1
|
PFM-Like Enzymes Are a Novel Family of Subclass B2 Metallo-β-Lactamases from Pseudomonas synxantha Belonging to the Pseudomonas fluorescens Complex. Antimicrob Agents Chemother 2020; 64:AAC.01700-19. [PMID: 31685461 DOI: 10.1128/aac.01700-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/25/2019] [Indexed: 12/15/2022] Open
Abstract
A carbapenem-resistant Pseudomonas synxantha isolate recovered from chicken meat produced the novel carbapenemase PFM-1. That subclass B2 metallo-β-lactamase shared 71% amino acid identity with β-lactamase Sfh-1 from Serratia fonticola The bla PFM-1 gene was chromosomally located and likely acquired. Variants of PFM-1 sharing 90% to 92% amino acid identity were identified in bacterial species belonging to the Pseudomonas fluorescens complex, including Pseudomonas libanensis (PFM-2) and Pseudomonas fluorescens (PFM-3), highlighting that these species constitute reservoirs of PFM-like encoding genes.
Collapse
|
2
|
Janakiev T, Dimkić I, Unković N, Ljaljević Grbić M, Opsenica D, Gašić U, Stanković S, Berić T. Phyllosphere Fungal Communities of Plum and Antifungal Activity of Indigenous Phenazine-Producing Pseudomonas synxantha Against Monilinia laxa. Front Microbiol 2019; 10:2287. [PMID: 31632384 PMCID: PMC6779809 DOI: 10.3389/fmicb.2019.02287] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/19/2019] [Indexed: 12/21/2022] Open
Abstract
European plum (Prunus domestica L.) is a significant commercial crop in Serbia in terms of total fruit production, and is traditionally processed into slivovitz brandy. The brown rot disease caused by Monilinia laxa drastically reduces plum yield almost every year. Fungal communities associated with leaves and fruits of four local Serbian plum cultivars (Požegača, Ranka, Čačanska Lepotica and Čačanska Rodna) were investigated in two phenological stages during early (May) and late (July) fruit maturation. Alpha diversity indices showed that fungal communities were heterogeneous and Beta diversity indicated that autochthonous fungal communities depended upon seasonal changes and the cultivars themselves. The phylum Ascomycota was the most abundant in all samples, with relative abundance (RA) between 46% in the Požegača cultivar (May) and 89% in the Lepotica cultivar (July). The most abundant genus for all plum cultivars in May was Aureobasidium, with RA from 19.27 to 33.69%, followed by Cryptococcus, with 4.8 to 48.80%. In July, besides Cryptococcus, different genera (Metschnikowia, Fusarium, and Hanseniaspora) were dominant on particular cultivars. Among all cultivable fungi, molecular identification of eleven M. laxa isolates from four plum cultivars was performed simultaneously. Bacterial isolates from the plum phyllosphere were tested for their potential antifungal activity against indigenous M. laxa isolates. The most potent antagonist P4/16_1, which significantly reduced mycelial growth of M. laxa, was identified as Pseudomonas synxantha. Further characterization of P4/16_1 revealed the production of volatile organic compounds and phenazine-1-carboxylic acid (PCA). Crude benzene extract of PCA exhibited 57-63% mycelial growth inhibition of M. laxa. LC/MS analysis of the crude extract confirmed the presence of phenazine derivatives amongst other compounds. Scanning electron microscopy revealed morpho-physiological changes in the hyphae of M. laxa isolates caused by the cell culture and the P. synxantha P4/16_1 crude benzene extract. This is the first report of antagonistic activity of P. synxantha against M. laxa induced by diffusible and volatile antifungal compounds, and it appears to be a promising candidate for further investigation for potential use as a biocontrol agent against brown rot-causing fungi.
