1
|
Xin H, Wang Y, Todd MJ, Qi J, Minor LK. Evaluation of No-Wash Calcium Assay Kits: Enabling Tools for Calcium Mobilization. ACTA ACUST UNITED AC 2016; 12:705-14. [PMID: 17537987 DOI: 10.1177/1087057107301522] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The no-wash calcium assay kits developed by Molecular Devices Corporation have greatly enhanced the throughput of cell-based calcium mobilization high-throughput screening (HTS) assays and enabled screening using nonadherent cells. The fluorescent imaging plate reader (FLIPR) Calcium 3 Assay Kit, optimal for targets that have proteins or peptides as agonists, has 2 potential drawbacks: 1) a significant downward spike in fluorescence signal upon liquid transfer that can be the same magnitude as the agonist response, making data analysis difficult; and 2) medium removal is required for some targets, which essentially reintroduces a wash step. Several no-wash products were introduced in 2005. The authors compare the Fluo-4 NW Calcium Assay Kit and the BD™ Calcium Assay Kit with the FLIPR Calcium 3 Assay Kit using human native rhabdomyosarcoma cells expressing the urotensin-II receptor (UT). The BD™ Calcium Assay Kit gives the best performance in the true no-wash mode, in which both agonist and antagonist activity are easily quantified. Although these new products provide additional options for measuring calcium mobilization, the different results observed with each kit, using the UT receptor as an example, suggest that one should characterize all dyes against each target in a systematic way prior to choosing one for HTS. ( Journal of Biomolecular Screening 2007:705-714)
Collapse
Affiliation(s)
- Hong Xin
- Johnson & Johnson Pharmaceutical Research & Development, L.L.C., Spring House, Pennsylvania 19477-0776, USA.
| | | | | | | | | |
Collapse
|
2
|
Du Y, Days E, Romaine I, Abney KK, Kaufmann K, Sulikowski G, Stauffer S, Lindsley CW, Weaver CD. Development and validation of a thallium flux-based functional assay for the sodium channel NaV1.7 and its utility for lead discovery and compound profiling. ACS Chem Neurosci 2015; 6:871-8. [PMID: 25879403 DOI: 10.1021/acschemneuro.5b00004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ion channels are critical for life, and they are targets of numerous drugs. The sequencing of the human genome has revealed the existence of hundreds of different ion channel subunits capable of forming thousands of ion channels. In the face of this diversity, we only have a few selective small-molecule tools to aid in our understanding of the role specific ion channels in physiology which may in turn help illuminate their therapeutic potential. Although the advent of automated electrophysiology has increased the rate at which we can screen for and characterize ion channel modulators, the technique's high per-measurement cost and moderate throughput compared to other high-throughput screening approaches limit its utility for large-scale high-throughput screening. Therefore, lower cost, more rapid techniques are needed. While ion channel types capable of fluxing calcium are well-served by low cost, very high-throughput fluorescence-based assays, other channel types such as sodium channels remain underserved by present functional assay techniques. In order to address this shortcoming, we have developed a thallium flux-based assay for sodium channels using the NaV1.7 channel as a model target. We show that the assay is able to rapidly and cost-effectively identify NaV1.7 inhibitors thus providing a new method useful for the discovery and profiling of sodium channel modulators.
