1
|
Jhajharia S, Lai F, Low HB, Purushotorman K, Shunmuganathan BD, Chan CEZ, Hammond R, Netter HJ, Chen Q, Lim SG, MacAry PA. Defining the specificity and function of a human neutralizing antibody for Hepatitis B virus. NPJ Vaccines 2022; 7:121. [PMID: 36271019 PMCID: PMC9586962 DOI: 10.1038/s41541-022-00516-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 07/01/2022] [Indexed: 11/09/2022] Open
Abstract
Hepatitis B Virus (HBV) is a hepadnavirus that is the principal pathogen underlying viral liver disease in human populations. In this study, we describe the isolation and characterization of a fully human monoclonal antibody for HBV. This HuMab was isolated by a combinatorial screen of the memory B-cell repertoire from an acute/recovered HBV-infected patient. Lead candidate selection was based upon strong binding and neutralizing activity for live HBV. We provide a detailed biochemical/biophysical, and subclass characterization of its specificity and affinity against all of the principal HBV genotypes combined with a functional analysis of its in vitro activity. We also demonstrate its potential as a prophylaxis/therapy in vivo using human liver chimeric mouse models for HBV infection. These data have important implications for our understanding of natural human immunity to HBV and suggest that this potentially represents a new antibody-based anti-viral candidate for prophylaxis and/or therapy for HBV infection.
Collapse
Affiliation(s)
- Saket Jhajharia
- Department of Medicine, National University of Singapore, Singapore, Singapore
| | - Fritz Lai
- Department of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Heng Boon Low
- Department of Medicine, National University of Singapore, Singapore, Singapore
| | - Kiren Purushotorman
- Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | | | - Conrad En Zuo Chan
- Biological Defence Programme, DSO National Laboratories, Singapore, Singapore
| | - Rachel Hammond
- Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne Health, The Peter Doherty Institute, Melbourne, VIC, Australia
| | - Hans-Jürgen Netter
- Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne Health, The Peter Doherty Institute, Melbourne, VIC, Australia
| | - Qingfeng Chen
- Department of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Seng Gee Lim
- National University Hospital, Division of Gastroenterology and Hepatology, Singapore, Singapore.
| | - Paul A MacAry
- Department of Medicine, National University of Singapore, Singapore, Singapore.
- Life Sciences Institute, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
2
|
Beretta M, Mouquet H. Advances in human monoclonal antibody therapy for HBV infection. Curr Opin Virol 2022; 53:101205. [PMID: 35123237 DOI: 10.1016/j.coviro.2022.101205] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/10/2021] [Accepted: 01/15/2022] [Indexed: 12/17/2022]
Abstract
HBV neutralizing antibodies target the viral envelope antigens (HBsAg) and confer long-term immune protection in vaccinees and infected humans who seroconvert. They recognize various HBsAg epitopes, and can be armed with Fc-dependent effector functions essential for eliminating infected cells and stimulating adaptive immunity. Hundreds of HBsAg-specific monoclonal antibodies (mAbs) were produced from the early 80's, but it is only recently that bona fide human anti-HBV mAbs were generated from vaccinees and seroconverters. Neutralizing HBV mAbs have in vivo prophylactic and therapeutic efficacy in animal models, and the capacity to decrease antigenemia and viremia in infected humans. Thus, polyfunctional, potent and broad human HBV neutralizing mAbs offer novel opportunities to develop effective interventions to prevent and treat HBV infection. Here, we summarize recent findings on the humoral immune response to HBV, and explore the potential of human HBV neutralizing mAbs as immunotherapeutics to help achieving a functional cure for HBV.
