1
|
Miller C, Boegler K, Carver S, MacMillan M, Bielefeldt-Ohmann H, VandeWoude S. Pathogenesis of oral FIV infection. PLoS One 2017; 12:e0185138. [PMID: 28934316 PMCID: PMC5608358 DOI: 10.1371/journal.pone.0185138] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/05/2017] [Indexed: 01/09/2023] Open
Abstract
Feline immunodeficiency virus (FIV) is the feline analogue of human immunodeficiency virus (HIV) and features many hallmarks of HIV infection and pathogenesis, including the development of concurrent oral lesions. While HIV is typically transmitted via parenteral transmucosal contact, recent studies prove that oral transmission can occur, and that saliva from infected individuals contains significant amounts of HIV RNA and DNA. While it is accepted that FIV is primarily transmitted by biting, few studies have evaluated FIV oral infection kinetics and transmission mechanisms over the last 20 years. Modern quantitative analyses applied to natural FIV oral infection could significantly further our understanding of lentiviral oral disease and transmission. We therefore characterized FIV salivary viral kinetics and antibody secretions to more fully document oral viral pathogenesis. Our results demonstrate that: (i) saliva of FIV-infected cats contains infectious virus particles, FIV viral RNA at levels equivalent to circulation, and lower but significant amounts of FIV proviral DNA; (ii) the ratio of FIV RNA to DNA is significantly higher in saliva than in circulation; (iii) FIV viral load in oral lymphoid tissues (tonsil, lymph nodes) is significantly higher than mucosal tissues (buccal mucosa, salivary gland, tongue); (iv) salivary IgG antibodies increase significantly over time in FIV-infected cats, while salivary IgA levels remain static; and, (v) saliva from naïve Specific Pathogen Free cats inhibits FIV growth in vitro. Collectively, these results suggest that oral lymphoid tissues serve as a site for enhanced FIV replication, resulting in accumulation of FIV particles and FIV-infected cells in saliva. Failure to induce a virus-specific oral mucosal antibody response, and/or viral capability to overcome inhibitory components in saliva may perpetuate chronic oral cavity infection. Based upon these findings, we propose a model of oral FIV pathogenesis and suggest alternative diagnostic modalities and translational approaches to study oral HIV infection.
Collapse
Affiliation(s)
- Craig Miller
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Karen Boegler
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Scott Carver
- School of Zoology, University of Tasmania, Hobart, Tasmania, Australia
| | - Martha MacMillan
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, University of Queensland, St. Lucia, Queensland, Australia
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
- * E-mail:
| |
Collapse
|
2
|
Elder JH, Lin YC, Fink E, Grant CK. Feline immunodeficiency virus (FIV) as a model for study of lentivirus infections: parallels with HIV. Curr HIV Res 2010; 8:73-80. [PMID: 20210782 PMCID: PMC2853889 DOI: 10.2174/157016210790416389] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 11/02/2009] [Indexed: 12/22/2022]
Abstract
FIV is a significant pathogen in the cat and is, in addition, the smallest available natural model for the study of lentivirus infections. Although divergent at the amino acid level, the cat lentivirus has an abundance of structural and pathophysiological commonalities with HIV and thus serves well as a model for development of intervention strategies relevant to infection in both cats and man. The following review highlights both the strengths and shortcomings of the FIV/cat model, particular as regards development of antiviral drugs.
Collapse
Affiliation(s)
- John H Elder
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
3
|
Improved health and survival of FIV-infected cats is associated with the presence of autoantibodies to the primary receptor, CD134. Proc Natl Acad Sci U S A 2009; 106:19980-5. [PMID: 19901342 DOI: 10.1073/pnas.0911307106] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We analyzed antibody responses in sera from feline immunodeficiency virus (FIV)-infected and uninfected cats. A strong antiviral response to the viral surface glycoprotein (SU) was noted in both natural and experimental infections. In addition, 143 of 226 FIV-infected animals (63%) also expressed antibodies to the primary binding receptor, CD134, whereas cats infected with other feline RNA viruses, including calicivirus, coronavirus, herpesvirus, and feline leukemia virus, did not. Both affinity-purified anti-CD134 and anti-SU antibodies blocked FIV infection ex vivo. FACS analyses revealed that the anti-CD134 antibodies bound to a cryptic epitope on the receptor that was only exposed when SU bound to CD134. Anti-CD134 binding caused displacement of SU from the surface of the cell and inhibition of infection. The presence of antibodies to CD134 correlated with lower virus loads and a better overall health status in FIV(+) cats, whereas anti-SU antibodies were present independent of health status. The findings are consistent with a role for antireceptor antibodies in protection from virus spread and disease progression.
