1
|
Goda I, Nachtane M, Qureshi Y, Benyahia H, Tarfaoui M. COVID-19: Current challenges regarding medical healthcare supplies and their implications on the global additive manufacturing industry. Proc Inst Mech Eng H 2022; 236:613-627. [DOI: 10.1177/09544119211070373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The covid-19 outbreak has caused a shortage of masks and other healthcare products for the general public around the globe. In addition, it has also affected the supply of personal protective equipment (PPE) used by healthcare services because of a sudden increase in their demand. This significant disruption in the global supply chain of these products resulted in, leaving many staff and patients without protection. The additive manufacturing (AM) industry is going through extraordinary times and can provide emergency responses to help deal with the global crisis caused by the COVID-19 pandemic. The objective of the present work is therefore to perform an up-to-date review to determine the capacity of AM to provide exclusive benefits for the medical healthcare supplies sector to fight this current situation. In this review, it is found that AM technology has proved that it can be used as a volume manufacturing technology for the ongoing crisis. However, the standardization and certification are appeared to represent the main challenges for adopting the AM in healthcare against COVID-19. Furthermore, additively manufactured materials for medical applications must be developed for medical environments. Most printed medical products for COVID-19 require biocompatibility evaluation and shall prove their ability to sterilize. Finally, this review concluded that AM technology can fulfill the requirements of face masks and ventilator parts for healthcare systems for proper controlling and treating of COVID-19 patients when the safety and efficacy of these devices are ensured.
Collapse
Affiliation(s)
- Ibrahim Goda
- Département Mécanique Appliquée, Université Bourgogne Franche-Comté, FEMTO-ST Institute, Besançon, France
| | - Mourad Nachtane
- Arts et Métiers Institute of Technology, CNRS, Université de Lorraine, LEM3-UMR7239, Metz, France
| | | | | | | |
Collapse
|
2
|
Agarwal R. The personal protective equipment fabricated via 3D printing technology during COVID-19. ANNALS OF 3D PRINTED MEDICINE 2022; 5:100042. [PMID: 38620978 PMCID: PMC8667480 DOI: 10.1016/j.stlm.2021.100042] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/12/2021] [Indexed: 12/24/2022] Open
Abstract
COVID-19 has been spread in more than 220 countries and caused global health concerns. The supply chain disruptions have abruptly affected due to the second wave of COVID-19 in various countries and caused unavailability and shortage of medical devices and personal protective equipment for frontline healthcare workers. Three-dimensional (3D) printing has proven to be a boon and revolutionized technology to supply medical devices and tackle the situation caused by the COVID-19 pandemic. The diverse designs were produced and are currently used in hospitals by patients and frontline healthcare doctors. This review summarises the application of 3D printing during COVID-19. It collects the comprehensive information of recently designed and fabricated protective equipment like nasopharyngeal swabs, valves, face shields, facemasks and many more medical devices. The drawbacks and future challenges of 3D printed medical devices and protective equipment is discussed.
Collapse
Affiliation(s)
- Raj Agarwal
- Mechanical Engineering Department, Thapar Institute of Engineering and Technology Patiala, Punjab 147004, India
| |
Collapse
|
3
|
Duke DJ, Clarke AL, Stephens AL, Djumas L, Gregory SD. A computational fluid dynamics assessment of 3D printed ventilator splitters and restrictors for differential multi-patient ventilation. 3D Print Med 2022; 8:2. [PMID: 34985624 PMCID: PMC8727976 DOI: 10.1186/s41205-021-00129-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The global pandemic of novel coronavirus (SARS-CoV-2) has led to global shortages of ventilators and accessories. One solution to this problem is to split ventilators between multiple patients, which poses the difficulty of treating two patients with dissimilar ventilation needs. A proposed solution to this problem is the use of 3D-printed flow splitters and restrictors. There is little data available on the reliability of such devices and how the use of different 3D printing methods might affect their performance. METHODS We performed flow resistance measurements on 30 different 3D-printed restrictor designs produced using a range of fused deposition modelling and stereolithography printers and materials, from consumer grade printers using polylactic acid filament to professional printers using surgical resin. We compared their performance to novel computational fluid dynamics models driven by empirical ventilator flow rate data. This indicates the ideal performance of a part that matches the computer model. RESULTS The 3D-printed restrictors varied considerably between printers and materials to a sufficient degree that would make them unsafe for clinical use without individual testing. This occurs because the interior surface of the restrictor is rough and has a reduced nominal average diameter when compared to the computer model. However, we have also shown that with careful calibration it is possible to tune the end-inspiratory (tidal) volume by titrating the inspiratory time on the ventilator. CONCLUSIONS Computer simulations of differential multi patient ventilation indicate that the use of 3D-printed flow splitters is viable. However, in situ testing indicates that using 3D printers to produce flow restricting orifices is not recommended, as the flow resistance can deviate significantly from expected values depending on the type of printer used. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Daniel J. Duke
