1
|
Backal A, Velinov M, Garcia J, Louis CL. Novel, likely pathogenic variant in ATP7A associated with Menkes disease diagnosed with ultrarapid genome sequencing. BMJ Case Rep 2024; 17:e259792. [PMID: 39353672 DOI: 10.1136/bcr-2024-259792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
Menkes disease is a multisystem disorder caused by disturbances in copper absorption and metabolism. This lethal neurodegenerative disease presents with fine, 'kinky' hair, connective tissue dysfunction and developmental regression after 2-3 months of age. The primary variant associated with Menkes is in the ATP7A gene with X-linked recessive inheritance. Historically, the diagnosis of Menkes has relied on clinical signs and symptoms, but as the disease has varying levels of severity and presentation, it can take months to diagnose and treat. Emerging technology for ultrarapid genome sequencing offers a DNA-based route of diagnosis with preliminary results in hours, allowing for earlier discovery and treatment of Menkes with the potential for better long-term outcomes. Ultrarapid whole genome sequencing identified a novel, likely pathogenic, frameshift variant in the ATP7A gene consistent with a diagnosis of Menkes disease. The clinical manifestations and pathophysiology of this disorder, as well as a rapid DNA-based diagnosis, are described in this case.
Collapse
Affiliation(s)
- Amy Backal
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Milen Velinov
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Jazmin Garcia
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Cassandra L Louis
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| |
Collapse
|
2
|
Parad RB, Kaler SG, Mauceli E, Sokolsky T, Yi L, Bhattacharjee A. Targeted next generation sequencing for newborn screening of Menkes disease. Mol Genet Metab Rep 2020; 24:100625. [PMID: 32714836 PMCID: PMC7378272 DOI: 10.1016/j.ymgmr.2020.100625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/18/2020] [Indexed: 11/17/2022] Open
Abstract
PURPOSE Population-based newborn screening (NBS) allows early detection and treatment of inherited disorders. For certain medically-actionable conditions, however, NBS is limited by the absence of reliable biochemical signatures amenable to detection by current platforms. We sought to assess the analytic validity of an ATP7A targeted next generation DNA sequencing assay as a potential newborn screen for one such disorder, Menkes disease. METHODS Dried blood spots from control or Menkes disease subjects (n = 22) were blindly analyzed for pathogenic variants in the copper transport gene, ATP7A. The analytical method was optimized to minimize cost and provide rapid turnaround time. RESULTS The algorithm correctly identified pathogenic ATP7A variants, including missense, nonsense, small insertions/deletions, and large copy number variants, in 21/22 (95.5%) of subjects, one of whom had inconclusive diagnostic sequencing previously. For one false negative that also had not been detected by commercial molecular laboratories, we identified a deep intronic variant that impaired ATP7A mRNA splicing. CONCLUSIONS Our results support proof-of-concept that primary DNA-based NBS would accurately detect Menkes disease, a disorder that fulfills Wilson and Jungner screening criteria and for which biochemical NBS is unavailable. Targeted next generation sequencing for NBS would enable improved Menkes disease clinical outcomes, establish a platform for early identification of other unscreened disorders, and complement current NBS by providing immediate data for molecular confirmation of numerous biochemically screened condition.
Collapse
Affiliation(s)
- Richard B. Parad
- Department of Pediatric Newborn Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Stephen G. Kaler
- Section on Translational Neuroscience, Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, United States of America
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States of America
| | - Evan Mauceli
- Parabase Genomics, Inc., Boston, MA, United States of America
| | - Tanya Sokolsky
- Parabase Genomics, Inc., Boston, MA, United States of America
- Baebies, Inc., Durham, NC, United States of America
| | - Ling Yi
- Section on Translational Neuroscience, Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, United States of America
| | - Arindam Bhattacharjee
- Parabase Genomics, Inc., Boston, MA, United States of America
- Baebies, Inc., Durham, NC, United States of America
| |
Collapse
|
3
|
Stevens KE, Price JE, Marko J, Kaler SG. Neck masses due to internal jugular vein phlebectasia: Frequency in Menkes disease and literature review of 85 pediatric subjects. Am J Med Genet A 2020; 182:1364-1377. [PMID: 32293788 DOI: 10.1002/ajmg.a.61572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/31/2020] [Accepted: 02/24/2020] [Indexed: 11/06/2022]
Abstract
Classic Menkes disease is a rare X-linked recessive disorder of copper metabolism caused by pathogenic variants in the copper transporter gene, ATP7A. Untreated affected individuals suffer failure to thrive and neurodevelopmental delays that begin at 6-8 weeks of age and progress inexorably to death, often within 3 years. Subcutaneous injections of Copper Histidinate (US Food and Drug Administration IND #34,166, Orphan product designation #12-3663) are associated with improved survival and neurological outcomes, especially when commenced within a month of birth. We previously identified internal jugular vein phlebectasia (IJP) in four Menkes disease subjects. This feature and other connective tissue abnormalities appear to be consequences of deficient activity of lysyl oxidase, a copper-dependent enzyme. Here, we report results from a prospective study of IJP based on 178 neck ultrasounds in 66 Menkes subjects obtained between November 2007 and March 2018. Nine patients met the criterion for IJP (one or more cross-sectional area measurements exceeding 2.2 cm2 ) and five subjects had clinically apparent neck masses that enlarged over time. Our prospective results suggest that IJP occurs in approximately 14% (9/66) of Menkes disease patients and appears to be clinically benign with no specific medical or surgical actionability. We surveyed the medical literature for prior reports of IJP in pediatric subjects and identified 85 individuals and reviewed the distribution of this abnormality by gender, sidedness, and underlying etiology. Taken together, Menkes disease accounts for 16% (15/94) of all reported IJP individuals. Neck masses from IJP represent underappreciated abnormalities in Menkes disease.