Collapse
|
4
|
Elder JH, Sundstrom M, de Rozieres S, de Parseval A, Grant CK, Lin YC. Molecular mechanisms of FIV infection. Vet Immunol Immunopathol 2008; 123:3-13. [PMID: 18289701 DOI: 10.1016/j.vetimm.2008.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Feline immunodeficiency virus (FIV) is an important viral pathogen worldwide in the domestic cat, which is the smallest animal model for the study of natural lentivirus infection. Thus, understanding the molecular mechanisms by which FIV carries out its life cycle and causes an acquired immune deficiency syndrome (AIDS) in the cat is of high priority. FIV has an overall genome size similar to HIV, the causative agent of AIDS in man, and shares with the human virus genomic features that may serve as common targets for development of broad-based intervention strategies. Specific targets include enzymes encoded by the two lentiviruses, such as protease (PR), reverse transcriptase (RT), RNAse H, and integrase (IN). In addition, both FIV and HIV encode Vif and Rev elements essential for virus replication and also share the use of the chemokine receptor CXCR4 for entry into the host cell. The following review is a brief overview of the current state of characterization of the feline/FIV model and development of its use for generation and testing of anti-viral agents.
Collapse
Affiliation(s)
- John H Elder
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States.
| | | | | | | | | | | |
Collapse
|
5
|
In vivo CXCR4 expression, lymphoid cell phenotype, and feline immunodeficiency virus infection. Vet Immunol Immunopathol 2008; 123:97-105. [PMID: 18295345 DOI: 10.1016/j.vetimm.2008.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Primary isolates of feline immunodeficiency virus (FIV) appear to require binding to CD134 in conjunction with CXCR4(X4) to infect IL-2-dependent T-cell-derived cells in culture. However, much less is known about the role of X4 for the infection of cells in vivo. To investigate the correlation between X4 expression and FIV infection in cats acutely infected with FIV-C-Pgmr we used high-speed fluorescence-activated cell sorting and realtime PCR to co-analyze cell phenotypes from lymph node, thymus, bone marrow and blood for FIV infection and X4 expression. X4 expression was greatest in lymph node, both in frequency and in mean fluorescence intensity. The thymus demonstrated a higher proviral burden in X4+ thymic T cells ( approximately 14% in X4+ thymic T cells and 7% in X4- cells) whereas, proviral loads were similar between X4+ and X4- cell populations in all other tissues examined. Assuming a minimum of one proviral copy per cell, a maximum of approximately 50% of FIV-positive cells were X4+. The highest fraction of FIV-infected X4- cells was present in bone marrow. Regardless of X4 status, proviral loads were higher in lymph node and blood T cells than in B cells. These studies provide both a positive association between X4 expression and FIV infection and introduce the probability that X4-independent infection occurs in other target cells in vivo.
Collapse
|
6
|
Avery PR, Hoover EA. Gamma interferon/interleukin 10 balance in tissue lymphocytes correlates with down modulation of mucosal feline immunodeficiency virus infection. J Virol 2004; 78:4011-9. [PMID: 15047817 PMCID: PMC374259 DOI: 10.1128/jvi.78.8.4011-4019.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2003] [Accepted: 01/06/2004] [Indexed: 11/20/2022] Open
Abstract
Understanding the early cytokine response to lentiviral infections may be critical to the design of prevention and treatment strategies. By using the feline immunodeficiency virus (FIV) model, we have documented an interleukin 10 (IL10)-dominated response in lymphoid tissue CD4(+) and CD8(+) T lymphocytes within the first 4 weeks after mucosal FIV infection. This profile coincided with the period of high tissue viral replication. By 10 weeks postinfection, tissue viral levels decreased significantly, and gamma interferon (IFN gamma) production in CD8(+) T cells had increased to restore the IL10/IFN gamma ratio to control levels. Concurrently, increased production of IL6 and viral RNA was detected in macrophages. These temporal associations of viral replication with cytokine balance in tissues suggest roles for IL10 in the permissive stage of infection and IFN gamma in the subsequent down modulation of lentiviral infection.
