1
|
Li Y, Zhou J, Wang L, Liu Q, Zhou C, Liao X, Yang B. Inclusion complexes of capsanthin with acyclic cucurbit[n]urils to improve its stability and antioxidant capacity. Food Chem 2024; 432:136852. [PMID: 37657344 DOI: 10.1016/j.foodchem.2023.136852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 09/03/2023]
Abstract
Capsanthin is a natural red pigment widely used in the food industry, but its pigment is severely lost during use and storage. Supramolecular chemistry-based macrocyclic hosts can encapsulate small molecule pigments to improve their stability and solubility. Herein, we synthesized two acyclic cucurbit[n]urils (ACBs, M1 and M2) as carriers for encapsulating capsanthin, and we expect this strategy to generate some positive improvements on the properties of capsanthin, extending its use by the food industry. Successful host-guest inclusion complexes (IC) formation was confirmed via 1H NMR, 2D-ROESY NMR, 13C NMR, XRD, and FT-IR. After encapsulation, the solubility of capsanthin was increased by 75.8 times and 62.3 times, respectively. Furthermore, the storage and utility of capsanthin was enhanced due to the phase transition from oil to solid powder. IC exhibited enhanced stability for capsanthin in challenging environments, such as high temperature, light exposure, acidity, metal ions, food additives, and extreme oxidation.
Collapse
Affiliation(s)
- Yamin Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Jiawei Zhou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Lutao Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Qingmeng Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Chao Zhou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Xiali Liao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China.
| | - Bo Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China.
| |
Collapse
|
2
|
Ozkan B, Altuntas E, Cakir Koc R, Budama-Kilinc Y. Development of piperine nanoemulsions: an alternative topical application for hypopigmentation. Drug Dev Ind Pharm 2022; 48:117-127. [PMID: 35815814 DOI: 10.1080/03639045.2022.2100901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this study, it was aimed to develop a topical piperine nanoemulsion (P-NE) using an ultrasonic emulsification process to find an alternative treatment option for some hypopigmentation disorders such as vitiligo.Results showed that 150 mg piperine loaded NE with 1:2 oil phase to Smix ratio and manufactured with 20 minutes ultrasonication duration with pre-emulsification step was the most durable formulation with a mean globule size of 216.00 ± 2.65, a PdI value of 0.094 ± 0.02 and a zeta potential value of -27.50 ± 2.48 mV.After three months of storage, the selected P-NE (coded as F3P2) remained kinetically stable without visual changes. This formulation displayed a sustained release pattern with a release of 81.92% ± 3.04% piperine after 72 hours. According to our in vitro activity experiments, it was determined that the P-NE had no toxic effect including dose of 5 mg/mL, and the highest P-NE formulation dose of 5 mg/mL increased tyrosinase activity by 32.77% ± 9.09% and melanogenesis activity by 34.90% ± 0.73%.In conclusion, it was demonstrated that the P-NE formulation may serve as a promising therapy for efficient treatment of vitiligo. Moreover, P-NE formulation may also help in preventing irregular pigmentation and skin cancer, associated with the conventional treatment methods.
Collapse
Affiliation(s)
- Burcu Ozkan
- Graduate School of Natural and Applied Science, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Ebru Altuntas
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, 34116, Istanbul, Turkey
| | - Rabia Cakir Koc
- Faculty of Chemical ansd Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Yasemin Budama-Kilinc
- Faculty of Chemical ansd Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, 34220, Istanbul, Turkey
| |
Collapse
|
4
|
Kennedy LE, Abraham A, Kulkarni G, Shettigar N, Dave T, Kulkarni M. Capsanthin, a Plant-Derived Xanthophyll: a Review of Pharmacology and Delivery Strategies. AAPS PharmSciTech 2021; 22:203. [PMID: 34244867 DOI: 10.1208/s12249-021-02065-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/01/2021] [Indexed: 01/22/2023] Open
Abstract
Capsanthin, a brightly orange-red-coloured pigment responsible for the peculiar red colour of paprika fruits (Capsicum annuum), belongs to xanthophylls, a class of oxygen-containing carotenoids. The characteristic chemical structure of capsanthin containing a keto group in conjunction with a long chain of 11 conjugated dienes is responsible for its strong radical scavenging and singlet oxygen quenching ability. Chemopreventive, antitumour, skin photo-protective, anti-inflammatory, and antidiabetic activities demonstrated by capsanthin are a consequence of its potent antioxidant action. Anti-obesity, anti-adipogenic, and antihyperlipidaemic activities are some of the more important features of capsanthin. With natural origin, bright red colour, and array of health benefits, capsanthin has a potential to be translated into a commercial cosmeceutical, nutraceutical, and/or pharmaceutical. However, the very low aqueous solubility of capsanthin is responsible for its highly variable and poor oral bioavailability. Moreover, its susceptibility to degradation due to heat, light, oxygen, and moisture poses challenges in the development of stable formulations for this otherwise meritorious compound. The current review presents various pharmacological activities of capsanthin and their underlying mechanisms. The review further discusses hitherto explored formulation strategies to improve solubility and stability of capsanthin. Graphical abstract.
