1
|
Anisimov VN, Popovich IG, Zabezhinski MA, Egormin PA, Yurova MN, Semenchenko AV, Tyndyk ML, Panchenko AV, Trashkov AP, Vasiliev AG, Khaitsev NV. Sex differences in aging, life span and spontaneous tumorigenesis in 129/Sv mice neonatally exposed to metformin. Cell Cycle 2015; 14:46-55. [PMID: 25483062 DOI: 10.4161/15384101.2014.973308] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The perinatal (prenatal and early neonatal) period is a critical stage for hypothalamic programming of sexual differentiation as well as for the development of energy and metabolic homeostasis. We hypothesized that neonatal treatment with antidiabetic drug biguanide metformin would positively modify regulation of growth hormone--IGF-1--insulin signaling pathway slowing down aging and improving cancer preventive patterns in rodents. To test this hypothesis male and female 129/Sv mice were s.c. injected with metformin (100 mg/kg) at the 3rd, 5th and 7th days after birth. Metformin-treated males consumed less food and water and their body weight was decreased as compared with control mice practically over their entire lifespan. There were no significant differences in age-related dynamics of food and water consumption in females and they were heavier than controls. The fraction of mice with regular estrous cycles decreased with age and demonstrated a tendency to decrease in the females neonatally treated with metformin. Neonatal exposure to metformin practically failed to change the extent of hormonal and metabolic parameters in blood serum of male and female mice. In males, neonatal metformin treatment significantly increased the mean life span (+20%, P < 0.05) and slightly increased the maximum life span (+3.5%). In females, the mean life span and median in metformin-treated groups were slightly decreased (-9.1% and -13.8% respectively, P > 0.05) in comparison to controls, whereas mean life span of last 10% survivors and maximum life span were the same as in controls. Almost half (45%) of control male mice and 71.8% male mice neonatally exposed to metformin survived up to 800 d of age, the same age was achieved by 54.3% of mice in control female group and 30% of metformin-treated females (P < 0.03). Thus, neonatal metformin exposure slows down aging and prolongs lifespan in male but not in female mice.
Collapse
|
2
|
Anisimov VN, Piskunova TS, Popovich IG, Zabezhinski MA, Tyndyk ML, Egormin PA, Yurova MV, Rosenfeld SV, Semenchenko AV, Kovalenko IG, Poroshina TE, Berstein LM. Gender differences in metformin effect on aging, life span and spontaneous tumorigenesis in 129/Sv mice. Aging (Albany NY) 2011; 2:945-58. [PMID: 21164223 PMCID: PMC3034183 DOI: 10.18632/aging.100245] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Studies in mammals have led to the suggestion that hyperglycemia and hyperinsulinemia are important factors both in aging and in the development of cancer. It is possible that the life-prolonging effects of calorie restriction are due to decreasing IGF-1 levels. A search of pharmacological modulators of insulin/IGF-1 signaling pathway (which mimetic effects of life span extending mutations or calorie restriction) could be a perspective direction in regulation of longevity. Antidiabetic biguanides are most promising among them. The chronic treatment of inbred 129/Sv mice with metformin (100 mg/kg in drinking water) slightly modified the food consumption but failed to influence the dynamics of body weight, decreased by 13.4% the mean life span of male mice and slightly increased the mean life span of female mice (by 4.4%). The treatment with metformin failed influence spontaneous tumor incidence in male 129/Sv mice, decreased by 3.5 times the incidence of malignant neoplasms in female mice while somewhat stimulated formation of benign vascular tumors in the latter.