- Department of Mechanical & Aerospace Engineering, Monash University, Clayton, 3800 Victoria Australia
| | - Alexander L. Clarke
- Department of Anaesthesia, Royal Women’s Hospital, Parkville, 3052 Victoria Australia
- Department of Anaesthesia and Pain Management, Royal Melbourne Hospital, Parkville, 3052 Victoria Australia
| | - Andrew L. Stephens
- CardioRespiratory Engineering and Technology Laboratory (CREATElab), Baker Heart and Diabetes Institute, Melbourne, 3004 Victoria Australia
| | - Lee Djumas
- Department of Materials Engineering, Monash University, Clayton, 3800 Victoria Australia
| | - Shaun D. Gregory
- Department of Mechanical & Aerospace Engineering, Monash University, Clayton, 3800 Victoria Australia
- CardioRespiratory Engineering and Technology Laboratory (CREATElab), Baker Heart and Diabetes Institute, Melbourne, 3004 Victoria Australia
| |
Collapse
|
4
|
Tareq MS, Rahman T, Hossain M, Dorrington P. Additive manufacturing and the COVID-19 challenges: An in-depth study. JOURNAL OF MANUFACTURING SYSTEMS 2021; 60:787-798. [PMID: 33897085 PMCID: PMC8058390 DOI: 10.1016/j.jmsy.2020.12.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 05/09/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rapidly achieved global pandemic status. The pandemic created huge demand for relevant medical and personal protective equipment (PPE) and put unprecedented pressure on the healthcare system within a very short span of time. Moreover, the supply chain system faced extreme disruption as a result of the frequent and severe lockdowns across the globe. In such a situation, additive manufacturing (AM) becomes a supplementary manufacturing process to meet the explosive demands and to ease the health disaster worldwide. Providing the extensive design customization, a rapid manufacturing route, eliminating lengthy assembly lines and ensuring low manufacturing lead times, the AM route could plug the immediate supply chain gap, whilst mass production routes restarted again. The AM community joined the fight against COVID-19 by producing components for medical equipment such as ventilators, nasopharyngeal swabs and PPE such as face masks and face shields. The aim of this article is to systematically summarize and to critically analyze all major efforts put forward by the AM industry, academics, researchers, users, and individuals. A step-by-step account is given summarizing all major additively manufactured products that were designed, invented, used, and produced during the pandemic in addition to highlighting some of the potential challenges. Such a review will become a historical document for the future as well as a stimulus for the next generation AM community.
Collapse
Affiliation(s)
- Md Sarower Tareq
- Department of Mechanical Engineering, Michigan State University, East Lansing, USA
| | - Tanzilur Rahman
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, USA
| | - Mokarram Hossain
- Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, SA1 8EN, United Kingdom
| | - Peter Dorrington
- College of Engineering, Swansea University, SA1 8EN, United Kingdom
| |
Collapse
|
5
|
Abstract
COVID-19 resulting from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in a pandemic of respiratory failure previously unencountered. Early in the pandemic, concentrated infections in high-density population cities threatened to overwhelm health systems, and ventilator shortages were predicted. An early proposed solution was the use of shared ventilation, or the use of a single ventilator to support ≥ 2 patients. Spurred by ill-conceived social media posts, the idea spread in the lay press. Prior to 2020, there were 7 publications on this topic. A year later, more than 40 publications have addressed the technical details for shared ventilation, clinical experience with shared ventilation, as well as the numerous limitations and ethics of the technique. This is a review of the literature regarding shared ventilation from peer-reviewed articles published in 2020.
Collapse
Affiliation(s)
- Richard D Branson
- Department of Surgery, Division of Trauma & Critical Care, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, Ohio.
| | - Dario Rodriquez
- Division of Trauma/Critical Care, Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
6
|
Ishack S, Lipner SR. Use of 3D printing to support COVID-19 medical supply shortages: a review. JOURNAL OF 3D PRINTING IN MEDICINE 2021; 5:83-95. [PMID: 38051997 PMCID: PMC8285110 DOI: 10.2217/3dp-2020-0031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 07/02/2021] [Indexed: 11/25/2022]
Abstract
The novel coronavirus, COVID-19, created a pandemic with significant mortality and morbidity which poses challenges for patients and healthcare workers. The global spread of COVID-19 has resulted in shortages of personal protective equipment (PPE) leaving frontline health workers unprotected and overwhelming the healthcare system. 3D printing is well suited to address shortages of masks, face shields, testing kits and ventilators. In this article, we review 3D printing and suggest potential applications for creating PPE for healthcare workers treating COVID-19 patients. A comprehensive literature review was conducted using PubMed with keywords "Coronavirus disease 2019", "COVID-19", "severe acute respiratory syndrome coronavirus 2", "SARS-CoV-2", "supply shortages", "N95 respirator masks", "personal protective equipment", "PPE", "ventilators", "three-dimensional model", "three-dimensional printing" "3D printing" and "ventilator". A summary of important studies relevant to the development of 3D-printed clinical applications for COVID-19 is presented. 3D technology has great potential to revolutionize healthcare through accessibility, affordably and personalization.
