1
|
Worel N, Ljungman P, Verheggen ICM, Hoogenboom JD, Knelange NS, Eikema DJ, Sánchez-Ortega I, Riillo C, Centorrino I, Averbuch D, Chabannon C, de la Camara R, Kuball J, Ruggeri A. Fresh or frozen grafts for allogeneic stem cell transplantation: conceptual considerations and a survey on the practice during the COVID-19 pandemic from the EBMT Infectious Diseases Working Party (IDWP) and Cellular Therapy & Immunobiology Working Party (CTIWP). Bone Marrow Transplant 2023; 58:1348-1356. [PMID: 37673982 DOI: 10.1038/s41409-023-02099-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 08/12/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023]
Abstract
The COVID-19 pandemic has had a significant impact on medical practices, including the delivery of allogeneic hematopoietic cell transplantation (HCT). In response, transplant centers have made changes to their procedures, including an increased use of cryopreservation for allogeneic haematopoietic progenitor cell (HPC) grafts. The use of cryopreserved grafts for allogeneic HCT has been reviewed and analysed in terms of potential benefits and drawbacks based on existing data on impact on cell subsets, hematological recovery, and clinical outcomes of approximately 2000 patients from different studies. A survey of European Society for Blood and Marrow Transplantation centers was also conducted to assess changes in practice during the pandemic and any unnecessary burdens on HPC donors. Before the pandemic, only 7.4% of transplant centers were routinely cryopreserving HPC products, but this percentage increased to 90% during the pandemic. The results of this review and survey suggest that cryopreservation of HPC grafts is a viable option for allogeneic HCT in certain situations, but further research is needed to determine long-term effects and ethical discussions are required to balance the needs of donors and patients when using frozen allografts.
Collapse
Affiliation(s)
- N Worel
- Medical University Vienna; Department. of Transfusion Medicine and Cell Therapy, Vienna, Austria.
| | - P Ljungman
- Department. of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska Comprehensive Cancer Center, Karolinska University Hospital Huddinge and Div. of Hematology, Department. of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | - D-J Eikema
- EBMT Statistical Unit, Leiden, Netherlands
| | | | - C Riillo
- Department of Hematology, University Medical Center Utrecht, Utrecht, Netherlands
| | - I Centorrino
- Department of Hematology, University Medical Center Utrecht, Utrecht, Netherlands
| | - D Averbuch
- Faculty of Medicine, Hebrew University of Jerusalem; Hadassah Medical Center, Jerusalem, Israel
| | - C Chabannon
- Institut Paoli-Calmettes, Centre de Lutte Contre le Cancer; Centre d'Investigations Cliniques en Biothérapie, Université d'Aix-Marseille, Inserm CBT, 1409, Marseille, France
| | | | - J Kuball
- Department of Hematology, University Medical Center Utrecht, Utrecht, Netherlands
| | - A Ruggeri
- Ospedale San Raffaele s.r.l., Haematology and BMT, Milan, Italy
| |
Collapse
|
2
|
Waerlop G, Leroux-Roels G, Lambe T, Bellamy D, Medaglini D, Pettini E, Cox RJ, Trieu MC, Davies R, Bredholt G, Montomoli E, Gianchecchi E, Clement F. Harmonization and qualification of an IFN-γ Enzyme-Linked ImmunoSpot assay (ELISPOT) to measure influenza-specific cell-mediated immunity within the FLUCOP consortium. Front Immunol 2022; 13:984642. [PMID: 36159843 PMCID: PMC9493492 DOI: 10.3389/fimmu.2022.984642] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Influenza continues to be the most important cause of viral respiratory disease, despite the availability of vaccines. Today’s evaluation of influenza vaccines mainly focuses on the quantitative and functional analyses of antibodies to the surface proteins haemagglutinin (HA) and neuraminidase (NA). However, there is an increasing interest in measuring cellular immune responses targeting not only mutation-prone surface HA and NA but also conserved internal proteins as these are