Collapse
Affiliation(s)
- Maxime Beretta
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, Paris, 75015, France; INSERM U1222, Paris, 75015, France
| | - Hugo Mouquet
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, Paris, 75015, France; INSERM U1222, Paris, 75015, France.
| |
Collapse
|
3
|
Lee HW, Park JY, Hong T, Park MS, Ahn SH. Efficacy of Lenvervimab, a Recombinant Human Immunoglobulin, in Treatment of Chronic Hepatitis B Virus Infection. Clin Gastroenterol Hepatol 2020; 18:3043-3045.e1. [PMID: 31589980 DOI: 10.1016/j.cgh.2019.09.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023]
Abstract
The mechanism of action of hepatitis B immunoglobulin (HBIG) for chronic hepatitis B (CHB) treatment is not fully understood. A clinical trial in Japan suggested that HBIG therapy might benefit patients with CHB.1 Lenvervimab, a recombinant monoclonal HBIG developed by GC Pharma (Yongin, South Korea), has been screened from an anti-HBs-enriched phage-display library cloned from hepatitis B vaccine-boosted human blood cells and was produced in Chinese hamster ovary cells.2-4.
Collapse
Affiliation(s)
- Hye Won Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea; Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea; Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - Jun Yong Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea; Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea; Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - Taegon Hong
- Department of Clinical Pharmacology, Yonsei University College of Medicine, Seoul, Korea; Clinical Trials Center, Severance Hospital, Seoul, Korea
| | - Min Soo Park
- Department of Clinical Pharmacology, Yonsei University College of Medicine, Seoul, Korea; Clinical Trials Center, Severance Hospital, Seoul, Korea; Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Hoon Ahn
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea; Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea; Yonsei Liver Center, Severance Hospital, Seoul, Korea; Clinical Trials Center, Severance Hospital, Seoul, Korea.
| |
Collapse
|
4
|
Wang Q, Michailidis E, Yu Y, Wang Z, Hurley AM, Oren DA, Mayer CT, Gazumyan A, Liu Z, Zhou Y, Schoofs T, Yao KH, Nieke JP, Wu J, Jiang Q, Zou C, Kabbani M, Quirk C, Oliveira T, Chhosphel K, Zhang Q, Schneider WM, Jahan C, Ying T, Horowitz J, Caskey M, Jankovic M, Robbiani DF, Wen Y, de Jong YP, Rice CM, Nussenzweig MC. A Combination of Human Broadly Neutralizing Antibodies against Hepatitis B Virus HBsAg with Distinct Epitopes Suppresses Escape Mutations. Cell Host Microbe 2020; 28:335-349.e6. [PMID: 32504577 DOI: 10.1016/j.chom.2020.05.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/09/2020] [Accepted: 05/08/2020] [Indexed: 02/08/2023]
Abstract
Although there is no effective cure for chronic hepatitis B virus (HBV) infection, antibodies are protective and correlate with recovery from infection. To examine the human antibody response to HBV, we screened 124 vaccinated and 20 infected, spontaneously recovered individuals. The selected individuals produced shared clones of broadly neutralizing antibodies (bNAbs) that targeted 3 non-overlapping epitopes on the HBV S antigen (HBsAg). Single bNAbs protected humanized mice against infection but selected for resistance mutations in mice with prior established infection. In contrast, infection was controlled by a combination of bNAbs targeting non-overlapping epitopes with complementary sensitivity to mutations that commonly emerge during human infection. The co-crystal structure of one of the bNAbs with an HBsAg peptide epitope revealed a stabilized hairpin loop. This structure, which contains residues frequently mutated in clinical immune escape variants, provides a molecular explanation for why immunotherapy for HBV infection may require combinations of complementary bNAbs.
