds with a high cell density. The cell seeding efficiency into HA scaffolds by Mag-seeding was approximately threefold larger than that by static-seeding (conventional method, without a magnet). After a 14-d cultivation period using the osteogenic induction medium by Mag-seeding, the level of two representative osteogenic markers (alkaline phosphatase and osteocalcin) were significantly higher than those by static-seeding. These results indicated that Mag-seeding of BMSCs into HA scaffolds is an effective approach to bone tissue engineering.
Collapse
Affiliation(s)
- Kazunori Shimizu
- Department of Biotechnology, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | | | | |
Collapse
|
27
|
Kavlock KD, Pechar TW, Hollinger JO, Guelcher SA, Goldstein AS. Synthesis and characterization of segmented poly(esterurethane urea) elastomers for bone tissue engineering. Acta Biomater 2007; 3:475-84. [PMID: 17418651 PMCID: PMC2034277 DOI: 10.1016/j.actbio.2007.02.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 02/01/2007] [Accepted: 02/02/2007] [Indexed: 01/12/2023]
Abstract
Segmented polyurethanes have been used extensively in implantable medical devices, but their tunable mechanical properties make them attractive for examining the effect of biomaterial modulus on engineered musculoskeletal tissue development. In this study, a family of segmented degradable poly(esterurethane urea)s (PEUURs) were synthesized from 1,4-diisocyanatobutane, a poly(epsilon-caprolactone) (PCL) macrodiol soft segment and a tyramine-1,4-diisocyanatobutane-tyramine chain extender. By systematically increasing the PCL macrodiol molecular weight from 1100 to 2700Da, the storage modulus, crystallinity and melting point of the PCL segment were systematically varied. In particular, the melting temperature, T(m), increased from 21 to 61 degrees C and the storage modulus at 37 degrees C increased from 52 to 278MPa with increasing PCL macrodiol molecular weight, suggesting that the crystallinity of the PCL macrodiol contributed significantly to the mechanical properties of the polymers. Bone marrow stromal cells were cultured on rigid polymer films under osteogenic conditions for up to 21 days. Cell density, alkaline phosphatase activity, and osteopontin and osteocalcin expression were similar among PEUURs and comparable to poly(d,l-lactic-coglycolic acid). This study demonstrates the suitability of this family of PEUURs for tissue engineering applications, and establishes a foundation for determining the effect of biomaterial modulus on bone tissue development.
Collapse
Affiliation(s)
- Katherine D. Kavlock
- School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0211, USA
| | - Todd W. Pechar
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0211, USA
| | - Jeffrey O. Hollinger
- Bone Tissue Engineering Center, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Scott A. Guelcher
- Department of Chemical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Aaron S. Goldstein
- School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0211, USA
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0211, USA
- *Corresponding author. Tel.: +1 540 231 3674; fax: +1 540 231 5022. E-mail address: (A.S. Goldstein)
| |
Collapse
|
28
|
Pischon N, Zimmermann B, Bernimoulin JP, Hägewald S. Effects of an enamel matrix derivative on human osteoblasts and PDL cells grown in organoid cultures. ACTA ACUST UNITED AC 2006; 102:551-7. [PMID: 16997124 DOI: 10.1016/j.tripleo.2005.08.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 07/03/2005] [Accepted: 09/13/2005] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The objective of this study was to investigate cellular effects of enamel matrix derivative (EMD) in human derived, primary osteoblasts and periodontal ligament (PDL) cells grown in organoid cultures. STUDY DESIGN Cell replication was assessed by BrdU-incorporation. [(3)H]-proline incorporation was measured to determine the synthesis of proline-containing proteins, such as collagen. In addition, calcium accumulation and alkaline-phosphatase-activity were quantified. Electron microscopy for morphological analysis was performed. RESULTS Our results showed that EMD enhances BrdU-incorporation in PDL cells and osteoblasts. Also, in osteoblast organoid cultures [3H]-proline incorporation was 3-fold increased (P < .01). Extensive matrix deposition was noted in osteoblast cultures by electron microscopy. In osteoblasts, high levels of calcium accumulation and alkaline-phosphatase-activity were found. However, EMD did not promote mineralization. CONCLUSION Our results indicate that under organoid culture conditions EMD is able to promote the synthesis of proline-containing proteins such as collagen but not matrix mineralization of primary human osteoblastic cells.