Collapse
Affiliation(s)
- Kristen E Stevens
- Section on Translational Neuroscience, Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA.,George Washington University School of Nursing, Washington, District of Columbia, USA
| | - Julienne E Price
- Section on Translational Neuroscience, Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Jamie Marko
- Department of Diagnostic Imaging, NIH Clinical Center, Bethesda, Maryland, USA
| | - Stephen G Kaler
- Section on Translational Neuroscience, Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA.,Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| |
Collapse
|
4
|
Sharma P, Reichert M, Lu Y, Markello TC, Adams DR, Steinbach PJ, Fuqua BK, Parisi X, Kaler SG, Vulpe CD, Anderson GJ, Gahl WA, Malicdan MCV. Biallelic HEPHL1 variants impair ferroxidase activity and cause an abnormal hair phenotype. PLoS Genet 2019; 15:e1008143. [PMID: 31125343 PMCID: PMC6534290 DOI: 10.1371/journal.pgen.1008143] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 04/16/2019] [Indexed: 11/18/2022] Open
Abstract
Maintenance of the correct redox status of iron is functionally important for critical biological processes. Multicopper ferroxidases play an important role in oxidizing ferrous iron, released from the cells, into ferric iron, which is subsequently distributed by transferrin. Two well-characterized ferroxidases, ceruloplasmin (CP) and hephaestin (HEPH) facilitate this reaction in different tissues. Recently, a novel ferroxidase, Hephaestin like 1 (HEPHL1), also known as zyklopen, was identified. Here we report a child with compound heterozygous mutations in HEPHL1 (NM_001098672) who presented with abnormal hair (pili torti and trichorrhexis nodosa) and cognitive dysfunction. The maternal missense mutation affected mRNA splicing, leading to skipping of exon 5 and causing an in-frame deletion of 85 amino acids (c.809_1063del; p.Leu271_ala355del). The paternal mutation (c.3176T>C; p.Met1059Thr) changed a highly conserved methionine that is part of a typical type I copper binding site in HEPHL1. We demonstrated that HEPHL1 has ferroxidase activity and that the patient's two mutations exhibited loss of this ferroxidase activity. Consistent with these findings, the patient's fibroblasts accumulated intracellular iron and exhibited reduced activity of the copper-dependent enzyme, lysyl oxidase. These results suggest that the patient's biallelic variants are loss-of-function mutations. Hence, we generated a Hephl1 knockout mouse model that was viable and had curly whiskers, consistent with the hair phenotype in our patient. These results enhance our understanding of the function of HEPHL1 and implicate altered ferroxidase activity in hair growth and hair disorders.
Collapse
Affiliation(s)
- Prashant Sharma
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Marie Reichert
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yan Lu
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Thomas C. Markello
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland Bethesda, Maryland, United States of America
| | - David R. Adams
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter J. Steinbach
- Center for Molecular Modeling, Center for Information Technology, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Brie K. Fuqua
- Department of Medicine, University of California, Los Angeles, United States of America
| | - Xenia Parisi
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stephen G. Kaler
- Section on Translational Neuroscience, Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Christopher D. Vulpe
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Gregory J. Anderson
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - William A. Gahl
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland Bethesda, Maryland, United States of America
| | - May Christine V. Malicdan
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
5
|
Králík L, Flachsová E, Hansíková H, Saudek V, Zeman J, Martásek P. Molecular Diagnostics of Copper-Transporting Protein Mutations Allows Early Onset Individual Therapy of Menkes Disease. Folia Biol (Praha) 2017; 63:165-173. [PMID: 29687769 DOI: 10.14712/fb2017063050165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Menkes disease is a severe X-linked recessive disorder caused by a defect in the ATP7A gene, which encodes a membrane copper-transporting ATPase. Deficient activity of the ATP7A protein results in decreased intestinal absorption of copper, low copper level in serum and defective distribution of copper in tissues. The clinical symptoms are caused by decreased activities of copper-dependent enzymes and include neurodegeneration, connective tissue disorders, arterial changes and hair abnormalities. Without therapy, the disease is fatal in early infancy. Rapid diagnosis of Menkes disease and early start of copper therapy is critical for the effectiveness of treatment. We report a molecular biology-based strategy that allows early diagnosis of copper transport defects and implementation of individual therapies before the full development of pathological symptoms. Low serum copper and decreased activity of copperdependent mitochondrial cytochrome c oxidase in isolated platelets found in three patients indicated a possibility of functional defects in copper-transporting proteins, especially in the ATPA7 protein, a copper- transporting P-type ATPase. Rapid mutational screening of the ATP7A gene using high-resolution melting analysis of DNA indicated presence of mutations in the patients. Molecular investigation for mutations in the ATP7A gene revealed three nonsense mutations: c.2170C>T (p.Gln724Ter); c.3745G>T (p.Glu1249Ter); and c.3862C>T (p.Gln1288Ter). The mutation c.3745G>T (p.Glu1249Ter) has not been identified previously. Molecular analysis of the ATOX1 gene as a possible modulating factor of Menkes disease did not reveal presence of pathogenic mutations. Molecular diagnostics allowed early onset of individual therapies, adequate genetic counselling and prenatal diagnosis in the affected families.
Collapse
Affiliation(s)
- L Králík
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - E Flachsová
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - H Hansíková
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - V Saudek
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge Metabolic Research Laboratories, Cambridge, United Kingdom
| | - J Zeman
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - P Martásek
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| |
Collapse
|
6
|
Perez-Siles G, Grant A, Ellis M, Ly C, Kidambi A, Khalil M, Llanos RM, Fontaine SL, Strickland AV, Züchner S, Bermeo S, Neist E, Brennan-Speranza TC, Takata RI, Speck-Martins CE, Mercer JFB, Nicholson GA, Kennerson ML. Characterizing the molecular phenotype of an Atp7a(T985I) conditional knock in mouse model for X-linked distal hereditary motor neuropathy (dHMNX). Metallomics 2016; 8:981-92. [PMID: 27293072 DOI: 10.1039/c6mt00082g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
ATP7A is a P-type ATPase essential for cellular copper (Cu) transport and homeostasis. Loss-of-function ATP7A mutations causing systemic Cu deficiency are associated with severe Menkes disease or its milder allelic variant, occipital horn syndrome. We previously identified two rare ATP7A missense mutations (P1386S and T994I) leading to a non-fatal form of motor neuron disorder, X-linked distal hereditary motor neuropathy (dHMNX), without overt signs of systemic Cu deficiency. Recent investigations using a tissue specific Atp7a knock out model have demonstrated that Cu plays an essential role in motor neuron maintenance and function, however the underlying pathogenic mechanisms of ATP7A mutations causing axonal degeneration remain unknown. We have generated an Atp7a conditional knock in mouse model of dHMNX expressing Atp7a(T985I), the orthologue of the human ATP7A(T994I) identified in dHMNX patients. Although a degenerative motor phenotype is not observed, the knock in Atp7a(T985I/Y) mice show altered Cu levels within the peripheral and central nervous systems, an increased diameter of the muscle fibres and altered myogenin and myostatin gene expression. Atp7a(T985I/Y) mice have reduced Atp7a protein levels and recapitulate the defective trafficking and altered post-translational regulatory mechanisms observed in the human ATP7A(T994I) patient fibroblasts. Our model provides a unique opportunity to characterise the molecular phenotype of dHMNX and the time course of cellular events leading to the process of axonal degeneration in this disease.