Collapse
Affiliation(s)
- Qiao Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Eleftherios Michailidis
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Yingpu Yu
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Zijun Wang
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Arlene M Hurley
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Deena A Oren
- Structural Biology Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Christian T Mayer
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Zhenmi Liu
- West China School of Public Health, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yunjiao Zhou
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Till Schoofs
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Kai-Hui Yao
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Jan P Nieke
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Jianbo Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qingling Jiang
- West China School of Public Health, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chenhui Zou
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA; Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Mohanmmad Kabbani
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Corrine Quirk
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Thiago Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Kalsang Chhosphel
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Qianqian Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - William M Schneider
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Cyprien Jahan
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jill Horowitz
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Mila Jankovic
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Davide F Robbiani
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Yumei Wen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ype P de Jong
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA; Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
5
|
Du Y, Hultquist JF, Zhou Q, Olson A, Tseng Y, Zhang TH, Hong M, Tang K, Chen L, Meng X, McGregor MJ, Dai L, Gong D, Martin-Sancho L, Chanda S, Li X, Bensenger S, Krogan NJ, Sun R. mRNA display with library of even-distribution reveals cellular interactors of influenza virus NS1. Nat Commun 2020; 11:2449. [PMID: 32415096 PMCID: PMC7229031 DOI: 10.1038/s41467-020-16140-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/13/2020] [Indexed: 12/19/2022] Open
Abstract
A comprehensive examination of protein-protein interactions (PPIs) is fundamental for the understanding of cellular machineries. However, limitations in current methodologies often prevent the detection of PPIs with low abundance proteins. To overcome this challenge, we develop a mRNA display with library of even-distribution (md-LED) method that facilitates the detection of low abundance binders with high specificity and sensitivity. As a proof-of-principle, we apply md-LED to IAV NS1 protein. Complementary to AP-MS, md-LED enables us to validate previously described PPIs as well as to identify novel NS1 interactors. We show that interacting with FASN allows NS1 to directly regulate the synthesis of cellular fatty acids. We also use md-LED to identify a mutant of NS1, D92Y, results in a loss of interaction with CPSF1. The use of high-throughput sequencing as the readout for md-LED enables sensitive quantification of interactions, ultimately enabling massively parallel experimentation for the investigation of PPIs.
Collapse
Affiliation(s)
- Yushen Du
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA.
- Cancer Institute, ZJU-UCLA Joint Center for Medical Education and Research, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Judd F Hultquist
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
- California Institute for Quantitative Biosciences, QB3, University of California, San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Quan Zhou
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Anders Olson
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Yenwen Tseng
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Tian-Hao Zhang
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
| | - Mengying Hong
- Cancer Institute, ZJU-UCLA Joint Center for Medical Education and Research, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Kejun Tang
- Cancer Institute, ZJU-UCLA Joint Center for Medical Education and Research, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Liubo Chen
- Cancer Institute, ZJU-UCLA Joint Center for Medical Education and Research, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiangzhi Meng
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Michael J McGregor
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
- California Institute for Quantitative Biosciences, QB3, University of California, San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Lei Dai
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Danyang Gong
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Laura Martin-Sancho
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Sumit Chanda
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Xinming Li
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, L, Los Angeles, CA, 90095, USA
| | - Steve Bensenger
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
- California Institute for Quantitative Biosciences, QB3, University of California, San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
6
|
Li C, Wang Y, Liu T, Niklasch M, Qiao K, Durand S, Chen L, Liang M, Baumert TF, Tong S, Nassal M, Wen YM, Wang YX. An E. coli-produced single-chain variable fragment (scFv) targeting hepatitis B virus surface protein potently inhibited virion secretion. Antiviral Res 2019; 162:118-129. [DOI: 10.1016/j.antiviral.2018.12.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 12/06/2018] [Accepted: 12/28/2018] [Indexed: 01/14/2023]
|
7
|
Shin YW, Cho DH, Song GW, Kim SH. A New ELISA to Overcome the Pitfalls in Quantification of Recombinant Human Monoclonal Anti-HBs, GC1102, by Commercial Immunoassays. Biol Proced Online 2018; 20:18. [PMID: 30275774 PMCID: PMC6158867 DOI: 10.1186/s12575-018-0083-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/17/2018] [Indexed: 12/15/2022] Open
Abstract
Several methods for the quantification of human anti-HBs, an antibody to hepatitis B surface antigen (HBsAg), have been developed based on enzyme reaction, chemiluminescence, fluorescence, and radioactivity for application to human serum or plasma. Commercial anti-HBs immunoassay kits use a sandwich method in which a bridge is formed by the anti-HBs between a HBsAg immobilized solid matrix and the labeled HBsAg. However, this direct sandwich enzyme-linked immunosorbent assay (ELISA) is insufficient to accurately evaluate the activity of the human monoclonal anti-HBs, GC1102. As an alternative, we developed an indirect anti-HBs ELISA (anti-HBs qELISA_v.1) that improved detection of anti-HBs. In this current study, we further optimized this indirect method to minimize nonspecific binding of human serum, by employing incubation buffers containing animal serum, Tween 20, skim milk, and a low pH washing buffer. This new and improved method, termed anti-HBs qELISA_v.2, showed accurate quantification of plasma-derived hepatitis B immune globulin (HBIG) and was comparable to results obtained with commercial ELISA (r = 0.93) and RIA (r = 0.85) kits. Further, the GC1102 in human serum could be precisely measured using the anti-HBs qELISA_v.2 without limitations of nonspecific binding.