Collapse
|
5
|
Stability and bioaccessibility improvement of capsorubin using bovine serum albumin-dextran-gallic acid and sodium alginate. Int J Biol Macromol 2021; 182:1362-1370. [PMID: 33965493 DOI: 10.1016/j.ijbiomac.2021.05.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 01/26/2023]
Abstract
This study attempted to prepare ternary conjugate emulsion from bovine serum albumin (BSA), dextran (DEX) and gallic acid (GA) to improve the stability of conjugate emulsion and the bioaccessibility of capsorubin. The release of capsorubin was further delayed by sodium alginate capsules in the intestinal phase. First, protein formed new functional groups and covalent bonds was analyzed by Fourier transform infrared (FTIR) and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Next, the stability of the ternary conjugate showed distinct pH correlation and the higher stability near the isoelectric point. Finally, the bioaccessibility of capsorubin embedded in sodium alginate emulsion was higher than that of ternary conjugate emulsion (65% and 34%).
Collapse
|
6
|
Maghsoudi S, Taghavi Shahraki B, Rabiee N, Fatahi Y, Bagherzadeh M, Dinarvand R, Ahmadi S, Rabiee M, Tahriri M, Hamblin MR, Tayebi L, Webster TJ. The colorful world of carotenoids: a profound insight on therapeutics and recent trends in nano delivery systems. Crit Rev Food Sci Nutr 2021; 62:3658-3697. [PMID: 33399020 DOI: 10.1080/10408398.2020.1867958] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The therapeutic effects of carotenoids as dietary supplements to control or even treat some specific diseases including diabetic retinopathy, cardiovascular diseases, bacterial infections, as well as breast, prostate, and skin cancer are discussed in this review and also thoughts on future research for their widespread use are emphasized. From the stability standpoint, carotenoids have low bioavailability and bioaccessibility owing to their poor water solubility, deterioration in the presence of environmental stresses such as oxygen, light, and high heat as well as rapid degradation during digestion. Nanoencapsulation technologies as wall or encapsulation materials have been increasingly used for improving food product functionality. Nanoencapsulation is a versatile process employed for the protection, entrapment, and the delivery of food bioactive products including carotenoids from diverse environmental conditions for extended shelf lives and for providing controlled release. Therefore, we present here, recent (mostly during the last five years) nanoencapsulation methods of carotenoids with various nanocarriers. To us, this review can be considered as the first highlighting not only the potential therapeutic effects of carotenoids on various diseases but also their most effective nanodelivery systems.HighlightsBioactive compounds are of deep interest to improve food properties.Carotenoids (such as β-carotene and xanthophylls) play indispensable roles in maintaining human health and well-being.A substantial research effort has been carried out on developing beneficial nanodelivery systems for various carotenoids.Nanoencapsulation of carotenoids can enhance their functional properties.Stable nanoencapsulated carotenoids could be utilized in food products.
Collapse
Affiliation(s)
- Saeid Maghsoudi
- Department of Medicinal Chemistry, Shiraz University of Technology, Shiraz, Iran
| | | | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Yousef Fatahi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, USA.,Department of Dermatology, Harvard Medical School, Boston, USA
| | - Lobat Tayebi
- Department of Engineering, Norfolk State University, Norfolk, VA, USA
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|