Collapse
Affiliation(s)
- Gonzalo Perez-Siles
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, NSW, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ahuja A, Dev K, Tanwar RS, Selwal KK, Tyagi PK. Copper mediated neurological disorder: visions into amyotrophic lateral sclerosis, Alzheimer and Menkes disease. J Trace Elem Med Biol 2015; 29:11-23. [PMID: 24975171 DOI: 10.1016/j.jtemb.2014.05.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 04/16/2014] [Accepted: 05/08/2014] [Indexed: 12/31/2022]
Abstract
Copper (Cu) is a vital redox dynamic metal that is possibly poisonous in superfluous. Metals can traditionally or intricately cause propagation in reactive oxygen species (ROS) accretion in cells and this may effect in programmed cell death. Accumulation of Cu causes necrosis that looks to be facilitated by DNA damage, followed by activation of P53. Cu dyshomeostasis has also been concerned in neurodegenerative disorders such as Alzheimer, Amyotrophic lateral sclerosis (ALS) or Menkes disease and is directly related to neurodegenerative syndrome that usually produces senile dementia. These mortal syndromes are closely related with an immense damage of neurons and synaptic failure in the brain. This review focuses on copper mediated neurological disorders with insights into amyotrophic lateral sclerosis, Alzheimer and Menkes disease.
Collapse
Affiliation(s)
- Anami Ahuja
- Department of Biotechnology, NIMS University, Jaipur, India.
| | - Kapil Dev
- Faculty of Medicine in Hradec Kralove, University of Charles, Prague, Czech Republic
| | - Ranjeet S Tanwar
- Department of Biotechnology, N.C. College of Engineering, Israna, India
| | - Krishan K Selwal
- Department of Biotechnology, Deenbandhu Chotu Ram University of Science and Technology, Murthal, India
| | - Pankaj K Tyagi
- Department of Biotechnology, Meerut Institute of Engineering and Technology, Meerut, India
| |
Collapse
|
8
|
Kaler SG. Neurodevelopment and brain growth in classic Menkes disease is influenced by age and symptomatology at initiation of copper treatment. J Trace Elem Med Biol 2014; 28:427-30. [PMID: 25281031 PMCID: PMC4253077 DOI: 10.1016/j.jtemb.2014.08.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Menkes disease is an X-linked recessive disorder of brain copper metabolism caused by mutations in an essential mammalian copper transport gene, ATP7A. Untreated affected individuals suffer failure to thrive and neurodevelopmental delays that usually commence at 6-8 weeks of age. Death by age three years is typical. While provision of working copies of ATP7A to the brain by viral vectors is a promising strategy under development, the only treatment currently available is subcutaneous copper injections. These can normalize circulating blood levels and may replete brain copper depending on the molecular context, e.g., the severity of ATP7A mutation and potential presence of mosaicism. In this paper, we summarize somatic growth and neurodevelopmental outcomes for 60 subjects enrolled in a recently concluded phase I/II clinical trial of copper histidine for Menkes disease (ClinicalTrials.gov Identifier: NCT00001262). Primary outcomes indicate highly statistically significant improvements in gross motor, fine motor/adaptive, personal-social, and language neurodevelopment in the cohort of subjects who received early treatment prior to onset of symptoms (n=35). Correlating with these findings, quantitative parameters of somatic growth indicated statistically significant greater growth in head circumference for the initially asymptomatic group, whereas weight and height/length at age three years (or at time of death) did not differ significantly. Mortality at age 3 was higher (50%) in subjects older and symptomatic when treatment commenced compared to the asymptomatic group (28.6%). We conclude that early copper histidine for Menkes disease is safe and efficacious, with treatment outcomes influenced by the timing of intervention, and ATP7A mutation.
Collapse
Affiliation(s)
- Stephen G Kaler
- Section on Translational Neuroscience; Molecular Medicine Program, NICHD, Porter Neuroscience Research Center II, Building 35, Room 2D-971, 35A Convent Drive, MSC 3754, National Institutes of Health, Bethesda, MD 20892-3754, United States.
| |
Collapse
|
9
|
Besouw MTP, Schneider J, Janssen MC, Greco M, Emma F, Cornelissen EA, Desmet K, Skovby F, Nobili F, Lilien MR, De Paepe A, Malfait F, Symoens S, van den Heuvel LP, Levtchenko EN. Copper deficiency in patients with cystinosis with cysteamine toxicity. J Pediatr 2013; 163:754-60. [PMID: 23651769 DOI: 10.1016/j.jpeds.2013.03.078] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 01/09/2013] [Accepted: 03/28/2013] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To assess whether copper deficiency plays a role in the recently described cysteamine toxicity in patients with cystinosis, and to examine whether polymorphisms in copper transporters, lysyl oxidase, and/or type I procollagen genes could be responsible for the occurrence of cysteamine toxicity in a small subset of patients with cystinosis. STUDY DESIGN Thirty-six patients with cystinosis were included: 22 with Fanconi syndrome (including 7 with cysteamine toxicity), 12 after renal transplantation, 1 receiving hemodialysis, and 1 with ocular cystinosis. Serum copper and ceruloplasmin levels and urinary copper/creatinine ratio were measured. Genes ATP7A and CTR1 (encoding copper transporters), LOX (encoding lysyl oxidase), and COL1A1 and COL1A2 (encoding type I procollagen) were analyzed in patients with (n = 6) and without (n = 5) toxicity. Fibroblast (pro)collagen synthesis was compared in patients with (n = 3) and those without (n = 2) cysteamine toxicity. RESULTS All 22 patients with Fanconi syndrome had increased urinary copper excretion. Serum copper and ceruloplasmin levels were decreased in 9 patients, including all 7 patients with cysteamine toxicity. No specific sequence variations were associated with toxicity. All fibroblasts exhibited normal (pro)collagen synthesis. CONCLUSION Patients with cystinosis with cysteamine toxicity demonstrate copper deficiency. This can cause decreased activity of lysyl oxidase, the enzyme that generates the aldehydes required for collagen cross-linking. Thus, copper supplementation might prevent cysteamine toxicity.