Collapse
Affiliation(s)
- Vladimir N Anisimov
- N.N.Petrov Research Institute of Oncology, Pesochny-2, St.Petersburg 197758, Russia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Ingram DK, Roth GS. Glycolytic inhibition as a strategy for developing calorie restriction mimetics. Exp Gerontol 2010; 46:148-54. [PMID: 21167272 DOI: 10.1016/j.exger.2010.12.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 12/06/2010] [Accepted: 12/07/2010] [Indexed: 10/18/2022]
Abstract
Calorie restriction (CR) remains the most robust environmental intervention for altering aging processes and increasing healthspan and lifespan. Emerging from progress made in many nonhuman models, current research has expanded to formal, controlled human studies of CR. Since long-term CR requires a major commitment of will power and long-term negative consequences remain to be determined, the concept of a calorie restriction mimetic (CRM) has become a new area of investigation within gerontology. We have proposed that a CRM is a compound that mimics metabolic, hormonal, and physiological effects of CR, activates stress response pathways observed in CR and enhances stress protection, produces CR-like effects on longevity, reduces age-related disease, and maintains more youthful function, all without significantly reducing food intake. Over 12 years ago, we introduced the concept of glycolytic inhibition as a strategy for developing mimetics of CR. We have argued that inhibiting energy utilization as far upstream as possible might offer a broader range of CR-like effects as opposed to targeting a singular molecular target downstream. As the first candidate CRM, 2-deoxyglucose, a known anti-glycolytic, provided a remarkable phenotype of CR, but turned out to produce cardiotoxicity in rats. Since the introduction of 2DG as a candidate CRM, many different targets for development have now been proposed at more downstream sites, including insulin receptor sensitizers, sirtuin activators, and inhibitors of mTOR. This review discusses these various strategies to assess their current status and future potential for this emerging research field.
Collapse
Affiliation(s)
- Donald K Ingram
- Pennington Biomedical Research Center, LSU System, Baton Rouge, LA 70809, USA.
| | | |
Collapse
|
4
|
Mittal PC, Kant R. Correlation of increased oxidative stress to body weight in disease-free post menopausal women. Clin Biochem 2009; 42:1007-11. [PMID: 19341720 DOI: 10.1016/j.clinbiochem.2009.03.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Revised: 03/07/2009] [Accepted: 03/13/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVES Oxidative stress increases postmenopausally, an effect attributed to aging. Increase in body weight generally accompanies menopause. Obesity per se also seems to increase oxidative stress. The question is whether postmenopausal increase in oxidative stress is related to body weight, or is only a function of age. DESIGN AND METHODS Age, body weight, and superoxide dismutase (SOD), catalase (CAT) and malonyldialdehyde (MDA) in erythrocytes of a cross-section of 90 disease-free women aged 25-65 years, divided into three groups of n=30 each of normally menstruating Controls (C), perimenopausal (periM) and postmenopausal women (postM) were recorded. RESULTS PostM had the highest oxidative stress and body weight. SOD, CAT and MDA correlated significantly with body weight (-0.74, 0.64 and 0.69 respectively). The odds of having a lower SOD (OR9.5, 95% CI:2.9-30.8) and higher CAT (OR6.2, 95% CI:1.6-23.0) and MDA (OR6.8, 95% CI:2.7-16.8) for weight >60 kg was highly significant. CONCLUSIONS Oxidative stress is enhanced as body weight increases.
Collapse
Affiliation(s)
- Poonam C Mittal
- Biochemistry Department, University of Allahabad, Allahabad, India.
| | | |
Collapse
|
5
|
Relationships between cancer and aging: a multilevel approach. Biogerontology 2009; 10:323-38. [PMID: 19156531 DOI: 10.1007/s10522-008-9209-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 12/16/2008] [Indexed: 01/25/2023]
Abstract
The incidence of cancer increases with age in humans and in laboratory animals alike. There are different patterns of age-related distribution of tumors in different organs and tissues. Aging may increase or decrease the susceptibility of various tissues to initiation of carcinogenesis and usually facilitates promotion and progression of carcinogenesis. Aging may predispose to cancer in two ways: tissue accumulation of cells in late stages of carcinogenesis and alterations in internal homeostasis, in particular, alterations in immune and endocrine systems. Increased susceptibility to the effects of tumor promoters is found both in aged animals and aged humans, as predicted by the multistage model of carcinogenesis. Aging is associated with a number of events at the molecular, cellular and physiological levels that influence carcinogenesis and subsequent cancer growth. An improved understanding of age-associated variables impacting on the tumor microenvironment, as well as the cancer cells themselves, will result in improved treatment modalities in geriatric oncology.