Collapse
Affiliation(s)
- Paul R Avery
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, USA.
| | | |
Collapse
|
7
|
Rogers AB, Mathiason CK, Hoover EA. Immunohistochemical localization of feline immunodeficiency virus using native species antibodies. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:1143-51. [PMID: 12368188 PMCID: PMC1867283 DOI: 10.1016/s0002-9440(10)64391-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Feline immunodeficiency virus (FIV) is the feline analog of human immunodeficiency virus and a small animal model of human acquired immune deficiency syndrome (AIDS). We sought to identify early in vivo target cells in cats infected with clade B or C FIV. In tissues, however, neither mouse monoclonal nor rabbit polyclonal antibodies suitably detected FIV because of either insensitivity or lack of specificity. We therefore developed an immunohistochemical protocol using high-antibody-titer serum from cats chronically infected with FIV(Petaluma). Native species anti-FIV antibodies were labeled with biotinylated protein A before placement on tissues, and downstream signal was tyramide-amplified. This method revealed many productively infected cells in bone marrow, lymph node, thymus, mucosal-associated lymphoid tissue, and spleen, but few such cells in liver and none in kidney or brain. Concurrent labeling for virus and cell phenotype revealed that antigen-bearing populations were primarily T lymphocytes but included macrophages and dendritic cells. Our results demonstrate that FIV: 1) expands rapidly in T cells, 2) targets long-lived reservoir populations, and 3) is replicatively quiescent in brain at 3 weeks after infection. Use of native species antibodies for immunohistochemical detection of infectious antigens has application to other settings in which xenotypic (eg, mouse and rabbit) antibody sources are inadequate or unavailable.
Collapse
Affiliation(s)
- Arlin B Rogers
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523-1674, USA
| | | | | |
Collapse
|
8
|
Bingen A, Nonnenmacher H, Bastien-Valle M, Martin JP. Tissues rich in macrophagic cells are the major sites of feline immunodeficiency virus uptake after intravenous inoculation into cats. Microbes Infect 2002; 4:795-803. [PMID: 12270726 DOI: 10.1016/s1286-4579(02)01599-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
To track the sites of feline immunodeficiency virus (FIV) clearance in cats and follow viral localization from 30 min until 48 h post-intravenous inoculation, several kinds of cells (PBMC, splenocytes, thymocytes, Kupffer cells (KC), lymph nodes, bone marrow and alveolar cells) were collected. After co-culture with uninfected PBMC, p24 antigen was detected. Reverse transcription (RT)-nested PCR and PCR were performed on all these cells and in situ RT-PCR on liver, spleen and isolated KC. Biochemical determinations showed that viral RNA was predominantly found during the first hour post-infection (p.i.) in PBMC, splenocytes and KC and later on (24-48 h) in thymocytes and lymph node cells. In addition, viral DNA was detected as early as 24 h post-inoculation in splenocytes and KC, whereas PBMC were positive at 48 h. Microscopic studies confirmed the presence of viral RNA in hepatic KC and also in the splenic red pulp rich in macrophages and dendritic cells. Our results enabled the early identification of the cell population infected and highlight the role played by macrophagic cells in the uptake of FIV and in viral dissemination.