Collapse
Affiliation(s)
- Martine T P Besouw
- Department of Pediatric Nephrology, Leuven University Hospital, Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Catecholamine metabolites affected by the copper-dependent enzyme dopamine-beta-hydroxylase provide sensitive biomarkers for early diagnosis of menkes disease and viral-mediated ATP7A gene therapy. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2013; 68:223-33. [PMID: 24054147 DOI: 10.1016/b978-0-12-411512-5.00011-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Menkes disease is a lethal X-linked recessive disorder of copper metabolism caused by mutations in ATP7A, a copper-transporting ATPase with diverse and important biological functions. Partial deficiency of dopamine-beta-hydroxylase is a biochemical hallmark of this illness due to the normal role of ATP7A in delivery of copper as an enzymatic cofactor. We exploited this fact to develop a diagnostic test for Menkes disease, which proved highly sensitive and specific. The assay has enabled early identification of affected patients, leading to enhanced survival and improved neurodevelopment after early copper treatment, including some completely normal outcomes. In preclinical efforts to develop improved therapies for patients with non-copper-responsive ATP7A mutations, we used brain-directed adeno-associated viral gene therapy to rescue a murine model of the disease. Statistically significant improvement in brain catechol ratios correlated with enhanced survival, and cerebrospinal fluid catechols represent candidate surrogate markers of treatment effect in a future gene therapy clinical trial.
Collapse
|
11
|
Møller LB, Hicks JD, Holmes CS, Goldstein DS, Brendl C, Huppke P, Kaler SG. Diagnosis of copper transport disorders. CURRENT PROTOCOLS IN HUMAN GENETICS 2011; Chapter 17:Unit17.9. [PMID: 21735378 DOI: 10.1002/0471142905.hg1709s70] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Techniques for the diagnosis of copper transport disorders are increasingly important due to recent recognition of previously unappreciated clinical phenotypes and emerging advances in the treatment of these conditions. Here, we collate the diagnostic approaches and techniques currently employed for biochemical and molecular assessment of at-risk individuals in whom abnormal copper metabolism is suspected.
Collapse
|
12
|
Abstract
This Review summarizes recent advances in understanding copper-transporting ATPase 1 (ATP7A), and examines the neurological phenotypes associated with dysfunction of this protein. Involvement of ATP7A in axonal outgrowth, synapse integrity and neuronal activation underscores the fundamental importance of copper metabolism to neurological function. Defects in ATP7A cause Menkes disease, an infantile-onset, lethal condition. Neonatal diagnosis and early treatment with copper injections enhance survival in patients with this disease, and can normalize clinical outcomes if mutant ATP7A molecules retain small amounts of residual activity. Gene replacement rescues a mouse model of Menkes disease, suggesting a potential therapeutic approach for patients with complete loss-of-function ATP7A mutations. Remarkably, a newly discovered ATP7A disorder-isolated distal motor neuropathy-has none of the characteristic clinical or biochemical abnormalities of Menkes disease or its milder allelic variant occipital horn syndrome (OHS), instead resembling Charcot-Marie-Tooth disease type 2. These findings indicate that ATP7A has a crucial but previously unappreciated role in motor neuron maintenance, and that the mechanism underlying ATP7A-related distal motor neuropathy is distinct from Menkes disease and OHS pathophysiology. Collectively, these insights refine our knowledge of the neurology of ATP7A-related copper transport diseases and pave the way for further progress in understanding ATP7A function.
Collapse
|
13
|
Desai V, Donsante A, Swoboda KJ, Martensen M, Thompson J, Kaler SG. Favorably skewed X-inactivation accounts for neurological sparing in female carriers of Menkes disease. Clin Genet 2011; 79:176-82. [PMID: 20497190 DOI: 10.1111/j.1399-0004.2010.01451.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Classical Menkes disease is an X-linked recessive neurodegenerative disorder caused by mutations in ATP7A, which is located at Xq13.1-q21. ATP7A encodes a copper-transporting P-type ATPase and plays a critical role in development of the central nervous system. With rare exceptions involving sex chromosome aneuploidy or X-autosome translocations, female carriers of ATP7A mutations are asymptomatic except for subtle hair and skin abnormalities, although the mechanism for this neurological sparing has not been reported. We studied a three-generation family in which a severe ATP7A mutation, a 5.5-kb genomic deletion spanning exons 13 and 14, segregated. The deletion junction fragment was amplified from the proband by long-range polymerase chain reaction and sequenced to characterize the breakpoints. We screened at-risk females in the family for this junction fragment and analyzed their X-inactivation patterns using the human androgen-receptor (HUMARA) gene methylation assay. We detected the junction fragment in the proband, two obligate heterozygotes, and four of six at-risk females. Skewed inactivation of the X chromosome harboring the deletion was noted in all female carriers of the deletion (n = 6), whereas random X-inactivation was observed in all non-carriers (n = 2). Our results formally document one mechanism for neurological sparing in female carriers of ATP7A mutations. Based on review of X-inactivation patterns in female carriers of other X-linked recessive diseases, our findings imply that substantial expression of a mutant ATP7A at the expense of the normal allele could be associated with neurologic symptoms in female carriers of Menkes disease and its allelic variants, occipital horn syndrome, and ATP7A-related distal motor neuropathy.