Collapse
Affiliation(s)
| | | | | | - Kris K. Abney
- Meharry Medical
College Program in Pharmacology, Nashville, Tennessee 37208, United States
| | | | | | | | | | | |
Collapse
|
3
|
Jarvis MF, Scott VE, McGaraughty S, Chu KL, Xu J, Niforatos W, Milicic I, Joshi S, Zhang Q, Xia Z. A peripherally acting, selective T-type calcium channel blocker, ABT-639, effectively reduces nociceptive and neuropathic pain in rats. Biochem Pharmacol 2014; 89:536-44. [DOI: 10.1016/j.bcp.2014.03.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 03/25/2014] [Accepted: 03/26/2014] [Indexed: 01/03/2023]
|
4
|
Venom peptides as a rich source of cav2.2 channel blockers. Toxins (Basel) 2013; 5:286-314. [PMID: 23381143 PMCID: PMC3640536 DOI: 10.3390/toxins5020286] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/07/2013] [Accepted: 01/25/2013] [Indexed: 11/24/2022] Open
Abstract
Cav2.2 is a calcium channel subtype localized at nerve terminals, including nociceptive fibers, where it initiates neurotransmitter release. Cav2.2 is an important contributor to synaptic transmission in ascending pain pathways, and is up-regulated in the spinal cord in chronic pain states along with the auxiliary α2δ1 subunit. It is therefore not surprising that toxins that inhibit Cav2.2 are analgesic. Venomous animals, such as cone snails, spiders, snakes, assassin bugs, centipedes and scorpions are rich sources of remarkably potent and selective Cav2.2 inhibitors. However, side effects in humans currently limit their clinical use. Here we review Cav2.2 inhibitors from venoms and their potential as drug leads.
Collapse
|
5
|
Chen Q, Yim PD, Yuan N, Johnson J, Cook JM, Smith S, Ionescu-Zanetti C, Wang ZJ, Arnold LA, Emala CW. Comparison of cell expression formats for the characterization of GABA(A) channels using a microfluidic patch clamp system. Assay Drug Dev Technol 2012; 10:325-35. [PMID: 22574655 DOI: 10.1089/adt.2011.415] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ensemble recording and microfluidic perfusion are recently introduced techniques aimed at removing the laborious nature and low recording success rates of manual patch clamp. Here, we present assay characteristics for these features integrated into one automated electrophysiology platform as applied to the study of GABA(A) channels. A variety of cell types and methods of GABA(A) channel expression were successfully studied (defined as I(GABA)>500 pA), including stably transfected human embryonic kidney (HEK) cells expressing α(1)β(3)γ(2) GABA(A) channels, frozen ready-to-assay (RTA) HEK cells expressing α(1)β(3)γ(2) or α(3)β(3)γ(2) GABA(A) channels, transiently transfected HEK293T cells expressing α(1)β(3)γ(2) GABA(A) channels, and immortalized cultures of human airway smooth muscle cells endogenously expressing GABA(A) channels. Current measurements were successfully studied in multiple cell types with multiple modes of channel expression in response to several classic GABA(A) channel agonists, antagonists, and allosteric modulators. We obtained success rates above 95% for transiently or stably transfected HEK cells and frozen RTA HEK cells expressing GABA(A) channels. Tissue-derived immortalized cultures of airway smooth muscle cells exhibited a slightly lower recording success rate of 75% using automated patch, which was much higher than the 5% success rate using manual patch clamp technique by the same research group. Responses to agonists, antagonists, and allosteric modulators compared well to previously reported manual patch results. The data demonstrate that both the biophysics and pharmacologic characterization of GABA(A) channels in a wide variety of cell formats can be performed using this automated patch clamp system.
Collapse
Affiliation(s)
- Qin Chen
- Fluxion Biosciences, South San Francisco, California, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Swensen AM, Niforatos W, Vortherms TA, Perner RJ, Li T, Schrimpf MR, Scott VE, Lee L, Jarvis MF, McGaraughty S. An automated electrophysiological assay for differentiating Ca(v)2.2 inhibitors based on state dependence and kinetics. Assay Drug Dev Technol 2012; 10:542-50. [PMID: 22428804 DOI: 10.1089/adt.2011.437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ca(V)2.2 (N-type) calcium channels are key regulators of neurotransmission. Evidence from knockout animals and localization studies suggest that Ca(V)2.2 channels play a critical role in nociceptive transmission. Additionally, ziconotide, a selective peptide inhibitor of Ca(V)2.2 channels, is clinically used to treat refractory pain. However, the use of ziconotide is limited by its low therapeutic index, which is believed, at least in part, to be a consequence of ziconotide inhibiting Ca(V)2.2 channels regardless of the channel state. Subsequent efforts have focused on the discovery of state-dependent inhibitors that preferentially bind to the inactivated state of Ca(V)2.2 channels in order to achieve an improved safety profile relative to ziconotide. Much less attention has been paid to understanding the binding kinetics of these state-dependent inhibitors. Here, we describe a novel electrophysiology-based assay on an automated patch platform designed to differentiate Ca(V)2.2 inhibitors based on their combined state dependence and kinetics. More specifically, this assay assesses inactivated state block, closed state block, and monitors the kinetics of recovery from block when channels move between states. Additionally, a use-dependent assay is described that uses a train of depolarizing pulses to drive channels to a similar level of inactivation for comparison. This use-dependent protocol also provides information on the kinetics of block development. Data are provided to show how these assays can be utilized to screen for kinetic diversity within and across chemical classes.