Collapse
Affiliation(s)
| | - Dong-Hyung Cho
- 2School of Life Science, Kyungpook National University, Daegu, 41566 Korea
| | - Gi Won Song
- 3Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Ulsan College of Medicine and Seoul Asan Medical Center, Seoul, 05505 Korea
| | - Se-Ho Kim
- 4Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24641 Korea.,5Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341 Korea
| |
Collapse
|
8
|
Tan WS, Ho KL. Phage display creates innovative applications to combat hepatitis B virus. World J Gastroenterol 2014; 20:11650-11670. [PMID: 25206271 PMCID: PMC4155357 DOI: 10.3748/wjg.v20.i33.11650] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 05/05/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) has killed countless lives in human history. The invention of HBV vaccines in the 20th century has reduced significantly the rate of the viral infection. However, currently there is no effective treatment for chronic HBV carriers. Newly emerging vaccine escape mutants and drug resistant strains have complicated the viral eradication program. The entire world is now facing a new threat of HBV and human immunodeficiency virus co-infection. Could phage display provide solutions to these life-threatening problems? This article reviews critically and comprehensively the innovative and potential applications of phage display in the development of vaccines, therapeutic agents, diagnostic reagents, as well as gene and drug delivery systems to combat HBV. The application of phage display in epitope mapping of HBV antigens is also discussed in detail. Although this review mainly focuses on HBV, the innovative applications of phage display could also be extended to other infectious diseases.
Collapse
|
9
|
Weiss-Ottolenghi Y, Gershoni JM. Profiling the IgOme: meeting the challenge. FEBS Lett 2014; 588:318-25. [PMID: 24239539 PMCID: PMC7094557 DOI: 10.1016/j.febslet.2013.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/06/2013] [Accepted: 11/06/2013] [Indexed: 02/03/2023]
Abstract
The entire repertoire of antibodies in our serum, the IgOme, is a historical record of our past experiences and a reflection of our immune status at any given moment. Understanding the dynamics of the IgOme and how the diversity and specificities of serum antibodies change in response to disease and maintenance of homeostasis can directly impact the ability to design and develop novel vaccines, diagnostics and therapeutics. Here we review both direct and indirect methodologies that are being developed to map the complexity and specificities of the antibodies in polyclonal serum - the IgOme.