Collapse
Affiliation(s)
- V Desai
- Unit on Human Copper Metabolism, Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1832, USA
| | | | | | | | | | | |
Collapse
|
14
|
Kaler SG, Liew CJ, Donsante A, Hicks JD, Sato S, Greenfield JC. Molecular correlates of epilepsy in early diagnosed and treated Menkes disease. J Inherit Metab Dis 2010; 33:583-9. [PMID: 20652413 PMCID: PMC3113468 DOI: 10.1007/s10545-010-9118-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 04/14/2010] [Accepted: 04/20/2010] [Indexed: 01/18/2023]
Abstract
Epilepsy is a major feature of Menkes disease, an X-linked recessive infantile neurodegenerative disorder caused by mutations in ATP7A, which produces a copper-transporting ATPase. Three prior surveys indicated clinical seizures and electroencephalographic (EEG) abnormalities in a combined 27 of 29 (93%) symptomatic Menkes disease patients diagnosed at 2 months of age or older. To assess the influence of earlier, presymptomatic diagnosis and treatment on seizure semiology and brain electrical activity, we evaluated 71 EEGs in 24 Menkes disease patients who were diagnosed and treated with copper injections in early infancy (≤6 weeks of age), and whose ATP7A mutations we determined. Clinical seizures were observed in only 12.5% (3/24) of these patients, although 46% (11/24) had at least one abnormal EEG tracing, including 50% of patients with large deletions in ATP7A, 50% of those with small deletions, 60% of those with nonsense mutations, and 57% of those with canonical splice junction mutations. In contrast, five patients with mutations shown to retain partial function, either via some correct RNA splicing or residual copper transport capacity, had neither clinical seizures nor EEG abnormalities. Our findings suggest that early diagnosis and treatment improve brain electrical activity and decrease seizure occurrence in classical Menkes disease irrespective of the precise molecular defect. Subjects with ATP7A mutations that retain some function seem particularly well protected by early intervention against the possibility of epilepsy.
Collapse
Affiliation(s)
- Stephen G Kaler
- Unit on Human Copper Metabolism, Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1853, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Kaler SG, Tang J, Donsante A, Kaneski CR. Translational read-through of a nonsense mutation in ATP7A impacts treatment outcome in Menkes disease. Ann Neurol 2009; 65:108-13. [PMID: 19194885 DOI: 10.1002/ana.21576] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Protein translation ends when a stop codon in a gene's messenger RNA transcript enters the ribosomal A site. Mutations that create premature stop codons (nonsense mutations) typically cause premature translation termination. An alternative outcome, read-through translation (or nonsense suppression), is well known in prokaryotic, viral, and yeast genes but has not been clearly documented in humans except in the context of pharmacological manipulations. Here, we identify and characterize native read-through of a nonsense mutation (R201X) in the human copper transport gene, ATP7A. Western blotting, in vitro expression analyses, immunohistochemistry, and yeast complementation assays using cultured fibroblasts from a classic Menkes disease patient all indicated small amounts of native ATP7A(R201X) read-through and were associated with a dramatic clinical response to early copper treatment.
Collapse
Affiliation(s)
- Stephen G Kaler
- Unit on Pediatric Genetics, Program in Molecular Medicine, National Institute of Child Health and Human Development, Bethesda, MD, USA.
| | | | | | | |
Collapse
|
16
|
Tang J, Donsante A, Desai V, Patronas N, Kaler SG. Clinical outcomes in Menkes disease patients with a copper-responsive ATP7A mutation, G727R. Mol Genet Metab 2008; 95:174-81. [PMID: 18752978 PMCID: PMC2654537 DOI: 10.1016/j.ymgme.2008.06.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2007] [Revised: 06/26/2008] [Accepted: 06/26/2008] [Indexed: 11/28/2022]
Abstract
Menkes disease is a fatal neurodegenerative disorder of infancy caused by defects in an X-linked copper transport gene, ATP7A. Evidence from a recent clinical trial indicates that favorable response to early treatment of this disorder with copper injections involves mutations that retain some copper transport capacity. In three unrelated infants, we identified the same mutation, G727R, in the second transmembrane segment of ATP7A that complemented a Saccharomyces cerevisiae copper transport mutant, consistent with partial copper transport activity. Quantitative reverse transcription-polymerase chain reaction studies showed approximately normal levels of ATP7A(G727R) transcript in two patients' fibroblasts compared to wild-type controls, but Western blot analyses showed markedly reduced quantities of ATP7A, suggesting post-translational degradation. We confirmed the latter by comparing degradation rates of mutant and wild-type ATP7A via cyclohexamide treatment of cultured fibroblasts; half-life of the G727R mutant was 2.9h and for the wild-type, 11.4h. We also documented a X-box binding protein 1 splice variant in G727R cells-known to be associated with the cellular misfolded protein response. Patient A, diagnosed 6 months of age, began treatment at 228days (7.6 months) of age. At his current age (2.5 years), his overall neurodevelopment remains at a 2- to 4-month level. In contrast, patient B and patient C were diagnosed in the neonatal period, began treatment within 25 days of age, and show near normal neurodevelopment at their current ages, 3years (patient B), and 7 months (patient C). The poor clinical outcome in patient A with the same missense mutation as patient A and patient B with near normal oucomes, confirms the importance of early medical intervention in Menkes disease and highlights the critical potential benefit of newborn screening for this disorder.
Collapse
Affiliation(s)
- Jingrong Tang
- Unit on Pediatric Genetics, Program in Molecular Medicine, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Anthony Donsante
- Unit on Pediatric Genetics, Program in Molecular Medicine, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Vishal Desai
- Unit on Pediatric Genetics, Program in Molecular Medicine, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Nicholas Patronas
- Imaging Sciences Program, Mark O. Hatfield Clinical Center, National Institutes of Health, Bethesda, MD
| | - Stephen G. Kaler
- Unit on Pediatric Genetics, Program in Molecular Medicine, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
- Correspondent: Stephen G. Kaler, MD, National Institutes of Health, Building 10; Room 5-2571, 10 Center Drive MSC 1832, Bethesda, Maryland 20892-1832, Phone: 301 496-8368; FAX: 301 402-1073, E-mail:
| |
Collapse
|
17
|
Abstract
Copper is a trace element present in all tissues and is required for cellular respiration, peptide amidation, neurotransmitter biosynthesis, pigment formation, and connective tissue strength. Copper is a cofactor for numerous enzymes and plays an important role in central nervous system development; low concentrations of copper may result in incomplete development, whereas excess copper maybe injurious. Copper may be involved in free radical production, via the Haber-Weiss reaction, that results in mitochondrial damage, DNA breakage, and neuronal injury. Evidence of abnormal copper transport and aberrant copper-protein interactions in numerous human neurological disorders supports the critical importance of this trace metal for proper neurodevelopment and neurological function. The biochemical phenotypes of human disorders that involve copper homeostasis suggest possible biomarkers of copper status that may be applicable to general populations.