Collapse
Affiliation(s)
- Annick Bingen
- Unité Inserm 544, Institut de Virologie, Faculté de Médecine, 3 Rue Koeberlé, Université Louis Pasteur, 67000 Strasbourg, France
| | | | | | | |
Collapse
|
9
|
Abstract
To identify the early target cells and tissues in transmucosal feline immunodeficiency virus (FIV) infection, cats were exposed to a clade C FIV isolate via the oral-nasal or vaginal mucosa and multiple tissues were examined by virus isolation coculture (VI), DNA PCR, catalyzed tyramide signal-amplified in situ hybridization (TSA-ISH), and immunohistochemistry between days 1 and 12 postinoculation (p.i.). FIV RNA was detected in tonsil and oral or vaginal mucosa as early as 1 day p.i. by TSA-ISH and in retropharyngeal, tracheobronchial, or external iliac lymph nodes and sometimes in spleen or blood mononuclear cells by day 2, indicating that regional and distant spread of virus-infected cells occurred rapidly after mucosal exposure. By day 8, viral RNA, DNA, and culturable virus were uniformly detected in regional and distant tissues, connoting systemic infection. TSA-ISH proved more sensitive than DNA PCR in detecting early FIV-infected cells. In mucosal tissues, the earliest demonstrable FIV-bearing cells were either within or subjacent to the mucosal epithelium or were in germinal centers of regional lymph nodes. The FIV(+) cells were of either of two morphological types, large stellate or small round. Those FIV RNA(+) cells which could be colabeled for a phenotype marker, were labeled for either dendritic-cell-associated protein p55 or T-lymphocyte receptor antigen CD3. These studies indicate that FIV crosses mucous membranes within hours after exposure and rapidly traffics via dendritic and T cells to systemic lymphoid tissues, a pathway similar to that thought to occur in the initial phase of infection by the human and simian immunodeficiency viruses.
Collapse
Affiliation(s)
- Leslie A Obert
- Department of Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | | |
Collapse
|
10
|
Obert LA, Hoover EA. Relationship of lymphoid lesions to disease course in mucosal feline immunodeficiency virus type C infection. Vet Pathol 2000; 37:386-401. [PMID: 11055861 DOI: 10.1354/vp.37-5-386] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Feline immunodeficiency virus (FIV) infection typically has a prolonged and variable disease course in cats, which can limit its usefulness as a model for human immunodeficiency virus infection. A clade C FIV isolate (FIV-C) has been associated with high viral burdens and rapidly progressive disease in cats. FIV-C was transmissible via oral-nasal, vaginal, or rectal mucosal exposure, and infection resulted in one of three disease courses: rapid, conventional/slow, or regressive. The severity of the pathologic changes paralleled the disease course. Thymic depletion was an early lesion and was correlated with detection of FIV RNA in thymocytes by in situ hybridization. The major changes in thymic cell populations were depletion of p55+/S100+ dendritic cells, CD3- cells, CD4+/CD8- cells, and CD4+/CD8+ cells and increases in apoptosis, CD45R+ B cells, and lymphoid follicles. In contrast to thymic depletion, peripheral lymphoid tissues often were hyperplastic. Mucosally transmitted FIV-C is thymotropic and induces a spectrum of lymphoid lesions and disease mirroring that seen with the human and simian immunodeficiency virus infections.
Collapse
Affiliation(s)
- L A Obert
- Department of Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins 80523, USA
| | | |
Collapse
|
11
|
Couëdel-Courteille A, Butor C, Juillard V, Guillet JG, Venet A. Dissemination of SIV after rectal infection preferentially involves paracolic germinal centers. Virology 1999; 260:277-94. [PMID: 10417263 DOI: 10.1006/viro.1999.9809] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Homosexual transmission remains a major mode of contamination in developed countries. Early virological and immunological events in lymphoid tissues are known to be important for the outcome of HIV infections. Little data are available, however, on viral dissemination during primary rectal infection. We therefore studied this aspect of rectal infection in rhesus macaques inoculated with the biological isolate SIVmac251. We show that infection is established initially in lymph nodes draining the rectum. Infected cells and virions are localized mainly in germinal centers at that stage. With increasing viral burden, infected cells are found throughout the lymph node parenchyma. In addition the difference in viral load between lymph nodes draining the rectum and other lymph nodes is attenuated or abolished. We discuss this pattern of viral dissemination with respect to the physiology of the mucosal immune system. The pattern and kinetics of viral dissemination after rectal infection have important implications for the development of efficient mucosal vaccines.