Collapse
|
6
|
Popovich IG, Zabezhinski MA, Egormin PA, Tyndyk ML, Anikin IV, Spasov AA, Semenchenko AV, Yashin AI, Anisimov VN. Insulin in aging and cancer: antidiabetic drug Diabenol as geroprotector and anticarcinogen. Int J Biochem Cell Biol 2005; 37:1117-29. [PMID: 15743682 DOI: 10.1016/j.biocel.2004.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Revised: 07/20/2004] [Accepted: 08/04/2004] [Indexed: 11/30/2022]
Abstract
The effects of new antidiabetic drug Diabenol (9-beta-diethylaminoethyl-2,3-dihydroimidazo-(1,2-alpha)benzimidazol dihydrochloride) on life span and spontaneous tumor incidence in NMRI and transgenic HER-2/neu mice as well as on colon carcinogenesis induced by 1,2-dimethylhydrazine in rats are studied. It is shown that treatment with the drug failed influence body weight gain dynamics, food and water consumption and the body temperature, slowed down age-related disturbances in estrous function and increased life span of all and 10% most long-living NMRI mice. The treatment with Diabenol inhibited spontaneous tumor incidence and increased the mammary tumor latency in these mice. Diabenol treatment slowed down age-related changes in estrous function in HER-2/neu mice, failed influence survival of these mice and slightly inhibited the incidence and decreased the size of mammary adenocarcinoma metastases into the lung. In rats exposed to 1,2-dimethylhydrazine, treatment with Diabenol significantly inhibited multiplicity of all colon tumors, decreased by 2.2 times the incidence of carcinomas in ascending colon and by 3.1 times their multiplicity. Treatment with Diabenol was followed by higher incidence of exophytic and well-differentiated colon tumors as compared with the control rats exposed to the carcinogen alone (76.3% and 50%, and 47.4% and 14.7%, respectively). Thus, the drug increases survival and inhibits spontaneous carcinogenesis in mice and inhibits colon carcinogenesis in rats.
Collapse
Affiliation(s)
- Irina G Popovich
- Department of Carcinogenesis and Oncogerontology, N.N. Petrov Research Institute of Oncology, St. Petersburg 197758, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Anisimov VN, Berstein LM, Egormin PA, Piskunova TS, Popovich IG, Zabezhinski MA, Kovalenko IG, Poroshina TE, Semenchenko AV, Provinciali M, Re F, Franceschi C. Effect of metformin on life span and on the development of spontaneous mammary tumors in HER-2/neu transgenic mice. Exp Gerontol 2005; 40:685-93. [PMID: 16125352 DOI: 10.1016/j.exger.2005.07.007] [Citation(s) in RCA: 292] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Revised: 06/21/2005] [Accepted: 07/04/2005] [Indexed: 12/19/2022]
Abstract
Studies in mammals have led to the suggestion that hyperglycemia and hyperinsulinemia are important factors both in aging and in the development of cancer. Insulin/insulin-like growth factor 1 (IGF-1) signaling molecules that have been linked to longevity include DAF-2 and InR and their homologues in mammals, and inactivation of the corresponding genes is followed by increased life span in nematodes, fruit flies and mice. It is possible that the life-prolonging effects of calorie restriction are due to decreasing IGF-1 levels. A search of pharmacological modulators of insulin/IGF-1 signaling pathway (which mimetic effects of life span extending mutations or calorie restriction) could be a perspective direction in regulation of longevity. The chronic treatment of female transgenic HER-2/neu mice with metformin (100 mg/kg in drinking water) slightly decreased the food consumption but failed in reducing the body weight or temperature, slowed down the age-related rise in blood glucose and triglycerides level, as well as the age-related switch-off of estrous function, prolonged the mean life span by 8% (p < 0.05), the mean life span of last 10% survivors by 13.1%, and the maximum life span by 1 month in comparison with control mice. The demographic aging rate represented by the estimate of respective Gompertz's parameter was decreased 2.26 times. The metformin-treatment significantly decreased the incidence and size of mammary adenocarcinomas in mice and increased the mean latency of the tumors.