Collapse
Affiliation(s)
- Vishal Desai
- Unit on Pediatric Genetics, Program in Molecular Medicine, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
18
|
Kaler SG, Holmes CS, Goldstein DS, Tang J, Godwin SC, Donsante A, Liew CJ, Sato S, Patronas N. Neonatal diagnosis and treatment of Menkes disease. N Engl J Med 2008; 358:605-14. [PMID: 18256395 PMCID: PMC3477514 DOI: 10.1056/nejmoa070613] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Menkes disease is a fatal neurodegenerative disorder of infancy caused by diverse mutations in a copper-transport gene, ATP7A. Early treatment with copper injections may prevent death and illness, but presymptomatic detection is hindered by the inadequate sensitivity and specificity of diagnostic tests. Exploiting the deficiency of a copper enzyme, dopamine-beta-hydroxylase, we prospectively evaluated the diagnostic usefulness of plasma neurochemical levels, assessed the clinical effect of early detection, and investigated the molecular bases for treatment outcomes. METHODS Between May 1997 and July 2005, we measured plasma dopamine, norepinephrine, dihydroxyphenylacetic acid, and dihydroxyphenylglycol in 81 infants at risk. In 12 newborns who met the eligibility criteria and began copper-replacement therapy within 22 days after birth, we tracked survival and neurodevelopment longitudinally for 1.5 to 8 years. We characterized ATP7A mutations using yeast complementation, reverse-transcriptase-polymerase-chain-reaction analysis, and immunohistochemical analysis. RESULTS Of 81 infants at risk, 46 had abnormal neurochemical findings indicating low dopamine-beta-hydroxylase activity. On the basis of longitudinal follow-up, patients were classified as affected or unaffected by Menkes disease, and the neurochemical profiles were shown to have high sensitivity and specificity for detecting disease. Among 12 newborns with positive screening tests who were treated early with copper, survival at a median follow-up of 4.6 years was 92%, as compared with 13% at a median follow-up of 1.8 years for a historical control group of 15 late-diagnosis and late-treatment patients. Two of the 12 patients had normal neurodevelopment and brain myelination; 1 of these patients had a mutation that complemented a Saccharomyces cerevisiae copper-transport mutation, indicating partial ATPase activity, and the other had a mutation that allowed some correct ATP7A splicing. CONCLUSIONS Neonatal diagnosis of Menkes disease by plasma neurochemical measurements and early treatment with copper may improve clinical outcomes. Affected newborns who have mutations that do not completely abrogate ATP7A function may be especially responsive to early copper treatment. (ClinicalTrials.gov number, NCT00001262.)
Collapse
Affiliation(s)
- Stephen G. Kaler
- Unit on Pediatric Genetics, Program in Molecular Medicine, National Institute of Child Health and Human Development (S.G.K., J.T., S.C.G., A.D.), the Clinical Neurocardiology Section (C.S.H., D.S.G.), and the Electroencephalography Section (C.J.L., S.S.), National Institute of Neurological Disorders and Stroke, and the Imaging Sciences Program, Mark O. Hatfield Clinical Center (N.P.) — all at the National Institutes of Health, Bethesda, MD. Address reprint requests to Dr. Kaler at the National Institute of Child Health and Human Development, National Institutes of Health, Bldg. 10, Rm. 5-2571, 10 Center Dr., MSC 1832, Bethesda, MD 20892-1832, or at
| | - Courtney S. Holmes
- Unit on Pediatric Genetics, Program in Molecular Medicine, National Institute of Child Health and Human Development (S.G.K., J.T., S.C.G., A.D.), the Clinical Neurocardiology Section (C.S.H., D.S.G.), and the Electroencephalography Section (C.J.L., S.S.), National Institute of Neurological Disorders and Stroke, and the Imaging Sciences Program, Mark O. Hatfield Clinical Center (N.P.) — all at the National Institutes of Health, Bethesda, MD. Address reprint requests to Dr. Kaler at the National Institute of Child Health and Human Development, National Institutes of Health, Bldg. 10, Rm. 5-2571, 10 Center Dr., MSC 1832, Bethesda, MD 20892-1832, or at
| | - David S. Goldstein
- Unit on Pediatric Genetics, Program in Molecular Medicine, National Institute of Child Health and Human Development (S.G.K., J.T., S.C.G., A.D.), the Clinical Neurocardiology Section (C.S.H., D.S.G.), and the Electroencephalography Section (C.J.L., S.S.), National Institute of Neurological Disorders and Stroke, and the Imaging Sciences Program, Mark O. Hatfield Clinical Center (N.P.) — all at the National Institutes of Health, Bethesda, MD. Address reprint requests to Dr. Kaler at the National Institute of Child Health and Human Development, National Institutes of Health, Bldg. 10, Rm. 5-2571, 10 Center Dr., MSC 1832, Bethesda, MD 20892-1832, or at
| | - Jingrong Tang
- Unit on Pediatric Genetics, Program in Molecular Medicine, National Institute of Child Health and Human Development (S.G.K., J.T., S.C.G., A.D.), the Clinical Neurocardiology Section (C.S.H., D.S.G.), and the Electroencephalography Section (C.J.L., S.S.), National Institute of Neurological Disorders and Stroke, and the Imaging Sciences Program, Mark O. Hatfield Clinical Center (N.P.) — all at the National Institutes of Health, Bethesda, MD. Address reprint requests to Dr. Kaler at the National Institute of Child Health and Human Development, National Institutes of Health, Bldg. 10, Rm. 5-2571, 10 Center Dr., MSC 1832, Bethesda, MD 20892-1832, or at
| | - Sarah C. Godwin
- Unit on Pediatric Genetics, Program in Molecular Medicine, National Institute of Child Health and Human Development (S.G.K., J.T., S.C.G., A.D.), the Clinical Neurocardiology Section (C.S.H., D.S.G.), and the Electroencephalography Section (C.J.L., S.S.), National Institute of Neurological Disorders and Stroke, and the Imaging Sciences Program, Mark O. Hatfield Clinical Center (N.P.) — all at the National Institutes of Health, Bethesda, MD. Address reprint requests to Dr. Kaler at the National Institute of Child Health and Human Development, National Institutes of Health, Bldg. 10, Rm. 5-2571, 10 Center Dr., MSC 1832, Bethesda, MD 20892-1832, or at
| | - Anthony Donsante