Collapse
Affiliation(s)
- Andrew M Swensen
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois 60064-6118, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
A-1048400 is a novel, orally active, state-dependent neuronal calcium channel blocker that produces dose-dependent antinociception without altering hemodynamic function in rats. Biochem Pharmacol 2011; 83:406-18. [PMID: 22153861 DOI: 10.1016/j.bcp.2011.10.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 10/31/2011] [Accepted: 10/31/2011] [Indexed: 11/21/2022]
Abstract
Blockade of voltage-gated Ca²⁺ channels on sensory nerves attenuates neurotransmitter release and membrane hyperexcitability associated with chronic pain states. Identification of small molecule Ca²⁺ channel blockers that produce significant antinociception in the absence of deleterious hemodynamic effects has been challenging. In this report, two novel structurally related compounds, A-686085 and A-1048400, were identified that potently block N-type (IC₅₀=0.8 μM and 1.4 μM, respectively) and T-type (IC₅₀=4.6 μM and 1.2 μM, respectively) Ca²⁺ channels in FLIPR based Ca²⁺ flux assays. A-686085 also potently blocked L-type Ca²⁺ channels (EC₅₀=0.6 μM), however, A-1048400 was much less active in blocking this channel (EC₅₀=28 μM). Both compounds dose-dependently reversed tactile allodynia in a model of capsaicin-induced secondary hypersensitivity with similar potencies (EC₅₀=300-365 ng/ml). However, A-686085 produced dose-related decreases in mean arterial pressure at antinociceptive plasma concentrations in the rat, while A-1048400 did not significantly alter hemodynamic function at supra-efficacious plasma concentrations. Electrophysiological studies demonstrated that A-1048400 blocks native N- and T-type Ca²⁺ currents in rat dorsal root ganglion neurons (IC₅₀=3.0 μM and 1.6 μM, respectively) in a voltage-dependent fashion. In other experimental pain models, A-1048400 dose-dependently attenuated nociceptive, neuropathic and inflammatory pain at doses that did not alter psychomotor or hemodynamic function. The identification of A-1048400 provides further evidence that voltage-dependent inhibition of neuronal Ca²⁺ channels coupled with pharmacological selectivity vs. L-type Ca²⁺ channels can provide robust antinociception in the absence of deleterious effects on hemodynamic or psychomotor function.
Collapse
|
8
|
Golden AP, Li N, Chen Q, Lee T, Nevill T, Cao X, Johnson J, Erdemli G, Ionescu-Zanetti C, Urban L, Holmqvist M. IonFlux: a microfluidic patch clamp system evaluated with human Ether-à-go-go related gene channel physiology and pharmacology. Assay Drug Dev Technol 2011; 9:608-19. [PMID: 21561375 DOI: 10.1089/adt.2010.0362] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ion channel assays are essential in drug discovery, not only for identifying promising new clinical compounds, but also for minimizing the likelihood of potential side effects. Both applications demand optimized throughput, cost, and predictive accuracy of measured membrane current changes evoked or modulated by drug candidates. Several competing electrophysiological technologies are available to address this demand, but important gaps remain. We describe the industrial application of a novel microfluidic-based technology that combines compounds, cells, and buffers on a single, standard well plate. Cell trapping, whole cell, and compound perfusion are accomplished in interconnecting microfluidic channels that are coupled to pneumatic valves, which emancipate the system from robotics, fluidic tubing, and associated maintenance. IonFlux™ is a state-of-the-art, compact system with temperature control and continuous voltage clamp for potential application in screening for voltage- and ligand-gated ion channel modulators. Here, ensemble recordings of the IonFlux system were validated with the human Ether-à-go-go related gene (hERG) channel (stably expressed in a Chinese hamster ovary cell line), which has established biophysical and pharmacological characteristics in other automated planar patch systems. We characterized the temperature dependence of channel activation and its reversal potential. Concentration response characteristics of known hERG blockers and control compounds obtained with the IonFlux system correlated with literature and internal data obtained on this cell line with the QPatch HT system. Based on the biophysical and pharmacological data, we conclude that the IonFlux system offers a novel, versatile, automated profiling, and screening system for ion channel targets with the benefit of temperature control.