Collapse
Affiliation(s)
- Tamara Janakiev
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Ivica Dimkić
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Nikola Unković
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | | | - Dejan Opsenica
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Uroš Gašić
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | | | - Tanja Berić
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Mukherjee K, Mandal S, Mukhopadhyay B, Mandal NC, Sil AK. Bioactive compound from Pseudomonas synxantha inhibits the growth of Mycobacteria. Microbiol Res 2013; 169:794-802. [PMID: 24439826 DOI: 10.1016/j.micres.2013.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 12/06/2013] [Accepted: 12/10/2013] [Indexed: 11/17/2022]
Abstract
Tuberculosis is a dreaded disease and the current situation demands new anti-tubercular agent(s) for the management of public health. Towards this direction, we obtained a contaminant organism on a Mycobacterium smegmatis lawn having growth inhibitory activity against the later. In the current study, efforts were targeted to identify this organism and characterize the bioactive compound from this isolate that inhibited the growth of Mycobacteria. The result revealed that the organism is a strain of Pseudomonas synxantha. Biophysical analyses including (1)H and (13)C NMR, ESI-mass spectroscopy, FTIR showed that the bioactive compound is a long chain aliphatic hydrocarbon with a terminal alyl bond and intermediate electronegative atom. The compound exhibited strong growth inhibitory activities against M. smegmatis and Mycobacterium tuberculosis strains H37Ra, H37Rv and BCG. Further experiments showed that both P. synxantha and its secretory metabolites are capable of inducing hemolysis of human blood. Thus the results of this study clearly indicate that the bioactive compound produced by P. Synxantha has biosurfactant activities as well as anti-myco-bacterial properties.
Collapse
Affiliation(s)
- Koushik Mukherjee
- Department of Microbiology, University of Calcutta, 35, BC Road, Kolkata 700019, India
| | - Santanu Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata (IISER-K), Mohanpur Campus, Mohanpur Nadia-741252, India
| | - Balaram Mukhopadhyay
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata (IISER-K), Mohanpur Campus, Mohanpur Nadia-741252, India
| | - Nitai Chandra Mandal
- Department of Biochemistry, Bose Institute, P 1/12, C.I.T. Road, Scheme, VIIM, Kolkata 700054, West Bengal, India
| | - Alok Kumar Sil
- Department of Microbiology, University of Calcutta, 35, BC Road, Kolkata 700019, India.
| |
Collapse
|
4
|
Rieder G, Krisch L, Fischer H, Kaufmann M, Maringer A, Wessler S. Carnobacterium divergens - a dominating bacterium of pork meat juice. FEMS Microbiol Lett 2012; 332:122-30. [DOI: 10.1111/j.1574-6968.2012.02584.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 04/20/2012] [Accepted: 04/23/2012] [Indexed: 11/29/2022] Open
Affiliation(s)
- Gabriele Rieder
- Division of Microbiology; Department of Molecular Biology; University of Salzburg; Salzburg; Austria
| | - Linda Krisch
- Division of Microbiology; Department of Molecular Biology; University of Salzburg; Salzburg; Austria
| | | | | | | | - Silja Wessler
- Division of Microbiology; Department of Molecular Biology; University of Salzburg; Salzburg; Austria
| |
Collapse
|
5
|
Tian B, Yang J, Zhang KQ. Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects. FEMS Microbiol Ecol 2007; 61:197-213. [PMID: 17651135 DOI: 10.1111/j.1574-6941.2007.00349.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
As a group of important natural enemies of nematode pests, nematophagous bacteria exhibit diverse modes of action: these include parasitizing; producing toxins, antibiotics, or enzymes; competing for nutrients; inducing systemic resistance of plants; and promoting plant health. They act synergistically on nematodes through the direct suppression of nematodes, promoting plant growth, and facilitating the rhizosphere colonization and activity of microbial antagonists. This review details the nematophagous bacteria known to date, including parasitic bacteria, opportunistic parasitic bacteria, rhizobacteria, Cry protein-forming bacteria, endophytic bacteria and symbiotic bacteria. We focus on recent research developments concerning their pathogenic mechanisms at the biochemical and molecular levels. Increased understanding of the molecular basis of the various pathogenic mechanisms of the nematophagous bacteria could potentially enhance their value as effective biological control agents. We also review a number of molecular biological approaches currently used in the study of bacterial pathogenesis in nematodes. We discuss their merits, limitations and potential uses.