less explored yet potential correlates of protection. To date, laboratories that monitor cellular immune responses use a variety of in-house procedures. This generates diverging results, complicates interlaboratory comparisons, and hampers influenza vaccine evaluation. The European FLUCOP project aims to develop and standardize assays for the assessment of influenza vaccine correlates of protection. This report describes the harmonization and qualification of the influenza-specific interferon-gamma (IFN-γ) Enzyme-Linked ImmunoSpot (ELISpot) assay. Initially, two pilot studies were conducted to identify sources of variability during sample analysis and spot enumeration in order to develop a harmonized Standard Operating Procedure (SOP). Subsequently, an assay qualification study was performed to investigate the linearity, intermediate precision (reproducibility), repeatability, specificity, Lower and Upper Limits of Quantification (LLOQ-ULOQ), Limit of Detection (LOD) and the stability of signal over time. We were able to demonstrate that the FLUCOP harmonized IFN-γ ELISpot assay procedure can accurately enumerate IFN-γ secreting cells in the analytical range of 34.4 Spot Forming Units (SFU) per million cells up to the technical limit of the used reader and in the linear range from 120 000 to 360 000 cells per well, in plates stored up to 6 weeks after development. This IFN-γ ELISpot procedure will hopefully become a useful and reliable tool to investigate influenza-specific cellular immune responses induced by natural infection or vaccination and can be an additional instrument in the search for novel correlates of protection.
Collapse
Affiliation(s)
- Gwenn Waerlop
- Center for Vaccinology (CEVAC), University Hospital, Ghent University, Ghent, Belgium
- *Correspondence: Gwenn Waerlop,
| | - Geert Leroux-Roels
- Center for Vaccinology (CEVAC), University Hospital, Ghent University, Ghent, Belgium
| | - Teresa Lambe
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Duncan Bellamy
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Donata Medaglini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Elena Pettini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Rebecca Jane Cox
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Mai-Chi Trieu
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Richard Davies
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Geir Bredholt
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- VisMederi srl, Siena, Italy
| | | | - Frédéric Clement
- Center for Vaccinology (CEVAC), University Hospital, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Abstract
Gene therapy, cell therapy and vaccine research have led to an increased need to perform cellular immunity testing in a regulated environment to ensure the safety and efficacy of these treatments. The most common method for the measurement of cellular immunity has been Enzyme-Linked Immunospot assays. However, there is a lack of regulatory guidance available discussing the recommendations for developing and validating these types of assays. Hence, the Global CRO Council has issued this white paper to provide a consensus on the different validation parameters required to support Enzyme-Linked Immunospot assays and a harmonized and consistent approach to Enzyme-Linked Immunospot validation among contract research organizations.
Collapse
|
4
|
Abstract
The enzyme-linked immunospot (ELISpot) is a highly sensitive immunoassay that measures the frequency of cytokine-secreting cells at the single-cell level. The secreted molecules are detected by using a detection antibody system similar to that used in the enzyme-linked immunosorbent assay (ELISA). The ELISpot assay is carried out in a 96-well plate and an automated ELISpot reader is used for analysis. The assay is easy to perform, robust and allows rapid analysis of a large number of samples and is not limited to measurement of cytokines; it is suitable for almost any secreted protein where single-cell analysis is of interest.