Collapse
Affiliation(s)
| | - Shari R Lipner
- Department of Dermatology, Weill Cornell Medicine, NY 10021, USA
| |
Collapse
|
7
|
Abbas MZ. Industrial applications of 3D printing to scale-up production of COVID-19-related medical equipment. JOURNAL OF 3D PRINTING IN MEDICINE 2021; 5:97-110. [PMID: 38051991 PMCID: PMC8357186 DOI: 10.2217/3dp-2021-0003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/27/2021] [Indexed: 12/23/2022]
Abstract
Additive manufacturing or 3D printing allows the rapid conversion of information from digital 3D models into physical objects. The current COVID-19 crisis underscored the value of 3D-printing technology in addressing critical shortages in the medical product supply chain. This article provides a review of the significant role of additive manufacturing technologies in addressing the COVID-19 situation. This article concludes that 3D printing has an important role in global public health because of its potential to adapt to emerging situations far more easily and quickly as compared with conventional manufacturing methods. There is a need for further research to improve the technology to mass produce better quality products more economically. Currently, the 3D-printing industry is concentrated in the US and Western Europe. Policy efforts are needed to tap all markets across the globe in order to be better prepared for a future pandemic.
Collapse
Affiliation(s)
- Muhammad Zaheer Abbas
- Faculty of Business and Law, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
8
|
Kumar KPA, Pumera M. 3D-Printing to Mitigate COVID-19 Pandemic. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2100450. [PMID: 34230824 PMCID: PMC8250363 DOI: 10.1002/adfm.202100450] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/13/2021] [Indexed: 05/08/2023]
Abstract
3D-printing technology provided numerous contributions to the health sector during the recent Coronavirus disease 2019 (COVID-19) pandemic. Several of the 3D-printed medical devices like personal protection equipment (PPE), ventilators, specimen collectors, safety accessories, and isolation wards/ chambers were printed in a short time as demands for these were rising significantly. The review discusses some of these contributions of 3D-printing that helped to protect several lives during this health emergency. By enlisting some of the significant benefits of using the 3D-printing technique during an emergency over other conventional methods, this review claims that the former opens enormous possibilities in times of serious shortage of supply and exceeding demands. This review acknowledges the collaborative approaches adopted by individuals, entrepreneurs, academicians, and companies that helped in forming a global network for delivering 3D-printed medical/non-medical components, when other supply chains were disrupted. The collaboration of the 3D-printing technology with the global health community unfolds new and significant opportunities in the future.
Collapse
Affiliation(s)
| | - Martin Pumera
- Future Energy and Innovation LaboratoryCentral European Institute of TechnologyBrno University of TechnologyPurkyňova 123Brno61200Czech Republic
- Department of Chemistry and Biochemistry3D Printing & Innovation HubMendel University in BrnoZemedelska 1Brno61300Czech Republic
- Department of Chemical and Biomolecular EngineeringYonsei University50 Yonsei‐ro, Seodaemun‐guSeoul03722Korea
- Department of Medical ResearchChina Medical University HospitalChina Medical UniversityNo. 91 Hsueh‐Shih RoadTaichung40402Taiwan
| |
Collapse
|
9
|
Guvener O, Eyidogan A, Oto C, Huri PY. Novel additive manufacturing applications for communicable disease prevention and control: focus on recent COVID-19 pandemic. EMERGENT MATERIALS 2021; 4:351-361. [PMID: 33585795 PMCID: PMC7874037 DOI: 10.1007/s42247-021-00172-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 01/24/2021] [Indexed: 05/02/2023]
Abstract
COVID-19 disease caused by the SARS-CoV-2 virus has had serious adverse effects globally in 2020 which are foreseen to extend in 2021, as well. The most important of these effects was exceeding the capacity of the healthcare infrastructures, and the related inability to meet the need for various medical equipment especially within the first months of the crisis following the emergence and rapid spreading of the virus. Urgent global demand for the previously unavailable personal protective equipment, sterile disposable medical supplies as well as the active molecules including vaccines and drugs fueled the need for the coordinated efforts of the scientific community. Amid all this confusion, the rapid prototyping technology, 3D printing, has demonstrated its competitive advantage by repositioning its capabilities to respond to the urgent need. Individual and corporate, amateur and professional all makers around the world with 3D printing capacity became united in effort to fill the gap in the supply chain until mass production is available especially for personal protective equipment and other medical supplies. Due to the unexpected, ever-changing nature of the COVID-19 pandemic-like all other potential communicable diseases-the need for rapid design and 3D production of parts and pieces as well as sterile disposable medical equipment and consumables is likely to continue to keep its importance in the upcoming years. This review article summarizes how additive manufacturing technology can contribute to such cases with special focus on the recent COVID-19 pandemic.