Collapse
Affiliation(s)
- Yael Weiss-Ottolenghi
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jonathan M Gershoni
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
10
|
Chang KH, Kim MS, Hong GW, Seo MS, Shin YN, Kim SH. Affinity Maturation of an Epidermal Growth Factor Receptor Targeting Human Monoclonal Antibody ER414 by CDR Mutation. Immune Netw 2012; 12:155-64. [PMID: 23091439 PMCID: PMC3467414 DOI: 10.4110/in.2012.12.4.155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 08/09/2012] [Accepted: 08/14/2012] [Indexed: 01/09/2023] Open
Abstract
It is well established that blocking the interaction of EGFR with growth factors leads to the arrest of tumor growth, resulting in tumor cell death. ER414 is a human monoclonal antibody (mAb) derived by guided selection of the mouse mAb A13. The ER414 exhibited a ~17-fold lower affinity and, as a result, lower efficacy of inhibition of the EGF-mediated tyrosine phosphorylation of EGFR when compared with mAb A13 and cetuximab. We performed a stepwise in vitro affinity maturation to improve the affinity of ER414. We obtained a 3D model of ER414 to identify the amino acids in the CDRs that needed to be mutated. Clones were selected from the phage library with randomized amino acids in the CDRs and substitution of amino acids in the HCDR3 and LCDR1 of ER414 led to improved affinity. A clone, H3-14, with a ~20-fold increased affinity, was selected from the HCDR3 randomized library. Then three clones, ER2, ER78 and ER79, were selected from the LCDR1 randomized library based on the H3-14 but did not show further increased affinities compared to that of H3-14. Of the three, ER2 was chosen for further characterization due to its better expression than others. We successfully performed affinity maturation of ER414 and obtained antibodies with a similar affinity as cetuximab. And antibody from an affinity maturation inhibits the EGF-mediated tyrosine phosphorylation of EGFR in a manner similar to cetuximab.
Collapse
Affiliation(s)
- Ki-Hwan Chang
- Antibody Engineering Lab., Green Cross Research Center, Green Cross Corp., Yongin 446-770, Korea
| | | | | | | | | | | |
Collapse
|
11
|
Chang KH, Kim MS, Hong GW, Shin YN, Kim SH. Conversion of a murine monoclonal antibody A13 targeting epidermal growth factor receptor to a human monoclonal antibody by guided selection. Exp Mol Med 2012; 44:52-9. [PMID: 22064379 DOI: 10.3858/emm.2012.44.1.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) is an attractive target for tumor therapy because it is overexpressed in the majority of solid tumors and the increase in receptor expression levels has been linked with a poor clinical prognosis. Also it is well established that blocking the interaction of EGFR and the growth factors could lead to the arrest of tumor growth and possibly result in tumor cell death. A13 is a murine monoclonal antibody (mAb) that specifically binds to various sets of EGFR-expressing tumor cells and inhibits EGF-induced EGFR phosphorylation. We isolated human immunoglobulin genes by guided selection based on the mAb A13. Four different human single chain Fvs (scFvs) were isolated from from hybrid scFv libraries containing a human VH repertoire with the VL of mAb A13 and a human VL repertoire with the VH of mAb A13. All the 4 scFvs bound to EGFR-expressing A431 cells. One scFv (SC414) with the highest affinity was converted to IgG1 (ER414). The ER414 exhibited ∼17 fold lower affinity compared to the A13 mAb. In addition the ER414 inhibited an EGF-induced tyrosine phosphorylation of EGFR with much lower efficacy compared to the A13 mAb and Cetuximab (Merck KgaA, Germany). We identified that the epitope of A13 mAb is retained in ER414. This approach will provide an efficient way of converting a murine mAb to a human mAb.