Collapse
Affiliation(s)
- Vladimir N Anisimov
- Department of Carcinogenesis and Oncogerontology, N.N.Petrov Research Institute of Oncology, Pesochny-2, St Petersburg 197758, Russian Federation.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Anisimov VN, Ukraintseva SV, Anikin IV, Popovich IG, Zabezhinski MA, Bertsein LM, Arutjunyan AV, Ingram DK, Lane MA, Roth GS. Effects of Phentermine and Phenformin on Biomarkers of Aging in Rats. Gerontology 2004; 51:19-28. [PMID: 15591752 DOI: 10.1159/000081430] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2003] [Accepted: 02/24/2004] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Caloric restriction (CR) is the only treatment known to substantially prolong both average and maximal life span in experimental animals. Interventions that mimic certain effects of CR could be potential anti-aging treatments in humans. Drugs which reduce appetite (anorexiants) represent one class of candidate treatments. Agents that reduce the glucose utilization by the organism could also represent another class of candidate CR mimetics. OBJECTIVE In our study, we addressed the following questions: (1) Does treatment with an anorexiant reduce caloric intake and body weight of experimental animals comparable to that caused by CR? (2) Does treatment with an antidiabetic agent influence caloric intake and body weight? (3) Does treatment with any of these drugs affect metabolic parameters of an organism in the way similar to that observed with CR? METHODS One hundred and twenty 6-month-old female Wistar-derived LIO rats were randomly subdivided into four groups and exposed to: (1) ad libitum feeding with placebo (controls); (2) the antidiabetic drug phenformin (2 mg/kg); (3) the anorectic drug phentermine (1 mg/kg), and (4) the same amount of food as the group with the least food intake during the previous week (pair-fed controls). Food and water intake, body weight, and rectal temperature were measured weekly during 16 weeks. At the end of the 16th week of the experiment, serum levels of glucose, total beta-lipoprotein and pre-beta-lipoprotein fractions, cholesterol, triglycerides, insulin, total triiodothyronine, and free thyroxine were estimated. The contents of diene conjugates and Schiff's bases, total antioxidant activity, the activities of Cu/Zn superoxide dismutase, glutathione S-transferase, and glutathione peroxidase, and the generation of reactive oxygen species (ROS) were studied in brain and liver homogenates and in the serum. RESULTS The controls exposed to pair feeding had a significantly reduced food consumption (about 20%) as compared with the ad libitum fed controls and thus exhibited a moderate CR. Treatment with phentermine reduced the caloric intake by about 12% as compared with the ad libitum fed controls. Body weight and water intake in this group were only slightly decreased (by about 2 and 5%, respectively) as compared with the controls. The mean rectal temperature in the phentermine group (38 degrees C) was significantly higher than in the ad libitum fed (37.8 degrees C) and pair-fed (37.6 degrees C) controls. Treatment with phentermine also resulted in significantly reduced ROS levels in all tissues studied, while the highest ROS production was found in ad libitum (blood serum) and pair-fed (brain) controls. Treatment with phenformin did not significantly influence food and water consumption, body weight, and temperature when compared with the ad libitum fed controls. Rats treated with this antidiabetic drug showed intermediate values of ROS generation. Differences among the groups in total antioxidant activity were not obvious. CONCLUSIONS Treatment with phentermine reduces caloric intake slightly less than is commonly observed in CR studies. CR due to forcibly reduced feeding and CR due to substance-suppressed appetite appear to act through different metabolic mechanisms and thus may affect aging and longevity in different ways.
