1
|
de Lima DC, Alvarez Abreu P, de Freitas CC, Santos DO, Borges RO, dos Santos TC, Mendes Cabral L, Rodrigues CR, Castro HC. Snake Venom: Any Clue for Antibiotics and CAM? EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2005; 2:39-47. [PMID: 15841277 PMCID: PMC1062156 DOI: 10.1093/ecam/neh063] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 12/30/2004] [Accepted: 01/10/2005] [Indexed: 12/03/2022]
Abstract
Lately several naturally occurring peptides presenting antimicrobial activity have been described in the literature. However, snake venoms, which are an enormous source of peptides, have not been fully explored for searching such molecules. The aim of this work is to review the basis of antimicrobial mechanisms revealing snake venom as a feasible source for searching an antibiotic prototype. Therefore, it includes (i) a description of the constituents of the snake venoms involved in their main biological effects during the envenomation process; (ii) examples of snake venom molecules of commercial use; (iii) mechanisms of action of known antibiotics; and (iv) how the microorganisms can be resistant to antibiotics. This review also shows that snake venoms are not totally unexplored sources for antibiotics and complementary and alternative medicine (CAM).
Collapse
Affiliation(s)
- Deivy Clementino de Lima
- Laboratório de Bioquímica e Modelagem Molecular (LaBioMol), Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal FluminenseCEP 24001-970, Niterói, RJ, Brazil
| | - Paula Alvarez Abreu
- Laboratório de Bioquímica e Modelagem Molecular (LaBioMol), Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal FluminenseCEP 24001-970, Niterói, RJ, Brazil
| | - Cícero Carlos de Freitas
- Laboratório de Bioquímica e Modelagem Molecular (LaBioMol), Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal FluminenseCEP 24001-970, Niterói, RJ, Brazil
| | - Dilvani Oliveira Santos
- Laboratório de Bioquímica e Modelagem Molecular (LaBioMol), Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal FluminenseCEP 24001-970, Niterói, RJ, Brazil
| | - Rodrigo Oliveira Borges
- Laboratório de Bioquímica e Modelagem Molecular (LaBioMol), Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal FluminenseCEP 24001-970, Niterói, RJ, Brazil
| | | | - Lúcio Mendes Cabral
- Instituto Nacional de Controle de Qualidade em SaúdeFundação Oswaldo Cruz, RJ, Brazil
| | - Carlos R. Rodrigues
- Laboratório de Modelagem Molecular e QSAR (ModMolQSAR), Faculdade de Farmácia, Universidade Federal do Rio de JaneiroCEP 21941-590, Rio de Janeiro, RJ, Brazil
| | - Helena Carla Castro
- Laboratório de Bioquímica e Modelagem Molecular (LaBioMol), Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal FluminenseCEP 24001-970, Niterói, RJ, Brazil
| |
Collapse
|
2
|
Bidlack JE, Silverman PM. An active type IV secretion system encoded by the F plasmid sensitizes Escherichia coli to bile salts. J Bacteriol 2004; 186:5202-9. [PMID: 15292121 PMCID: PMC490876 DOI: 10.1128/jb.186.16.5202-5209.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
F(+) strains of Escherichia coli infected with donor-specific bacteriophage such as M13 are sensitive to bile salts. We show here that this sensitivity has two components. The first derives from secretion of bacteriophage particles through the cell envelope, but the second can be attributed to expression of the F genes required for the formation of conjugative (F) pili. The latter component was manifested as reduced or no growth of an F(+) strain in liquid medium containing bile salts at concentrations that had little or no effect on the isogenic F(-) strain or as a reduced plating efficiency of the F(+) strain on solid media; at 2% bile salts, plating efficiency was reduced 10(4)-fold. Strains with F or F-like R factors were consistently more sensitive to bile salts than isogenic, plasmid-free strains, but the quantitative effect of bile salts depended on both the plasmid and the strain. Sensitivity also depended on the bile salt, with conjugated bile salts (glycocholate and taurocholate) being less active than unconjugated bile salts (deoxycholate and cholate). F(+) cells were also more sensitive to sodium dodecyl sulfate than otherwise isogenic F(-) cells, suggesting a selectivity for amphipathic anions. A mutation in any but one F tra gene required for the assembly of F pili, including the traA gene encoding F pilin, substantially restored bile salt resistance, suggesting that bile salt sensitivity requires an active system for F pilin secretion. The exception was traW. A traW mutant was 100-fold more sensitive to cholate than the tra(+) strain but only marginally more sensitive to taurocholate or glycocholate. Bile salt sensitivity could not be attributed to a generalized change in the surface permeability of F(+) cells, as judged by the effects of hydrophilic and hydrophobic antibiotics and by leakage of periplasmic beta-lactamase into the medium.
Collapse
Affiliation(s)
- James E Bidlack
- Department of Biology, University of Central Oklahoma, Edmond, Oklahoma 73034, USA
| | | |
Collapse
|
3
|
Potrykus J, WÄgrzyn G. TheypdIgene codes for a putative lipoprotein involved in the synthesis of colanic acid inEscherichia coli. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09598.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|