Collapse
Affiliation(s)
- Baoyu Tian
- Laboratory for Conservation and Utilization of Bio-resources, Yunnan University, Kunming, China
| | | | | |
Collapse
|
6
|
West TP. Regulation of pyrimidine nucleotide biosynthesis in Pseudomonas synxantha. Antonie van Leeuwenhoek 2007; 92:353-8. [PMID: 17578676 DOI: 10.1007/s10482-007-9164-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Accepted: 02/27/2007] [Indexed: 10/23/2022]
Abstract
Regulation of pyrimidine nucleotide biosynthesis in Pseudomonas synxantha ATCC 9890 was investigated and the pyrimidine biosynthetic pathway enzyme activities were affected by pyrimidine supplementation in cells grown on glucose or succinate as a carbon source. In pyrimidine-grown ATCC 9890 cells, the activities of four de novo enzymes could be depressed which indicated possible repression of enzyme synthesis. To learn whether the pathway was repressible, pyrimidine limitation experiments were conducted using an orotate phosphoribosyltransferase (pyrE) mutant strain identified in this study. Compared to excess uracil growth conditions for the succinate-grown mutant strain cells, pyrimidine limitation of this strain caused dihydroorotase activity to increase about 3-fold while dihydroorotate dehydrogenase and orotidine 5'-monophosphate decarboxylase activities rose about 2-fold. Regulation of de novo pathway enzyme synthesis by pyrimidines appeared to be occurring. At the level of enzyme activity, aspartate transcarbamoylase activity in P. synxantha ATCC 9890 was strongly inhibited in vitro by pyrophosphate, UTP, ADP, ATP, CTP and GTP under saturating substrate concentrations.
Collapse
Affiliation(s)
- Thomas P West
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
7
|
Laurentino EC, Ruiz JC, Brito LO, Fiandt M, Nicoletti LM, Jamur MC, Oliver C, Tosi LRO, Cruz AK. The use of Tn5 transposable elements in a gene trapping strategy for the protozoan Leishmania. Int J Parasitol 2007; 37:735-42. [PMID: 17362967 DOI: 10.1016/j.ijpara.2006.12.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 12/17/2006] [Accepted: 12/22/2006] [Indexed: 11/28/2022]
Abstract
The use of transposable elements as a gene-trapping strategy is a powerful tool for gene discovery. Herein we describe the development of a transposable system, based on the bacterial Tn5 transposon, which has been used successfully in Leishmania braziliensis. The transposon carries the neomycin phosphotransferase gene, which is expressed only when inserted in-frame with a Leishmania gene present in the target DNA. Four cosmid clones from a L. braziliensis genomic library were used as targets in transposition reactions and four insertional libraries were constructed and transfected in L. braziliensis. Clones resistant to G418 were selected and analysed by immunofluorescence in order to identify the subcellular localisation of the protein coded by the trapped gene. A definitive subcellular localisation for neomycin phosphotransferase/targeted protein fusion was not obtained in any of the four Leishmania clones investigated. However, the constructed transposable element is highly efficient considering the frequency of insertion in large targets and is therefore a useful tool for functional genetic studies in Leishmania. Our data confirm the utility of the Tn5 transposon system for insertion of sequencing priming sites into target DNA. Furthermore, the high frequency of insertion and even distribution are important in studying genomic regions bearing long and polymorphic repetitive sequences.