Collapse
|
5
|
Chen D, Abu Zaid MI, Reiter JL, Czader M, Wang L, McGuire P, Xuei X, Gao H, Huang K, Abonour R, Walker BA, Liu Y. Cryopreservation Preserves Cell-Type Composition and Gene Expression Profiles in Bone Marrow Aspirates From Multiple Myeloma Patients. Front Genet 2021; 12:663487. [PMID: 33968139 PMCID: PMC8099152 DOI: 10.3389/fgene.2021.663487] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
Single-cell RNA sequencing reveals gene expression differences between individual cells and also identifies different cell populations that are present in the bulk starting material. To obtain an accurate assessment of patient samples, single-cell suspensions need to be generated as soon as possible once the tissue or sample has been collected. However, this requirement poses logistical challenges for experimental designs involving multiple samples from the same subject since these samples would ideally be processed at the same time to minimize technical variation in data analysis. Although cryopreservation has been shown to largely preserve the transcriptome, it is unclear whether the freeze-thaw process might alter gene expression profiles in a cell-type specific manner or whether changes in cell-type proportions might also occur. To address these questions in the context of multiple myeloma clinical studies, we performed single-cell RNA sequencing (scRNA-seq) to compare fresh and frozen cells isolated from bone marrow aspirates of six multiple myeloma patients, analyzing both myeloma cells (CD138+) and cells constituting the microenvironment (CD138−). We found that cryopreservation using 90% fetal calf serum and 10% dimethyl sulfoxide resulted in highly consistent gene expression profiles when comparing fresh and frozen samples from the same patient for both CD138+ myeloma cells (R ≥ 0.96) and for CD138– cells (R ≥ 0.9). We also demonstrate that CD138– cell-type proportions showed minimal alterations, which were mainly related to small differences in immune cell subtype sensitivity to the freeze-thaw procedures. Therefore, when processing fresh multiple myeloma samples is not feasible, cryopreservation is a useful option in single-cell profiling studies.
Collapse
Affiliation(s)
- Duojiao Chen
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of BioHealth Informatics, School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Mohammad I Abu Zaid
- Division of Hematology and Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States.,Bone Marrow and Blood Stem Cell Transplantation Program, Indiana University Health, Indianapolis, IN, United States
| | - Jill L Reiter
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Magdalena Czader
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Lin Wang
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Patrick McGuire
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States.,Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Xiaoling Xuei
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States.,Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Hongyu Gao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, United States.,Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kun Huang
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of BioHealth Informatics, School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States.,Division of Hematology and Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Rafat Abonour
- Division of Hematology and Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States.,Bone Marrow and Blood Stem Cell Transplantation Program, Indiana University Health, Indianapolis, IN, United States
| | - Brian A Walker
- Division of Hematology and Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of BioHealth Informatics, School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States.,Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
6
|
Langat RK, Farah B, Indangasi J, Ogola S, Omosa-Manyonyi G, Anzala O, Bizimana J, Tekirya E, Ngetsa C, Silwamba M, Muyanja E, Chetty P, Jangano M, Hills N, Gilmour J, Dally L, Cox JH, Hayes P. Performance of International AIDS Vaccine Initiative African clinical research laboratories in standardised ELISpot and peripheral blood mononuclear cell processing in support of HIV vaccine clinical trials. Afr J Lab Med 2021; 10:1056. [PMID: 33833946 PMCID: PMC8014752 DOI: 10.4102/ajlm.v10i1.1056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/23/2020] [Indexed: 11/28/2022] Open
Abstract
Background Standardisation of procedures for performing cellular functional assays across laboratories participating in multicentre clinical trials is key for generating comparable and reliable data. Objective This article describes the performance of accredited laboratories in Africa and Europe on testing done in support of clinical trials. Methods For enzyme-linked immunospot assay (ELISpot) proficiency, characterised peripheral blood mononuclear cells (PBMCs) obtained from 48 HIV-negative blood donors in Johannesburg, South Africa, were sent to participating laboratories between February 2010 and February 2014. The PBMCs were tested for responses against cytomegalovirus, Epstein Barr and influenza peptide pools in a total of 1751 assays. In a separate study, a total of 1297 PBMC samples isolated from healthy HIV-negative participants in clinical trials of two prophylactic HIV vaccine candidates in Kenya, Uganda, Rwanda and Zambia were analysed for cell viability, cell yield and cell recovery from frozen PBMCs. Results Most (99%) of the 1751 ELISpot proficiency assays had data within acceptable ranges with low responses to mock stimuli. No significant statistical difference were observed in ELISpot responses at the five laboratories actively conducting immunological analyses. Of the 1297 clinical trial PBMCs processed, 94% had cell viability above 90% and 96% had cell yield above 0.7 million per mL of blood in freshly isolated cells. All parameters were within the predefined acceptance criteria. Conclusion We demonstrate that multiple laboratories can generate reliable, accurate and comparable data by using standardised procedures, having regular training, having regular equipment maintenance and using centrally sourced reagents.