Collapse
Affiliation(s)
- Andrew P Golden
- Preclinical Safety Profiling, Center for Proteomic Chemistry, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Vortherms TA, Swensen AM, Niforatos W, Limberis JT, Neelands TR, Janis RS, Thimmapaya R, Donnelly-Roberts DL, Namovic MT, Zhang D, Brent Putman C, Martin RL, Surowy CS, Jarvis MF, Scott VE. Comparative analysis of inactivated-state block of N-type (Cav2.2) calcium channels. Inflamm Res 2011; 60:683-93. [DOI: 10.1007/s00011-011-0322-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 02/18/2011] [Accepted: 02/21/2011] [Indexed: 12/01/2022] Open
|
10
|
Finley MFA, Lubin ML, Neeper MP, Beck E, Liu Y, Flores CM, Qin N. An integrated multiassay approach to the discovery of small-molecule N-type voltage-gated calcium channel antagonists. Assay Drug Dev Technol 2010; 8:685-94. [PMID: 21050074 DOI: 10.1089/adt.2010.0311] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract The N-type voltage-gated calcium channel (Cav2.2) has been intensively explored as a target for novel, small-molecule analgesic drugs because of its distribution in the pain pathway and its role in nociceptive processing. For example, Cav2.2 is localized at presynaptic terminals of pain fibers in the dorsal horn, and it serves as a downstream effector of μ-opioid receptors. Most importantly, antagonism of the channel by the highly specific and potent Cav2.2 blocker ω-conotoxin MVIIA (ziconotide) produces clinical efficacy in the treatment of severe, intractable pain. To identify novel small-molecule Cav2.2 inhibitors, we developed new tools and screening methods critical to enhance the efficiency and probability of success. First, we established and characterized a new cell line stably expressing the three subunits of the Cav2.2, including an α-subunit splice variant that is uniquely expressed by dorsal root ganglion neurons. Second, using this cell line, we validated and employed a fluorescence-based calcium flux assay. Third, we developed a new "medium-throughput" electrophysiology assay using QPatch-HT to provide faster turnaround on high-content electrophysiology data that are critical for studying ion channel targets. Lastly, we used a therapeutically relevant, ex vivo spinal cord calcitonin gene-related peptide-release assay to confirm activities in the other assays. Using this approach we have identified compounds exhibiting single-digit nM IC₅₀ values and with a positive correlation across assay methods. This integrated approach provides a more comprehensive evaluation of small-molecule N-type inhibitors that may lead to improved therapeutic pharmacology.