Collapse
Affiliation(s)
- A Couëdel-Courteille
- Laboratoire d'Immunologie des Pathologies Infectieuses et Tumorales, Institut National de la Santé et de la Recherche Médicale U445, Institut Cochin de Génétique Moléculaire, 22 rue Méchain, Paris, 75014, France.
| | | | | | | | | |
Collapse
|
12
|
Pistello M, Matteucci D, Cammarota G, Mazzetti P, Giannecchini S, Del Mauro D, Macchi S, Zaccaro L, Bendinelli M. Kinetics of replication of a partially attenuated virus and of the challenge virus during a three-year intersubtype feline immunodeficiency virus superinfection experiment in cats. J Virol 1999; 73:1518-27. [PMID: 9882357 PMCID: PMC103976 DOI: 10.1128/jvi.73.2.1518-1527.1999] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effects of preinfecting cats with a partially attenuated feline immunodeficiency virus (FIV) on subsequent infection with a fully virulent FIV belonging to a different subtype were investigated. Eight specific-pathogen-free cats were preinfected with graded doses of a long-term in vitro-cultured cell-free preparation of FIV Petaluma (FIV-P, subtype A). FIV-P established a low-grade or a silent infection in the inoculated animals. Seven months later, the eight preinfected cats and two uninfected cats were challenged with in vivo-grown FIV-M2 (subtype B) and periodically monitored for immunological and virological status. FIV-P-preinfected cats were not protected from acute infection by FIV-M2, and the sustained replication of this virus was accompanied by a reduction of FIV-P viral loads in the peripheral blood mononuclear cells and plasma. However, from 2 years postchallenge (p.c.) until 3 years p.c., when the experiment was terminated, preinfected cats exhibited reduced total viral burdens, and some also exhibited a diminished decline of circulating CD4(+) T lymphocytes relative to control cats infected with FIV-M2 alone. Interestingly, most of the virus detected in challenged cats at late times p.c. was of FIV-P origin, indicating that the preinfecting, attenuated virus had become largely predominant. By the end of follow-up, two challenged cats had no FIV-M2 detectable in the tissues examined. The possible mechanisms underlying the interplay between the two viral populations are discussed.
Collapse
Affiliation(s)
- M Pistello
- Retrovirus Center and Virology Section, Department of Biomedicine, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Richardson J, Moraillon A, Baud S, Cuisinier AM, Sonigo P, Pancino G. Enhancement of feline immunodeficiency virus (FIV) infection after DNA vaccination with the FIV envelope. J Virol 1997; 71:9640-9. [PMID: 9371628 PMCID: PMC230272 DOI: 10.1128/jvi.71.12.9640-9649.1997] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Despite intensive experimentation to develop effective and safe vaccines against the human immunodeficiency viruses and other pathogenic lentiviruses, it remains unclear whether an immune response that does not afford protection may, on the contrary, produce adverse effects. In the present study, the effect of genetic immunization with the env gene was examined in a natural animal model of lentivirus pathogenesis, infection of cats by the feline immunodeficiency virus (FIV). Three groups of seven cats were immunized by intramuscular transfer of plasmid DNAs expressing either the wild-type envelope or two envelopes bearing mutations in the principal immunodominant domain of the transmembrane glycoprotein. Upon homologous challenge, determination of plasma virus load showed that the acute phase of viral infection occurred earlier in the three groups of cats immunized with FIV envelopes than in the control cats. Genetic immunization, however, elicited low or undetectable levels of antibodies directed against envelope glycoproteins. These results suggest that immunization with the FIV env gene may result in enhancement of infection and that mechanisms unrelated to enhancing antibodies underlay the observed acceleration.