Collapse
Affiliation(s)
- Vladimir N Anisimov
- N.N. Petrov Research Institute of Oncology, D.O. Ott Research Institute of Obstetrics and Gynecology, St. Petersburg, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ingram DK, Anson RM, de Cabo R, Mamczarz J, Zhu M, Mattison J, Lane MA, Roth GS. Development of Calorie Restriction Mimetics as a Prolongevity Strategy. Ann N Y Acad Sci 2004; 1019:412-23. [PMID: 15247056 DOI: 10.1196/annals.1297.074] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
By applying calorie restriction (CR) at 30-50% below ad libitum levels, studies in numerous species have reported increased life span, reduced incidence and delayed onset of age-related diseases, improved stress resistance, and decelerated functional decline. Whether this nutritional intervention is relevant to human aging remains to be determined; however, evidence emerging from CR studies in nonhuman primates suggests that response to CR in primates parallels that observed in rodents. To evaluate CR effects in humans, clinical trials have been initiated. Even if evidence could substantiate CR as an effective antiaging strategy for humans, application of this intervention would be problematic due to the degree and length of restriction required. To meet this challenge for potential application of CR, new research to create "caloric restriction mimetics" has emerged. This strategy focuses on identifying compounds that mimic CR effects by targeting metabolic and stress response pathways affected by CR, but without actually restricting caloric intake. Microarray studies show that gene expression profiles of key enzymes in glucose (energy) handling pathways are modified by CR. Drugs that inhibit glycolysis (2-deoxyglucose) or enhance insulin action (metformin) are being assessed as CR mimetics. Promising results have emerged from initial studies regarding physiological responses indicative of CR (reduced body temperature and plasma insulin) as well as protection against neurotoxicity, enhanced dopamine action, and upregulated brain-derived neurotrophic factor. Further life span analyses in addition to expanded toxicity studies must be completed to assess the potential of any CR mimetic, but this strategy now appears to offer a very promising and expanding research field.
Collapse
Affiliation(s)
- Donald K Ingram
- Laboratory of Experimental Gerontology, Gerontology Research Center, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
de Grey ADNJ. An engineer's approach to the development of real anti-aging medicine. SCIENCE OF AGING KNOWLEDGE ENVIRONMENT : SAGE KE 2003; 2003:VP1. [PMID: 12844502 DOI: 10.1126/sageke.2003.1.vp1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In this Viewpoint, I list the various age-related molecular and cellular changes that are thought to limit mammalian life-span, and I outline a problem-solving approach to reversing these detrimental changes. This approach should help to prevent the development of these age-related changes into life-threatening pathologies and possibly, in due course, allow a large increase in healthy human life expectancy.
Collapse
Affiliation(s)
- Aubrey D N J de Grey
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK.
| |
Collapse
|
11
|
de Grey ADNJ, Baynes JW, Berd D, Heward CB, Pawelec G, Stock G. Is human aging still mysterious enough to be left only to scientists? Bioessays 2002; 24:667-76. [PMID: 12111727 DOI: 10.1002/bies.10113] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The feasibility of reversing human aging within a matter of decades has traditionally been dismissed by all professional biogerontologists, on the grounds that not only is aging still poorly understood, but also many of those aspects that we do understand are not reversible by any current or foreseeable therapeutic regimen. This broad consensus has recently been challenged by the publication, by five respected experimentalists in diverse subfields of biogerontology together with three of the present authors, of an article (Ann NY Acad Sci 959, 452-462) whose conclusion was that all the key components of mammalian aging are indeed amenable to substantial reversal (not merely retardation) in mice, with technology that has a reasonable prospect of being developed within about a decade. Translation of that panel of interventions to humans who are already alive, within a few decades thereafter, was deemed potentially feasible (though it was not claimed to be likely). If the prospect of controlling human aging within the foreseeable future cannot be categorically rejected, then it becomes a matter of personal significance to most people presently alive. Consequently, we suggest that serious public debate on this subject is now warranted, and we survey here several of the biological, social and political issues relating to it.
Collapse
Affiliation(s)
- Aubrey D N J de Grey
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK.
| | | | | | | | | | | |
Collapse
|