Collapse
Affiliation(s)
- Robert K Langat
- Kenya AIDS Vaccine Initiative, Institute of Clinical Research, University of Nairobi, Nairobi, Kenya.,International AIDS Vaccine Initiative (IAVI), Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Bashir Farah
- Kenya AIDS Vaccine Initiative, Institute of Clinical Research, University of Nairobi, Nairobi, Kenya
| | - Jackton Indangasi
- Kenya AIDS Vaccine Initiative, Institute of Clinical Research, University of Nairobi, Nairobi, Kenya
| | - Simon Ogola
- Kenya AIDS Vaccine Initiative, Institute of Clinical Research, University of Nairobi, Nairobi, Kenya
| | - Gloria Omosa-Manyonyi
- Kenya AIDS Vaccine Initiative, Institute of Clinical Research, University of Nairobi, Nairobi, Kenya
| | - Omu Anzala
- Kenya AIDS Vaccine Initiative, Institute of Clinical Research, University of Nairobi, Nairobi, Kenya
| | | | | | - Caroline Ngetsa
- Kenya Medical Research Institute Centre for Geographical Medicine Research Coast, Mombasa, Kenya
| | | | - Enoch Muyanja
- Ugandan Virus Research Institute-IAVI, Entebbe, Uganda
| | - Paramesh Chetty
- International AIDS Vaccine Initiative, Johannesburg, South Africa
| | | | - Nancy Hills
- School of Medicine, University of California, San Francisco, California, United States
| | - Jill Gilmour
- International AIDS Vaccine Initiative (IAVI), Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Len Dally
- Emmes Corporation, Rockville, Maryland, United States
| | - Josephine H Cox
- Clinical Trials Program, Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States
| | - Peter Hayes
- International AIDS Vaccine Initiative (IAVI), Human Immunology Laboratory, Imperial College, London, United Kingdom
| |
Collapse
|
7
|
Gouttefangeas C, Schuhmacher J, Dimitrov S. Adhering to adhesion: assessing integrin conformation to monitor T cells. Cancer Immunol Immunother 2019; 68:1855-1863. [PMID: 31309255 PMCID: PMC11028104 DOI: 10.1007/s00262-019-02365-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/02/2019] [Indexed: 11/27/2022]
Abstract
Monitoring T cells is of major importance for the development of immunotherapies. Recent sophisticated assays can address particular aspects of the anti-tumor T-cell repertoire or support very large-scale immune screening for biomarker discovery. Robust methods for the routine assessment of the quantity and quality of antigen-specific T cells remain, however, essential. This review discusses selected methods that are commonly used for T-cell monitoring and summarizes the advantages and limitations of these assays. We also present a new functional assay, which specifically detects activated β2 integrins within a very short time following CD8+ T-cell stimulation. Because of its unique and favorable characteristics, this assay could be useful for implementation into our T-cell monitoring toolbox.
Collapse
Affiliation(s)
- Cécile Gouttefangeas
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University, Auf der Morgenstelle 15, 72076, Tübingen, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany.
| | - Juliane Schuhmacher
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University, Auf der Morgenstelle 15, 72076, Tübingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany
| | - Stoyan Dimitrov
- Institute of Medical Psychology and Behavioral Neurobiology, Eberhard Karls University, Otfried-Müller Straße 25, 72076, Tübingen, Germany.
- German Center for Diabetes Research, 72076, Tübingen, Germany.