Collapse
Affiliation(s)
- Michael F A Finley
- Johnson & Johnson Pharmaceutical Research & Development, Spring House, Pennsylvania, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Belardetti F, Tringham E, Eduljee C, Jiang X, Dong H, Hendricson A, Shimizu Y, Janke DL, Parker D, Mezeyova J, Khawaja A, Pajouhesh H, Fraser RA, Arneric SP, Snutch TP. A Fluorescence-Based High-Throughput Screening Assay for the Identification of T-Type Calcium Channel Blockers. Assay Drug Dev Technol 2009; 7:266-80. [DOI: 10.1089/adt.2009.191] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Francesco Belardetti
- Neuromed Pharmaceuticals Ltd., Vancouver, British Columbia, Canada. Present address: Panora Pharmaceuticals Inc., Vancouver, British Columbia, Canada
| | | | - Cyrus Eduljee
- Neuromed Pharmaceuticals Ltd., Vancouver, British Columbia, Canada
| | - Xinpo Jiang
- Neuromed Pharmaceuticals Ltd., Vancouver, British Columbia, Canada
| | - Haiheng Dong
- Neuromed Pharmaceuticals Ltd., Vancouver, British Columbia, Canada. Present address: WuXi Pharmatech, Shanghai, China
| | - Adam Hendricson
- Neuromed Pharmaceuticals Ltd., Vancouver, British Columbia, Canada. Present address: Bristol-Myers Squibb, Wallingford, Connecticut
| | - Yoko Shimizu
- Neuromed Pharmaceuticals Ltd., Vancouver, British Columbia, Canada. Present address: Centre for Drug Research and Development, University of British Columbia, Vancouver, British Columbia, Canada
| | - Diana L. Janke
- Neuromed Pharmaceuticals Ltd., Vancouver, British Columbia, Canada. Present address: WorkSafeBC, Burnaby, British Columbia, Canada
| | - David Parker
- Neuromed Pharmaceuticals Ltd., Vancouver, British Columbia, Canada
| | - Janette Mezeyova
- Neuromed Pharmaceuticals Ltd., Vancouver, British Columbia, Canada
| | - Afsheen Khawaja
- Neuromed Pharmaceuticals Ltd., Vancouver, British Columbia, Canada
| | - Hassan Pajouhesh
- Neuromed Pharmaceuticals Ltd., Vancouver, British Columbia, Canada
| | - Robert A. Fraser
- Neuromed Pharmaceuticals Ltd., Vancouver, British Columbia, Canada. Present address: Centre for Drug Research and Development, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephen P. Arneric
- Neuromed Pharmaceuticals Ltd., Vancouver, British Columbia, Canada. Present address: Eli Lilly & Company, Indianapolis, Indiana
| | - Terrance P. Snutch
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
12
|
Emkey R, Rankl NB. Screening G protein-coupled receptors: measurement of intracellular calcium using the fluorometric imaging plate reader. Methods Mol Biol 2009; 565:145-58. [PMID: 19551361 DOI: 10.1007/978-1-60327-258-2_7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
G protein-coupled receptors (GPCRs) are the target of approximately 40% of all approved drugs and continue to represent a significant portion of drug discovery portfolios across the pharmaceutical industry. As a result, GPCRs are the focus of many high-throughput screening (HTS) campaigns. Historically, ligand-binding assays were used to identify compounds that targeted GPCRs. Current GPCR drug discovery efforts have moved toward the utilization of functional cell-based assays for HTS. Many of these assays monitor the accumulation of a second messenger such as cAMP or calcium in response to GPCR activation. Calcium stores are released from the endoplasmic reticulum when Galphaq-coupled GPCRs are activated. Although Galphai- and Galphas-coupled receptors do not normally result in this mobilization of intracellular calcium, they can often be engineered to do so by expressing a promiscuous or a chimeric Galphaprotein, which couples to the calcium pathway. Thus calcium mobilization is a readout that can theoretically be used to assess activation of all GPCRs. The fluorometric imaging plate reader (FLIPR) has facilitated the ability to monitor calcium mobilization in the HTS setting. This assay format allows one to monitor activation and inhibition of a GPCR in a single assay and has been one of the most heavily utilized formats for screening GPCRs.
Collapse
|
13
|
Dai G, Haedo RJ, Warren VA, Ratliff KS, Bugianesi RM, Rush A, Williams ME, Herrington J, Smith MM, McManus OB, Swensen AM. A High-Throughput Assay for Evaluating State Dependence and Subtype Selectivity of Cav2 Calcium Channel Inhibitors. Assay Drug Dev Technol 2008; 6:195-212. [DOI: 10.1089/adt.2008.136] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Ge Dai
- Merck Research Laboratories, Rahway, NJ
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|