Collapse
Affiliation(s)
- Ki Hwan Chang
- Antibody Engineering Lab Central Research Center, Green Cross Corp. Yongin, Korea
| | | | | | | | | |
Collapse
|
12
|
Velappan N, Fisher HE, Pesavento E, Chasteen L, D’Angelo S, Kiss C, Longmire M, Pavlik P, Bradbury ARM. A comprehensive analysis of filamentous phage display vectors for cytoplasmic proteins: an analysis with different fluorescent proteins. Nucleic Acids Res 2010; 38:e22. [PMID: 19955231 PMCID: PMC2831335 DOI: 10.1093/nar/gkp809] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 09/14/2009] [Indexed: 01/11/2023] Open
Abstract
Filamentous phage display has been extensively used to select proteins with binding properties of specific interest. Although many different display platforms using filamentous phage have been described, no comprehensive comparison of their abilities to display similar proteins has been conducted. This is particularly important for the display of cytoplasmic proteins, which are often poorly displayed with standard filamentous phage vectors. In this article, we have analyzed the ability of filamentous phage to display a stable form of green fluorescent protein and modified variants in nine different display vectors, a number of which have been previously proposed as being suitable for cytoplasmic protein display. Correct folding and display were assessed by phagemid particle fluorescence, and with anti-GFP antibodies. The poor correlation between phagemid particle fluorescence and recognition of GFP by antibodies, indicates that proteins may fold correctly without being accessible for display. The best vector used a twin arginine transporter leader to transport the displayed protein to the periplasm, and a coil-coil arrangement to link the displayed protein to g3p. This vector was able to display less robust forms of GFP, including ones with inserted epitopes, as well as fluorescent proteins of the Azami green series. It was also functional in mock selection experiments.
Collapse
|
13
|
Marasco WA, Sui J. The growth and potential of human antiviral monoclonal antibody therapeutics. Nat Biotechnol 2008; 25:1421-34. [PMID: 18066039 PMCID: PMC7097443 DOI: 10.1038/nbt1363] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Monoclonal antibodies (mAbs) have long provided powerful research tools for virologists to understand the mechanisms of virus entry into host cells and of antiviral immunity. Even so, commercial development of human (or humanized) mAbs for the prophylaxis, preemptive and acute treatment of viral infections has been slow. This is surprising, as new antibody discovery tools have increased the speed and precision with which potent neutralizing human antiviral mAbs can be identified. As longstanding barriers to antiviral mAb development, such as antigenic variability of circulating viral strains and the ability of viruses to undergo neutralization escape, are being overcome, deeper insight into the mechanisms of mAb action and engineering of effector functions are also improving the efficacy of antiviral mAbs. These successes, in both industrial and academic laboratories, coupled with ongoing changes in the biomedical and regulatory environments, herald an era when the commercial development of human antiviral mAb therapies will likely surge.
Collapse
Affiliation(s)
- Wayne A Marasco
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School 44, Binney Street, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
14
|
Shin YW, Ryoo KH, Hong KW, Chang KH, Choi JS, So M, Kim PK, Park JY, Bong KT, Kim SH. Human monoclonal antibody against Hepatitis B virus surface antigen (HBsAg). Antiviral Res 2007; 75:113-20. [PMID: 17343928 DOI: 10.1016/j.antiviral.2007.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 01/09/2007] [Accepted: 01/09/2007] [Indexed: 11/19/2022]
Abstract
Hepatitis B virus (HBV) is one of the main pathogens responsible for hepatitis and hepatocellular carcinoma. Human plasma-derived Hepatitis B immune globulin (HBIG) is being used for prophylactic and liver transplantation currently. However, it may be necessary to replace a HBIG with a recombinant one because of limited availability of human plasma with high anti-HBsAg antibody titer and possible contamination of human pathogens. A Chinese hamster ovary (CHO) cell line, HB-C7A, was established which produces a fully human IgG1 that binds HBsAg. The HB-C7A exhibits approximately 2600 units/mg of antibody. The affinity (K(a)) of HB-C7A is 1.1 x 10(8) M(-1) by Biacore analysis and estimated 6.7-fold higher than that of Hepabig (a plasma-derived HBIG from Green Cross Corp., Yongin, Korea) by competition ELISA. The HB-C7A recognizes the conformational "a" determinant of HBsAg and binds HBV particle more efficiently than the Hepabig. The HB-C7A binds to HBV-infected human liver tissue but does not bind to normal human tissues. This HB-C7A has several advantages compared to plasma-derived Hepabig such as activity, safety and availability.
Collapse
Affiliation(s)
- Yong-Won Shin
- Antibody Engineering Laboratory, Research Center, Green Cross Corporation, 341 Bojeong-Dong, Giheung-Gu, Yongin City, Gyunggi-Do 446-799, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|