Collapse
Affiliation(s)
- Nicole Pischon
- Department of Periodontology, School of Dental Medicine, Medical Faculty Charité, Humboldt-University, Berlin, Germany.
| | | | | | | |
Collapse
|
29
|
Zhou YF, Sae-Lim V, Chou AM, Hutmacher DW, Lim TM. Does seeding density affectin vitro mineral nodules formation in novel composite scaffolds? J Biomed Mater Res A 2006; 78:183-93. [PMID: 16628549 DOI: 10.1002/jbm.a.30685] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study investigated the human alveolar osteoblasts (AOs) proliferation and extracellular matrix formation at seeding density of 0.05, 0.1, 0.2, 0.4, and 0.8 million (M) per 3x4x4 mm3 on medical grade polycaprolactone-tricalcium phosphate (mPCL-TCP) scaffolds designed for bone regeneration. Over 80-90% of the initial seeded cells were retained in the scaffolds after 24 h. AOs bridged over pores at density of 0.2M/scaffold and below, but formed cell balls at density of 0.4M/scaffold and above. At seeding density of 0.2M and below, cell proliferation increased with time having DNA content peaked to 1600 ng/scaffold at day 21 and 28, respectively, whereas at 0.4 and 0.8M, the corresponding DNA content decreased to 1600 ng in 28 days. At day 7, higher alkaline phosphatase (ALP) activity and higher osteocalcin (OCN) secretion were detected at 0.2M/scaffold and below. After 28 days, multilayered cell-sheet formation and collagen fibers were observed at all densities. ALP and OCN in matrix and mineral nodules were found mainly at the border of AOs-scaffold construct. These findings demonstrated that the density of 0.2M and below per 3 x 4 x 4 mm(3) scaffold resulted in better cell proliferation and extracellular matrix synthesis, potentially resulting in better mineralized tissue formation.
Collapse
Affiliation(s)
- Y F Zhou
- Department of Biological Science, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | | | | | | | | |
Collapse
|
30
|
Badami AS, Kreke MR, Thompson MS, Riffle JS, Goldstein AS. Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates. Biomaterials 2005; 27:596-606. [PMID: 16023716 DOI: 10.1016/j.biomaterials.2005.05.084] [Citation(s) in RCA: 427] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Accepted: 05/17/2005] [Indexed: 11/30/2022]
Abstract
Electrospinning is a promising method to construct fused-fiber biomaterial scaffolds for tissue engineering applications, but the efficacy of this approach depends on how substrate topography affects cell function. Previously, it has been shown that linear, parallel raised features with length scales of 0.5-2 microm direct cell orientation through the phenomenon of contact guidance, and enhance phenotypic markers of osteoblastic differentiation. To determine how the linear, random raised features produced by electrospinning affect proliferation and differentiation of osteoprogenitor cells, poly(lactic acid) and poly(ethylene glycol)-poly(lactic acid) diblock copolymers were electrospun with mean fiber diameters of 0.14-2.1 microm onto rigid supports. MC3T3-E1 osteoprogenitor cells cultured on fiber surfaces in the absence of osteogenic factors exhibited a lower cell density after 7 and 14 days of culture than cells cultured on spin-coated surfaces, but cell density increased with fiber diameter. However, in the presence of osteogenic factors (2 mM beta-glycerophosphate, 0.13 mM L-ascorbate-2-phosphate), cell density after 7 and 14 days of culture on fiber surfaces was comparable to or exceeded spin-coated controls, and alkaline phosphatase activity after 14 days was comparable. Examination of cell morphology revealed that cells grown on fibers had smaller projected areas than those on planar surfaces. However, cells attached to electrospun substrates of 2.1 microm diameter fibers exhibited a higher cell aspect ratio than cells on smooth surfaces. These studies show that topographical factors designed into biomaterial scaffolds can regulate spreading, orientation, and proliferation of osteoblastic cells.