- Unit on Pediatric Genetics, Program in Molecular Medicine, National Institute of Child Health and Human Development (S.G.K., J.T., S.C.G., A.D.), the Clinical Neurocardiology Section (C.S.H., D.S.G.), and the Electroencephalography Section (C.J.L., S.S.), National Institute of Neurological Disorders and Stroke, and the Imaging Sciences Program, Mark O. Hatfield Clinical Center (N.P.) — all at the National Institutes of Health, Bethesda, MD. Address reprint requests to Dr. Kaler at the National Institute of Child Health and Human Development, National Institutes of Health, Bldg. 10, Rm. 5-2571, 10 Center Dr., MSC 1832, Bethesda, MD 20892-1832, or at
| | - Clarissa J. Liew
- Unit on Pediatric Genetics, Program in Molecular Medicine, National Institute of Child Health and Human Development (S.G.K., J.T., S.C.G., A.D.), the Clinical Neurocardiology Section (C.S.H., D.S.G.), and the Electroencephalography Section (C.J.L., S.S.), National Institute of Neurological Disorders and Stroke, and the Imaging Sciences Program, Mark O. Hatfield Clinical Center (N.P.) — all at the National Institutes of Health, Bethesda, MD. Address reprint requests to Dr. Kaler at the National Institute of Child Health and Human Development, National Institutes of Health, Bldg. 10, Rm. 5-2571, 10 Center Dr., MSC 1832, Bethesda, MD 20892-1832, or at
| | - Susumu Sato
- Unit on Pediatric Genetics, Program in Molecular Medicine, National Institute of Child Health and Human Development (S.G.K., J.T., S.C.G., A.D.), the Clinical Neurocardiology Section (C.S.H., D.S.G.), and the Electroencephalography Section (C.J.L., S.S.), National Institute of Neurological Disorders and Stroke, and the Imaging Sciences Program, Mark O. Hatfield Clinical Center (N.P.) — all at the National Institutes of Health, Bethesda, MD. Address reprint requests to Dr. Kaler at the National Institute of Child Health and Human Development, National Institutes of Health, Bldg. 10, Rm. 5-2571, 10 Center Dr., MSC 1832, Bethesda, MD 20892-1832, or at
| | - Nicholas Patronas
- Unit on Pediatric Genetics, Program in Molecular Medicine, National Institute of Child Health and Human Development (S.G.K., J.T., S.C.G., A.D.), the Clinical Neurocardiology Section (C.S.H., D.S.G.), and the Electroencephalography Section (C.J.L., S.S.), National Institute of Neurological Disorders and Stroke, and the Imaging Sciences Program, Mark O. Hatfield Clinical Center (N.P.) — all at the National Institutes of Health, Bethesda, MD. Address reprint requests to Dr. Kaler at the National Institute of Child Health and Human Development, National Institutes of Health, Bldg. 10, Rm. 5-2571, 10 Center Dr., MSC 1832, Bethesda, MD 20892-1832, or at
| |
Collapse
|
19
|
Graf WD. Cerebral dysgeneses secondary to metabolic disorders in fetal life. HANDBOOK OF CLINICAL NEUROLOGY 2008; 87:459-476. [PMID: 18809039 DOI: 10.1016/s0072-9752(07)87025-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- William D Graf
- Section of Neurology, Children's Mercy Hospitals and Clinics and University of Missouri, 2401 Gillham Road, Kansas City, MO 64108, USA.
| |
Collapse
|
20
|
Tang J, Robertson S, Lem KE, Godwin SC, Kaler SG. Functional copper transport explains neurologic sparing in occipital horn syndrome. Genet Med 2007; 8:711-8. [PMID: 17108763 DOI: 10.1097/01.gim.0000245578.94312.1e] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE A range of neurologic morbidity characterizes childhood-onset copper transport defects, including severe Menkes disease and milder occipital horn syndrome. Both phenotypes are caused by mutations in ATP7A, which encodes a copper-transporting adenosine triphosphatase, although defects causing occipital horn syndrome are rarely reported and nearly always involve exon-skipping (six of eight prior reports). Our objective was to characterize a novel occipital horn syndrome mutation (N1304S) not associated with aberrant splicing and to determine whether functional copper transport was associated with this allele. METHODS We studied two brothers with typical occipital horn syndrome and used yeast complementation and timed growth assays, exploiting a Saccharomyces cerevisiae mutant strain, to assess in vitro N1304S copper transport. RESULTS We documented that N1304S has approximately 33% residual copper transport, a result not inconsistent with a similar patient we reported with an exon-skipping mutation whose cells showed correctly spliced mRNA transcripts 36% of normal. CONCLUSION These patients' mild neurologic phenotypes, together with our yeast complementation and growth experiments, imply that N1304S does not completely block copper transport to the developing brain early in life. The findings suggest that neurologic sparing in untreated occipital horn syndrome is associated with approximately 30% residual functional activity of ATP7A.
Collapse
Affiliation(s)
- Jingrong Tang
- Unit on Pediatric Genetics, Laboratory of Clinical Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-1832, USA
| | | | | | | | | |
Collapse
|
21
|
Sheela SR, Latha M, Liu P, Lem K, Kaler SG. Copper-replacement treatment for symptomatic Menkes disease: ethical considerations. Clin Genet 2005; 68:278-83. [PMID: 16098018 DOI: 10.1111/j.1399-0004.2005.00496.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe a child with classical Menkes disease with a novel ATP7A mutation, intractable seizures, severe hypotonia and developmental delay, hypopigmentation of the skin and hair, and failure to thrive, who was treated with daily subcutaneous copper histidine injections for 2(1/2) years, beginning at 15 months of age. He became seizure-free and pigmentation of his skin and hair darkened, but he continued to have severe developmental delays. His condition remains stable 8 months after stopping treatment. We review the ethical aspects of offering copper treatment for Menkes disease infants diagnosed after neurological symptoms become manifest. These include (1) the prospect for any benefits, (2) the potential risks and discomforts, (3) the parents' wishes with respect to treatment, (4) the family's understanding of the treatment's potential futility, (5) the family's understanding of the investigational nature of this treatment, (6) the potential for treatment to have an adverse impact on unaffected family members, (7) whether the ultimate decision regarding treatment should rest with health care providers or with the patient's parents, and (8) the duration of treatment. The ethical issues encountered in providing possibly futile treatment in this difficult disorder seem relevant to other pediatric medical conditions as well.