Collapse
Affiliation(s)
- J Richardson
- Génétique des Virus et Immunopharmacologie Moléculaire, ICGM-CNRS UPR415, Institut Cochin de Génétique Moléculaire, Paris, France
| | | | | | | | | | | |
Collapse
|
14
|
Holznagel E, Lutz H, Steinhauer D, Reinacher M. Feline immunodeficiency virus (FIV) infection in cats at necropsy: a serological study. J Comp Pathol 1997; 116:339-52. [PMID: 9179747 DOI: 10.1016/s0021-9975(97)80051-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sera collected post mortem during a 6-month period from cats were tested for feline immunodeficiency virus (FIV)-specific antibodies by (1) an enzyme-linked immunosorbent assay (ELISA), (2) an indirect peroxidase-based immunocytological test (IP), (3) a Western immunoblotting (WB) method with FIV-infected cell lysates, and (4) a WB method with purified viral antigen. All four methods were capable of detecting FIV-specific antibodies in haemolysed sera. However, the ELISA showed the lowest "positive predictive value" (PVpos = 22%) followed by the IP (PVpos 50-60%). Serum was FIV antibody-positive in 6% (15/255) of all cats examined. The mean age of seropositive cats was 9 years (4 years among seronegative cases) and the male-to-female ratio in such cats was 1.8 to 1 (overall ratio 0.8 to 1). Forty per cent of the seropositive cats were in the final phase of acquired immune deficiency syndrome. Feline leukaemia virus (FeLV) predominated among viral co-infections. It was concluded that (1) a combination of the IP and WB reliably detected FIV-specific antibodies in sera collected post mortem, and (2) at post-mortem examination, cats from high-risk groups (male, > 5 years old, hypercellular bone marrow) were frequently infected with FIV.
Collapse
Affiliation(s)
- E Holznagel
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Giessen, Germany
| | | | | | | |
Collapse
|
15
|
Gray F, Scaravilli F, Everall I, Chretien F, An S, Boche D, Adle-Biassette H, Wingertsmann L, Durigon M, Hurtrel B, Chiodi F, Bell J, Lantos P. Neuropathology of early HIV-1 infection. Brain Pathol 1996; 6:1-15. [PMID: 8866743 DOI: 10.1111/j.1750-3639.1996.tb00775.x] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Early HIV-1 invasion of the central nervous system has been demonstrated by many cerebrospinal fluid studies; however, most HIV-1 carriers remain neurologically unimpaired during the so called "asymptomatic" period lasting from seroconversion to symptomatic AIDS. Therefore, neuropathological studies in the early pre-AIDS stages are very few, and the natural history of central nervous system changes in HIV-1 infection remains poorly understood. Examination of brains of asymptomatic HIV-1 positive individuals who died accidentally and of rare cases with acute fatal encephalopathy revealing HIV infection, and comparison with experimental simian immunodeficiency virus and feline immunodeficiency virus infections suggest that, invasion of the CNS by HIV-1 occurs at the time of primary infection and induces an immunological process in the central nervous system. This includes an inflammatory T-cell reaction with vasculitis and leptomeningitis, and immune activation of brain parenchyma with increased number of microglial cells, upregulation of major histocompatibility complex class II antigens and local production of cytokines. Myelin pallor and gliosis of the white matter are usually found and are likely to be the consequence of opening of the blood brain barrier due to vasculitis; direct damage to oligodendrocytes by cytokines may also interfere. These white matter changes may explain, at least partly, the early cerebral atrophy observed, by magnetic resonance imaging, in asymptomatic HIV-1 carriers. In contrast, cortical damage seems to be a late event in the course of HIV-1 infection. There is no significant neuronal loss at the early stages of the disease, no accompanying increase in glial fibrillary acid protein staining in the cortex, and only exceptional neuronal apoptosis. Although HIV-1 proviral DNA may be demonstrated in a number of brains, viral replication remains very low during the asymptomatic stage of HIV-1 infection. This makes it likely that, although opening of the blood brain barrier may facilitate viral entry into the brain, specific immune responses including both neutralising antibodies and cytotoxic T-lymphocytes, continuously inhibits viral replication at that stage.
Collapse
Affiliation(s)
- F Gray
- Hôpital Raymond Poincaré-Faculté de Médecine Paris-Ouest, Garches, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|