Collapse
Affiliation(s)
- Orcun Guvener
- Ankara University Medical Design Research and Application Center, MEDITAM, Ankara, Turkey
- Ankara University Faculty of Veterinary Medicine, Department of Anatomy, Ankara, Turkey
| | - Abdullah Eyidogan
- Ankara University Medical Design Research and Application Center, MEDITAM, Ankara, Turkey
- Ankara University Faculty of Engineering, Department of Biomedical Engineering, Ankara, Turkey
| | - Cagdas Oto
- Ankara University Medical Design Research and Application Center, MEDITAM, Ankara, Turkey
- Ankara University Faculty of Veterinary Medicine, Department of Anatomy, Ankara, Turkey
| | - Pinar Yilgor Huri
- Ankara University Medical Design Research and Application Center, MEDITAM, Ankara, Turkey
- Ankara University Faculty of Engineering, Department of Biomedical Engineering, Ankara, Turkey
| |
Collapse
|
10
|
Aydin A, Demirtas Z, Ok M, Erkus H, Cebi G, Uysal E, Gunduz O, Ustundag CB. 3D printing in the battle against COVID-19. EMERGENT MATERIALS 2021; 4:363-386. [PMID: 33585793 PMCID: PMC7868677 DOI: 10.1007/s42247-021-00164-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/12/2021] [Indexed: 05/03/2023]
Abstract
Coronavirus disease 2019 (COVID-19) that is SARS-CoV-2, previously called 2019-nCoV, is a kind of human infectious disease caused by severe acute respiratory syndrome coronavirus. Based on the prompt increase of human infection rate, COVID-19 outbreak was distinguished as a pandemic by the World Health Organization (WHO). By 2020, COVID-19 becomes a major health problem all around the world. Due to the battle against COVID-19, there are some adversities that are encountered with. The most significant difficulty is the lack of equipment for the COVID-19 battle. Lately, there is not sufficient personal protective equipment (PPE) for hospital workers on the front lines in this terrifying time. All around the world, hospitals are overwhelmed by the volume of patients and the lack of personal protective equipment including face masks, gloves, eye protection and clothing. In addition, the lack of nasal swabs, which are necessary components, that are used for testing is another issue that is being faced. There are a small number of respirators, which are emergency devices that help patients breathe for a short period of time. To overcome the limited number of equipment available, the foremost solution can be 3D printing that allows three-dimensional renderings to be realized as physical objects with the use of a printer and that revolutionized prototyping. Low-cost desktop 3D printers allow economical 3D models and guides but have less quality approvals. 3D printing is already well integrated into the process of COVID-19 battle by manufacturing the equipment that are convenient. The goals of this review are to explore the techniques of 3D printing for the equipment that are used for COVID-19 battle and evaluate the materials that are used for manufacturing and the manufactured equipment. Lastly, the advantages and disadvantages of 3D printing are figured out.
Collapse
Affiliation(s)
- Ayca Aydin
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210 Istanbul, Turkey
| | - Zeynep Demirtas
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210 Istanbul, Turkey
| | - Merve Ok
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210 Istanbul, Turkey
| | - Huseyin Erkus
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210 Istanbul, Turkey
| | - Gizem Cebi
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210 Istanbul, Turkey
| | - Ebru Uysal
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210 Istanbul, Turkey
- Vocational School of Health Care Services, Istanbul Yeni Yuzyil University, 34010 Istanbul, Turkey
- Center for Nanotechnology and Biomaterials Application and Research (NBUAM), Marmara University, 34722 Istanbul, Turkey
| | - Oguzhan Gunduz
- Center for Nanotechnology and Biomaterials Application and Research (NBUAM), Marmara University, 34722 Istanbul, Turkey
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, 34722 Istanbul, Turkey
| | - Cem Bulent Ustundag
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210 Istanbul, Turkey
- Center for Nanotechnology and Biomaterials Application and Research (NBUAM), Marmara University, 34722 Istanbul, Turkey
| |
Collapse
|