Collapse
Affiliation(s)
- Eliane C Laurentino
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av Bandeirantes, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Shultz JL, Yesudas C, Yaegashi S, Afzal AJ, Kazi S, Lightfoot DA. Three minimum tile paths from bacterial artificial chromosome libraries of the soybean (Glycine max cv. 'Forrest'): tools for structural and functional genomics. PLANT METHODS 2006; 2:9. [PMID: 16725032 PMCID: PMC1524761 DOI: 10.1186/1746-4811-2-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Accepted: 05/25/2006] [Indexed: 05/04/2023]
Abstract
BACKGROUND The creation of minimally redundant tile paths (hereafter MTP) from contiguous sets of overlapping clones (hereafter contigs) in physical maps is a critical step for structural and functional genomics. Build 4 of the physical map of soybean (Glycine max L. Merr. cv. 'Forrest') showed the 1 Gbp haploid genome was composed of 0.7 Gbp diploid, 0.1 Gbp tetraploid and 0.2 Gbp octoploid regions. Therefore, the size of the unique genome was about 0.8 Gbp. The aim here was to create MTP sub-libraries from the soybean cv. Forrest physical map builds 2 to 4. RESULTS The first MTP, named MTP2, was 14,208 clones (of mean insert size 140 kbp) picked from the 5,597 contigs of build 2. MTP2 was constructed from three BAC libraries (BamHI (B), HindIII (H) and EcoRI (E) inserts). MTP2 encompassed the contigs of build 3 that derived from build 2 by a series of contig merges. MTP2 encompassed 2 Gbp compared to the soybean haploid genome of 1 Gbp and does not distinguish regions by ploidy. The second and third MTPs, called MTP4BH and MTP4E, were each based on build 4. Each was semi-automatically selected from 2,854 contigs. MTP4BH was 4,608 B and H insert clones of mean size 173 kbp in the large (27.6 kbp) T-DNA vector pCLD04541. MTP4BH was suitable for plant transformation and functional genomics. MTP4E was 4,608 BAC clones with large inserts (mean 175 kbp) in the small (7.5 kbp) pECBAC1 vector. MTP4E was suitable for DNA sequencing. MTP4BH and MTP4E clones each encompassed about 0.8 Gbp, the 0.7 Gbp diploid regions and 0.05 Gbp each from the tetraploid and octoploid regions. MTP2 and MTP4BH were used for BAC-end sequencing, EST integration, micro-satellite integration into the physical map and high information content fingerprinting. MTP4E will be used for genome sequence by pooled genomic clone index. CONCLUSION Each MTP and associated BES will be useful to deconvolute and ultimately finish the whole genome shotgun sequence of soybean.
Collapse
Affiliation(s)
- JL Shultz
- Dept of Soybean Genetics, United States Department of Agriculture, Stoneville, MS 38776, USA
- Dept. of Plant Soil and Agricultural Systems, Genomics and Biotechnology Facility, Center for Excellence in Soybean Research, Southern Illinois University, Carbondale, IL 62901, USA
| | - C Yesudas
- Dept. of Plant Soil and Agricultural Systems, Genomics and Biotechnology Facility, Center for Excellence in Soybean Research, Southern Illinois University, Carbondale, IL 62901, USA
| | - S Yaegashi
- Dept of Soybean Genetics, United States Department of Agriculture, Stoneville, MS 38776, USA
- Dept of Bioinformatics, University of Tokyo, Tokyo, Japan
| | - AJ Afzal
- Dept. of Plant Soil and Agricultural Systems, Genomics and Biotechnology Facility, Center for Excellence in Soybean Research, Southern Illinois University, Carbondale, IL 62901, USA
| | | | - DA Lightfoot
- Dept. of Plant Soil and Agricultural Systems, Genomics and Biotechnology Facility, Center for Excellence in Soybean Research, Southern Illinois University, Carbondale, IL 62901, USA
| |
Collapse
|
9
|
Foster JM, Kumar S, Ganatra MB, Kamal IH, Ware J, Ingram J, Pope-Chappell J, Guiliano D, Whitton C, Daub J, Blaxter ML, Slatko BE. Construction of bacterial artificial chromosome libraries from the parasitic nematode Brugia malayi and physical mapping of the genome of its Wolbachia endosymbiont. Int J Parasitol 2004; 34:733-46. [PMID: 15111095 DOI: 10.1016/j.ijpara.2004.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2003] [Revised: 02/16/2004] [Accepted: 02/17/2004] [Indexed: 11/19/2022]
Abstract