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich at the University of Tübingen (IDM), Otfried-Müller Straße 10, 72076, Tübingen, Germany.
| |
Collapse
|
8
|
Abstract
Much has been written about Elispot and how to optimally run the assay for a wide variety of applications. But only a limited number of articles exist addressing the analysis step, the plate evaluation. Comparing that fact with the vast amount of analysis advise available for other single cell immune assay, for example, intracellular cytokine staining, the overall impression may be that Elispot evaluation is just simple enough to not require extensive elaboration and guidance. At first thought this appears reasonable because how difficult can it be counting colored spots on a white background. In addition, automated Elispot readers were already introduced more than 20 years ago (Herr et al., J Immunol Methods 203, 141-152, 1997), easing the strenuous load of manual counting and providing means to decrease the subjectivity in Elispot analysis. Just shortly thereafter however, the first report was published about the subjectivity and operator-dependency of plate evaluation even when using automated reader systems (Janetzki et al., J Immunol Methods 291, 175-183, 2004). Later, the plate evaluation was identified as a main factor causing variability in Elispot results, triggering the inclusion of recommendations on handling of artifacts and the audits of plate reading results in the Initial Elispot Harmonization guidelines (Janetzki et al., Cancer Immunol Immunother 57, 303-315, 2008; Britten et al., Cancer Immunol Immunother 57, 289-302, 2008). In follow-up, a large international study with 75 laboratories was conducted to address the current approaches taken to evaluate Elispot plates and to establish consensus guidelines for plate evaluation (Janetzki et al., Nat Protoc 10, 1098-1115, 2015). This article addresses the special challenges of plate evaluation, gives explanations for unusual observation, and provides overall recommendations on how to work through the labyrinth of available algorithms and reader settings to obtain reliable Elispot data.
Collapse
|
9
|
Liu AY, De Rosa SC, Guthrie BL, Choi RY, Kerubo-Bosire R, Richardson BA, Kiarie J, Farquhar C, Lohman-Payne B. High background in ELISpot assays is associated with elevated levels of immune activation in HIV-1-seronegative individuals in Nairobi. IMMUNITY INFLAMMATION AND DISEASE 2018; 6:392-401. [PMID: 29974672 PMCID: PMC6113767 DOI: 10.1002/iid3.231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/14/2018] [Accepted: 06/18/2018] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Spontaneous interferon-γ (IFNγ) released detected by enzyme-linked immunospot (ELISpot) assays may be a biological phenomenon. Markers of immune activation levels were assessed as correlates of high background among individuals in Kenya. METHODS Couples concordantly seronegative for HIV-1 were enrolled. IFN-γ ELISpot assays were conducted and negative control wells were categorized as having either high or low background (≥50 and <50 SFU/106 peripheral blood mononuclear cells [PBMC], respectively). PBMC were stained for CD4, CD8, and immune activation markers (CD38 and HLA-DR) and analyzed using flow cytometry. Proportions of activated T-cells were compared between those with low and high background by Mann-Whitney U test. Correlates of background SFU and immune activation were assessed using regression models. RESULTS Among 58 individuals, 14 (24%) had high background. Frequencies of CD4+ CD38+ HLA-DR+ and CD8+ CD38+ HLA-DR+ cells were higher in individuals with high background compared to those with low background (P = 0.02). Higher background SFU was associated with history of sexually transmitted infections (P = 0.03), and illness in the past 3 months (P = 0.005), in addition to increased levels of activated CD4+ and CD8+ cells (P range = 0.008-0.03). Female gender and male circumcision decreased levels of CD4+ and CD8+ immune activation (P range = 0.002-0.03). Additionally, higher background SFU and activated CD4+ and CD8+ cells were individually associated with positive ELISpot responses to HIV-1 peptide pools (P range = 0.01-0.03). CONCLUSIONS These findings suggest that increased basal immune responses may be a biological mechanism contributing to higher background ELISpot SFU. Systematic exclusion of data from individuals with increased background in IFN-γ release assays may bias results in population-based studies.