Collapse
Affiliation(s)
- S R Sheela
- Indira Gandhi Co-operative Hospital, Kadavanthra, Cochin, Kerala, India
| | | | | | | | | |
Collapse
|
22
|
Liu PC, Chen YW, Centeno JA, Quezado M, Lem K, Kaler SG. Downregulation of myelination, energy, and translational genes in Menkes disease brain. Mol Genet Metab 2005; 85:291-300. [PMID: 15923132 DOI: 10.1016/j.ymgme.2005.04.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Revised: 04/02/2005] [Accepted: 04/07/2005] [Indexed: 11/18/2022]
Abstract
Menkes disease (MD) is an X-linked recessive neurodegenerative disorder caused by mutations in a copper-transporting p-type ATPase (ATP7A) that normally delivers copper to the central nervous system. The precise reasons for neurodegeneration in MD are poorly understood. We hypothesized that gene expression changes in a MD patient with a lethal ATP7A mutation would indicate pathophysiological cascades relevant to the effects of copper deficiency in the developing brain. To test this hypothesis, oligonucleotide probes for 12,000 genes arrayed on Affymetrix Human Genome U95 GeneChips were used for expression profiling of fluorescently labeled primary cRNAs from post-mortem cerebral cortex and cerebellum of a MD patient who died at 6 months of age and a normal control brain matched for age, gender, and race. Histopathologic analysis of the proband's brain showed preservation of neuronal integrity and no hypoxic effects. However, cerebrospinal fluid and brain copper levels were subnormal, and expression profiling identified over 350 known dysregulated genes. For a subset of genes (approximately 12%) analyzed by quantitative RT-PCR, the correct cross-validation rate was 88%. Thirty known genes were altered in both cortex and cerebellum. Downregulation of genes involved in myelination, energy metabolism, and translation was the major finding. The cerebellum was more sensitive to copper deficiency.
Collapse
Affiliation(s)
- Po-Ching Liu
- Unit on Pediatric Genetics, Laboratory of Clinical Genomics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1834, USA
| | | | | | | | | | | |
Collapse
|
23
|
Tümer Z, Birk Møller L, Horn N. Screening of 383 unrelated patients affected with Menkes disease and finding of 57 gross deletions inATP7A. Hum Mutat 2003; 22:457-64. [PMID: 14635105 DOI: 10.1002/humu.10287] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Menkes disease (MD) is an X-linked multisystemic lethal disorder of copper metabolism dominated by neurodegenerative symptoms and connective tissue disturbances. MD results from mutations in the ATP7A gene, which encodes a membrane-bound copper transporting P-type ATPase located in the trans-Golgi network. In this study we describe screening of 383 unrelated patients affected with Menkes disease for gross deletions in ATP7A gene and finding of 57 patients. The present data suggests that gross deletion of ATP7A is the disease-causing mutation in 14.9% of the Menkes disease patients. Except for a few cases, gross gene deletions result in the classical form of Menkes disease with death in early childhood.
Collapse
Affiliation(s)
- Zeynep Tümer
- Wilhelm Johannsen Center for Functional Genome Research, Department of Medical Genetics, IMBG, The Panum Institute, University of Copenhagen, Denmark.
| | | | | |
Collapse
|
24
|
Liu PC, Koeller DM, Kaler SG. Genomic organization of ATOX1, a human copper chaperone. BMC Genet 2003; 4:4. [PMID: 12594858 PMCID: PMC150598 DOI: 10.1186/1471-2156-4-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2002] [Accepted: 02/05/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Copper is an essential trace element that plays a critical role in the survival of all living organisms. Menkes disease and occipital horn syndrome (OHS) are allelic disorders of copper transport caused by defects in a X-linked gene (ATP7A) that encodes a P-type ATPase that transports copper across cellular membranes, including the trans-Golgi network. Genetic studies in yeast recently revealed a new family of cytoplasmic proteins called copper chaperones which bind copper ions and deliver them to specific cellular pathways. Biochemical studies of the human homolog of one copper chaperone, ATOX1, indicate direct interaction with the Menkes/OHS protein. Although no disease-associated mutations have been reported in ATOX1, mice with disruption of the ATOX1 locus demonstrate perinatal mortality similar to that observed in the brindled mice (Mobr), a mouse model of Menkes disease. The cDNA sequence for ATOX1 is known, and the genomic organization has not been reported. RESULTS We determined the genomic structure of ATOX1. The gene contains 4 exons spanning a genomic distance of approximately 16 kb. The translation start codon is located in the 3' end of exon 1 and the termination codon in exon 3. We developed a PCR-based assay to amplify the coding regions and splice junctions from genomic DNA. We screened for ATOX1 mutations in two patients with classical Menkes disease phenotypes and one individual with occipital horn syndrome who had no alterations detected in ATP7A, as well as an adult female with chronic anemia, low serum copper and evidence of mild dopamine-beta-hydroxylase deficiency and no alterations in the ATOX1 coding or splice junction sequences were found. CONCLUSIONS In this study, we characterized the genomic structure of the human copper chaperone ATOX1 to facilitate screening of this gene from genomic DNA in patients whose clinical or biochemical phenotypes suggest impaired copper transport.
Collapse
Affiliation(s)
- Po-Ching Liu
- Unit on Pediatric Genetics, Laboratory of Clinical Genomics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - David M Koeller
- Department of Pediatrics, Oregon Health Sciences University, Portland, OR, USA
| | - Stephen G Kaler
- Unit on Pediatric Genetics, Laboratory of Clinical Genomics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|