The parasitic nematode, Brugia malayi, causes lymphatic filariasis in humans, which in severe cases leads to the condition known as elephantiasis. The parasite contains an endosymbiotic alpha-proteobacterium of the genus Wolbachia that is required for normal worm development and fecundity and is also implicated in the pathology associated with infections by these filarial nematodes. Bacterial artificial chromosome libraries were constructed from B. malayi DNA and provide over 11-fold coverage of the nematode genome. Wolbachia genomic fragments were simultaneously cloned into the libraries giving over 5-fold coverage of the 1.1 Mb bacterial genome. A physical framework for the Wolbachia genome was developed by construction of a plasmid library enriched for Wolbachia DNA as a source of sequences to hybridise to high-density bacterial artificial chromosome colony filters. Bacterial artificial chromosome end sequencing provided additional Wolbachia probe sequences to facilitate assembly of a contig that spanned the entire genome. The Wolbachia sequences provided a marker approximately every 10 kb. Four rare-cutting restriction endonucleases were used to restriction map the genome to a resolution of approximately 60 kb and demonstrate concordance between the bacterial artificial chromosome clones and native Wolbachia genomic DNA. Comparison of Wolbachia sequences to public databases using BLAST algorithms under stringent conditions allowed confident prediction of 69 Wolbachia peptide functions and two rRNA genes. Comparison to closely related complete genomes revealed that while most sequences had orthologs in the genome of the Wolbachia endosymbiont from Drosophila melanogaster, there was no evidence for long-range synteny. Rather, there were a few cases of short-range conservation of gene order extending over regions of less than 10 kb. The molecular scaffold produced for the genome of the Wolbachia from B. malayi forms the basis of a genomic sequencing effort for this bacterium, circumventing the difficult challenge of purifying sufficient endosymbiont DNA from a tropical parasite for a whole genome shotgun sequencing strategy.
Collapse
|
10
|
Fuhrmann DR, Krzywinski MI, Chiu R, Saeedi P, Schein JE, Bosdet IE, Chinwalla A, Hillier LW, Waterston RH, McPherson JD, Jones SJM, Marra MA. Software for automated analysis of DNA fingerprinting gels. Genome Res 2003; 13:940-53. [PMID: 12727910 PMCID: PMC430903 DOI: 10.1101/gr.904303] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2002] [Accepted: 02/26/2003] [Indexed: 11/24/2022]
Abstract
Here we describe software tools for the automated detection of DNA restriction fragments resolved on agarose fingerprinting gels. We present a mathematical model for the location and shape of the restriction fragments as a function of fragment size, with model parameters determined empirically from "marker" lanes containing molecular size standards. Automated identification of restriction fragments involves several steps, including: image preprocessing, to put the data in a form consistent with a linear model; marker lane analysis, for determination of the model parameters; and data lane analysis, a procedure for detecting restriction fragment multiplets while simultaneously determining the amplitude curve that describes restriction fragment amplitude as a function of mobility. In validation experiments conducted on fingerprinted and sequenced Bacterial Artificial Chromosome (BAC) clones, sensitivity and specificity of restriction fragment identification exceeded 96% on restriction fragments ranging in size from 600 base pairs (bp) to 30,000 bp. The integrated suite of software tools, written in MATLAB and collectively called BandLeader, is in use at the BC Cancer Agency Genome Sciences Centre (GSC) and the Washington University Genome Sequencing Center, and has been provided to the Wellcome Trust Sanger Institute and the Whitehead Institute. Employed in a production mode at the GSC, BandLeader has been used to perform automated restriction fragment identification for more than 850,000 BAC clones for mouse, rat, bovine, and poplar fingerprint mapping projects.
Collapse
Affiliation(s)
- Daniel R Fuhrmann
- Department of Electrical Engineering, Washington University, St. Louis, Missouri 63130, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|