Collapse
Affiliation(s)
- Amy Y Liu
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Stephen C De Rosa
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Brandon L Guthrie
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Robert Y Choi
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Rose Kerubo-Bosire
- Centre for Public Health Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Barbra A Richardson
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Global Health, University of Washington, Seattle, Washington, USA.,Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - James Kiarie
- Department of Obstetrics and Gynaecology, Kenyatta National Hospital, Nairobi, Kenya
| | - Carey Farquhar
- Department of Epidemiology, University of Washington, Seattle, Washington, USA.,Department of Medicine, University of Washington, Seattle, Washington, USA.,Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Barbara Lohman-Payne
- Department of Medicine, University of Washington, Seattle, Washington, USA.,Department of Global Health, University of Washington, Seattle, Washington, USA.,Department of Paediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
10
|
Beddall M, Chattopadhyay PK, Kao SF, Foulds K, Roederer M. A simple tube adapter to expedite and automate thawing of viably frozen cells. J Immunol Methods 2016; 439:74-78. [PMID: 27594593 DOI: 10.1016/j.jim.2016.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 08/27/2016] [Accepted: 08/29/2016] [Indexed: 11/29/2022]
Abstract
Although cryopreserved cell specimens are used throughout biomedical research, the process for thawing samples is labor-intensive and prone to error. Here we describe a small laboratory device that couples an uncapped vial of frozen cells to a conical tube containing warm cell culture media. The entire complex is loaded directly into a centrifuge; within 5min, cells are thawed and diluted out of toxic cryopreservation medium. The recovery and viability of cells are slightly reduced compared to the common (traditional) method. However, antigen-specific T-cell function is not affected. Since no technician time is required (beyond uncapping of vials), our device allows the parallel processing of as many samples as a centrifuge can hold (up to 96, in some models). Moreover, since the samples are not thawed manually in a water bath, the problems associated with technician-to-technician differences in sample handling are minimized, as is the potential for contamination. Importantly, the elimination of substantial labor involving subjective decisions standardizes this process and can reduce variability in results from cryopreserved specimens.
Collapse
Affiliation(s)
- Margaret Beddall
- ImmunoTechnology Section, Vaccine Research Center, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892, United States
| | - Pratip K Chattopadhyay
- ImmunoTechnology Section, Vaccine Research Center, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892, United States.
| | - Shing-Fen Kao
- ImmunoTechnology Section, Vaccine Research Center, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892, United States
| | - Kathy Foulds
- ImmunoTechnology Section, Vaccine Research Center, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892, United States
| | - Mario Roederer
- ImmunoTechnology Section, Vaccine Research Center, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892, United States
| |
Collapse
|
11
|
Sheehan J, Hirschfeld S, Foster E, Ghitza U, Goetz K, Karpinski J, Lang L, Moser RP, Odenkirchen J, Reeves D, Rubinstein Y, Werner E, Huerta M. Improving the value of clinical research through the use of Common Data Elements. Clin Trials 2016; 13:671-676. [PMID: 27311638 DOI: 10.1177/1740774516653238] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The use of Common Data Elements can facilitate cross-study comparisons, data aggregation, and meta-analyses; simplify training and operations; improve overall efficiency; promote interoperability between different systems; and improve the quality of data collection. A Common Data Element is a combination of a precisely defined question (variable) paired with a specified set of responses to the question that is common to multiple datasets or used across different studies. Common Data Elements, especially when they conform to accepted standards, are identified by research communities from variable sets currently in use or are newly developed to address a designated data need. There are no formal international specifications governing the construction or use of Common Data Elements. Consequently, Common Data Elements tend to be made available by research communities on an empiric basis. Some limitations of Common Data Elements are that there may still be differences across studies in the interpretation and implementation of the Common Data Elements, variable validity in different populations, and inhibition by some existing research practices and the use of legacy data systems. Current National Institutes of Health efforts to support Common Data Element use are linked to the strengthening of National Institutes of Health Data Sharing policies and the investments in data repositories. Initiatives include cross-domain and domain-specific resources, construction of a Common Data Element Portal, and establishment of trans-National Institutes of Health working groups to address technical and implementation topics. The National Institutes of Health is seeking to lower the barriers to Common Data Element use through greater awareness and encourage the culture change necessary for their uptake and use. As National Institutes of Health, other agencies, professional societies, patient registries, and advocacy groups continue efforts to develop and promote the responsible use of Common Data Elements, particularly if linked to accepted data standards and terminologies, continued engagement with and feedback from the research community will remain important.