Collapse
Affiliation(s)
- Anand S Badami
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0211, USA
| | | | | | | | | |
Collapse
|
31
|
Takahashi Y, Yamamoto M, Tabata Y. Osteogenic differentiation of mesenchymal stem cells in biodegradable sponges composed of gelatin and β-tricalcium phosphate. Biomaterials 2005; 26:3587-96. [PMID: 15621249 DOI: 10.1016/j.biomaterials.2004.09.046] [Citation(s) in RCA: 224] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Accepted: 09/08/2004] [Indexed: 10/26/2022]
Abstract
Biodegradable gelatin sponges incorporating various amounts of beta-tricalcium phosphate (betaTCP) (gelatin-betaTCP) were fabricated and the in vitro osteogenic differentiation of mesenchymal stem cells (MSC) isolated from the rat bone marrow in the sponges was investigated. The gelatin sponges incorporating betaTCP have an interconnected pore structure with the average size of 180-200 microm, irrespective of the betaTCP amount. The stiffness of the sponges became higher with an increase in the amount of betaTCP. When seeded into the sponges by an agitated method, MSC were homogeneously distributed throughout the sponge. The morphology of cells attached got more spreaded with the increased betaTCP amount. The rate of MSC proliferation depended on the betaTCP amount and culture method: the higher the betaTCP amount in the stirring culture, the higher the proliferation rate. The deformed extent of gelatin-betaTCP sponges was suppressed with the increased amount of betaTCP. When measured to evaluate the osteogenic differentiation of MSC, the alkaline phosphatase activity and osteocalcin content became maximum for the sponge with a betaTCP amount of 50 wt%, although both the values were significantly high in the stirring culture compared with those in the static culture. We concluded that the attachment, proliferation, and osteogenic differentiation of MSC were influenced by sponge composition of gelatin and betaTCP as the cell scaffold.
Collapse
Affiliation(s)
- Yoshitake Takahashi
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | |
Collapse
|
32
|
Abstract
BACKGROUND An entire articular condyle engineered from stem cells may provide an alternative therapeutic approach to total joint replacement. This study describes our continuing effort to optimize the chondrogenic and osteogenic differentiation from mesenchymal stem cells toward engineering articular condyles in vivo. METHODS Primary rat bone-marrow mesenchymal stem cells were induced to differentiate into chondrogenic and osteogenic lineages in vitro and were suspended in polyethylene glycol-based hydrogel. The hydrogel cell suspensions, each at a density of 20 x 10(6) cells/mL, were stratified into two separate layers that were molded into the shape and dimensions of an adult human cadaveric mandibular condyle by sequential photopolymerization. The osteochondral constructs fabricated in vitro were implanted in the dorsum of immunodeficient mice for twelve weeks. RESULTS De novo formation of articular condyles in the shape and dimensions of the adult human mandibular condyle occurred after a twelve-week period of in vivo implantation. Histological evaluation demonstrated two stratified layers of cartilaginous and osseous tissues, and yet there was mutual infiltration of cartilage-like and bone-like tissues into each other's territories. The cartilaginous portion was stained intensively to safranin O and expressed immunolocalized type-II collagen. Chondrocytes adjacent to the tissue-engineered osteochondral junction were enlarged and expressed type-X collagen, typical of hypertrophic chondrocytes. The osseous portion contained bone trabeculae-like structures and expressed immunolocalized type-I collagen, osteopontin, and osteonectin. CONCLUSIONS A cell encapsulation density of 20 million cells/mL with in vivo incubation for twelve weeks yields further tissue maturation and phenotypic growth of both cartilage-like and bone-like tissues in the tissue-engineered articular condyle.
Collapse
Affiliation(s)
- Adel Alhadlaq
- Department of Anatomy, Tissue Engineering Laboratory, MC 841, University of Illinois at Chicago, 801 South Paulina Street, Chicago, Illinois 60612, USA
| | | |
Collapse
|
33
|
Marei MK, Nouh SR, Saad MM, Ismail NS. Preservation and Regeneration of Alveolar Bone by Tissue-Engineered Implants. ACTA ACUST UNITED AC 2005; 11:751-67. [PMID: 15998216 DOI: 10.1089/ten.2005.11.751] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Bone maintenance after dental extraction has a significant impact on the success of future treatment. The purpose of this study was to regenerate bone by implanting an engineered porous scaffold seeded with bone marrow mesenchymal stem cells (BMSCs) in a socket created by extraction of the lower left central incisor in rabbits, utilizing the principles of tissue engineering. It involved preparation and characterization of three-dimensional porous hollow root form scaffolds consisting of a poly-L-lactic acid:polyglycolic acid composite (PLG, 50:50), using a solvent casting/compression molding/particulate leaching technique. Porosity of the scaffolds was 83.71% with good interconnectivity and uniform distribution of the various pore sizes. The degraded scaffolds maintained their porosity and form for the first 2 weeks and their mass loss continued up to 6 weeks. The scaffolds developed viscoelastic behavior under dynamic compression; yet they lost their mechanical characteristics as they degraded. The scaffolds were seeded with BMSCs and examined by scanning electron microscopy. Cell proliferation and scaffold degradation were shown up to 2 weeks in vitro. The cultivated scaffolds were implanted in empty extraction sockets immediately after tooth removal. Four weeks later, bone regeneration was evaluated histologically in the healed sockets in three experimental groups: sockets left empty, sockets that received PLG without cells, and sockets that received PLG with cells. Radiographic evaluation, performed 4 weeks later for the three experimental groups, demonstrated preservation of alveolar bone walls in the extraction sockets that received PLG with cells as compared with the other two groups. The bone density profile for the healed sockets confirmed both histological and radiographic findings. The results of this study show promise in the area of dentoalveolar surgery, yet longitudinal studies under variable clinical situations would encourage the current application.
Collapse
Affiliation(s)
- Mona K Marei
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
| | | | | | | |
Collapse
|
34
|
Dellinger JG, Eurell JAC, Stewart M, Jamison RD. Bone response to 3D periodic hydroxyapatite scaffolds with and without tailored microporosity to deliver bone morphogenetic protein 2. J Biomed Mater Res A 2005; 76:366-76. [PMID: 16270335 DOI: 10.1002/jbm.a.30523] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Three types of model hydroxyapatite (HA) scaffolds were implanted in the metacarpal and metatarsal bones of goats. Scaffolds, consisting of a latticed pattern of rods, were fabricated with a solid freeform fabrication (SFF) technique. All scaffolds contained macropores; some were also fabricated with micropores (5.2 +/- 2.0 microm). Recombinant human bone morphogenetic protein-2 (rhBMP-2) was added to some microporous scaffolds. rhBMP-2 caused increased percent filled with bone tissue compared to microporous scaffolds without rhBMP-2. Lamellar bone in the scaffolds was aligned perpendicular to the long axis of the bone near the junctions of the rods that make up the scaffold but was more random away from the junctions of rods. Microporous scaffolds stained beneath areas of contact with new bone. This staining might indicate either extracellular matrix (ECM) in the rods, byproducts of ECM production, or reaction of cellular products with the scaffold.
Collapse
Affiliation(s)
- Jennifer G Dellinger
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green Street, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
35
|
Hägewald S, Pischon N, Jawor P, Bernimoulin JP, Zimmermann B. Effects of enamel matrix derivative on proliferation and differentiation of primary osteoblasts. ACTA ACUST UNITED AC 2004; 98:243-9. [PMID: 15316552 DOI: 10.1016/j.tripleo.2004.02.063] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the effects of enamel matrix derivative (EMD) on proliferation, protein synthesis, and mineralization in primary mouse osteoblasts. STUDY DESIGN Osteoblasts were obtained from mouse calvaria by enzymatic digestion and grown in monolayer together with EMD (2-100 microg/ml). Metabolic activity and cell proliferation were determined by tetrazolium salt assay (MTT) and by 5-bromo-2'-deoxyuridine (BrdU) incorporation. For differentiation studies, a 3-dimensional organoid culture system was used. Osteoblastic differentiation was estimated by alkaline phosphatase (ALP) activity and calcium content. Collagen synthesis was assessed by [(3)H]-proline incorporation. Morphologic observations were made by electron microscopy. RESULTS EMD treatments increased metabolic cell activity and BrdU incorporation. In the organoid cultures, ALP activity and calcium accumulation were enhanced by EMD treatment, but [(3)H]-proline incorporation was not. Morphologically, an increased deposition of mineralized nodules was found. CONCLUSIONS EMD treatment enhanced cellular activities of primary osteoblasts and might support the regeneration of periodontal bony defects.
Collapse
|
36
|
Kreke MR, Goldstein AS. Hydrodynamic Shear Stimulates Osteocalcin Expression But Not Proliferation of Bone Marrow Stromal Cells. ACTA ACUST UNITED AC 2004; 10:780-8. [PMID: 15265295 DOI: 10.1089/1076327041348455] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Bone marrow stromal cells (BMSCs) are a promising component for engineered bone tissues, but in vitro formation of a bonelike tissue requires culture conditions that direct these multipotent cells toward osteoblastic maturation. Fluid flow has been postulated to stimulate bone tissue development in vivo, but the effect of shear stress on proliferation and differentiation of osteoprogenitor cell cultures in vitro has not been examined closely. In this study BMSCs were cultured on fibronectin-coated substrates and exposed intermittently (for 30 min 3, 5, 7, 9, 11, and 13 days after seeding) to a spatially dependent range of shear stresses (0.36 to 2.7 dyn/cm(2)) using a radial-flow chamber. After 7 days cell density did not vary between sheared and control cell layers. In contrast, after 21 days the accumulation of osteocalcin protein (OC) in cell layers was increased significantly relative to static controls, while the quantity of multilayer cell aggregates (i.e., bone nodules) was diminished. Neither of these effects varied systematically with shear magnitude. Finally, pretreatment of cultures with the cyclooxygenase (COX)-2-specific inhibitor NS-398 blocked prostaglandin secretion in response to shearing flow and significantly reduced OC accumulation in cell layers. These results provide evidence that flow stimulates osteoblastic maturation but not proliferation of bone marrow stromal cells and that prostaglandin signaling is involved in this effect.
Collapse
Affiliation(s)
- Michelle R Kreke
- Department of Chemical Engineering, and the School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute, Blacksburg, Virginia 24061-0211, USA
| | | |
Collapse
|
37
|
Frosch KH, Barvencik F, Viereck V, Lohmann CH, Dresing K, Breme J, Brunner E, Stürmer KM. Growth behavior, matrix production, and gene expression of human osteoblasts in defined cylindrical titanium channels. J Biomed Mater Res A 2003; 68:325-34. [PMID: 14704974 DOI: 10.1002/jbm.a.20010] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The purpose of the current study was to investigate the effect of different diameters of cylindrical titanium channels on human osteoblasts. Titanium samples having continuous drill channels with diameters of 300, 400, 500, 600, and 1000 microm were put into osteoblast cell cultures that were isolated from 12 adult human trauma patients. Cell migration into the drill channels was investigated by transmitted-light microscopy. The DNA content in the drill channels was measured photometrically, collagen type I production was analyzed by enzyme-linked immunosorbent assay (ELISA) and osteocalcin gene expression by reverse transcriptase-polymerase chain reaction (RT-PCR). Formation of mineralized tissue was assessed by microradiographs of histological sections. Within 20 days, cells grew an average of 838 microm (+/-128 microm) into the drill channels with a diameter of 600 microm and were significantly faster (p < 0.05) than in all other channels. Cells produced significantly more osteocalcin messenger RNA (mRNA) in 600-microm channels (p < 0.05) than they did in 1000-microm channels and demonstrated the highest osteogenic differentiation. The channel diameter did not influence collagen type I production. The highest cell density was found in 300-microm channels (p < 0.05). The DNA content of the channels linearly decreased with increasing channel diameters. After 40 days of culture, the proportion of mineralized tissue at the mouth section amounted to 6% in 300-microm channels and to 9-11% in 400-600-microm channels. In 1000-microm channels, only traces of mineralization were detected. Our data suggest that the diameter of cylindrical titanium channels has a significant effect on migration, gene expression, and mineralization of human osteoblasts.
Collapse
Affiliation(s)
- Karl-Heinz Frosch
- Department of Trauma Surgery, Plastic and Reconstructive Surgery, Georg-August-University Goettingen, Robert-Koch-Str. 40, D-37075 Goettingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|