Collapse
Affiliation(s)
- Jerry Sheehan
- National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Steven Hirschfeld
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Erin Foster
- National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Udi Ghitza
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Kerry Goetz
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joanna Karpinski
- National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Lisa Lang
- National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Richard P Moser
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joanne Odenkirchen
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Dianne Reeves
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yaffa Rubinstein
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Ellen Werner
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael Huerta
- National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
12
|
Trück J, Mitchell R, Thompson AJ, Morales-Aza B, Clutterbuck EA, Kelly DF, Finn A, Pollard AJ. Effect of cryopreservation of peripheral blood mononuclear cells (PBMCs) on the variability of an antigen-specific memory B cell ELISpot. Hum Vaccin Immunother 2015; 10:2490-6. [PMID: 25424961 DOI: 10.4161/hv.29318] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The ELISpot assay is used in vaccine studies for the quantification of antigen-specific memory B cells (B(MEM)), and can be performed using cryopreserved samples. The effects of cryopreservation on B(MEM) detection and the consistency of cultured ELISpot assays when performed by different operators or laboratories are unknown. In this study, blood was taken from healthy volunteers, and a cultured ELISpot assay was used to count B(MEM) specific for 2 routine vaccine antigens (diphtheria and tetanus toxoid). Results were assessed for intra- and inter-operator variation, and the effects of cryopreservation. Cryopreserved samples were shipped to a second laboratory in order to assess inter-laboratory variation. B(MEM) frequencies were very strongly correlated when comparing fresh and frozen samples processed by the same operator, and were also very strongly correlated when comparing 2 operators in the same laboratory. Results were slightly less consistent when samples were processed in different laboratories but correlation between the 2 measurements was still very strong. Although cell viability was reduced in some cryopreserved samples due to higher temperatures during transportation, B(MEM) could still be quantified. These results demonstrate the reproducibility of the ELISpot assay across operators and laboratories, and support the use of cryopreserved samples in future B(MEM) studies.
Collapse
Affiliation(s)
- Johannes Trück
- a Oxford Vaccine Group; Department of Paediatrics; University of Oxford and the NIHR Oxford Biomedical Research Centre; Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Janetzki S, Price L, Schroeder H, Britten CM, Welters MJP, Hoos A. Guidelines for the automated evaluation of Elispot assays. Nat Protoc 2015; 10:1098-115. [PMID: 26110715 DOI: 10.1038/nprot.2015.068] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The presented protocol for Elispot plate evaluation summarizes how to implement the recommendations developed following the establishment of a large-scale international Elispot plate-reading panel and subsequent multistep consensus-finding process. The panel involved >100 scientists from various immunological backgrounds. The protocol includes the description and justification of steps for setting reading parameters to obtain accurate, reliable and precise automated analysis results of Elispot plates. Further, necessary adjustments for out-of-specification situations are described and examples are provided. The plate analysis, including parameter adjustments, auditing of results and necessary annotations, should be achievable within a time range of 10-30 min per plate. Adoption of these guidelines should enable a further reduction in assay variability and an increase in the reliability and comparability of results obtained by Elispot. These guidelines conclude the ongoing harmonization efforts for the enzymatic Elispot assay.
Collapse
Affiliation(s)
| | - Leah Price
- LBPrice Statistical Consulting Ltd., Karmiel, Israel
| | | | | | - Marij J P Welters
- Department of Clinical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Axel Hoos
- Department of ImmunoOncology, GlaxoSmith Kline, Collegeville, Pennsylvania, USA
| |
Collapse
|
14
|
Carluccio S, Delbue S, Signorini L, Setola E, Bagliani A, Della Valle A, Galli A, Ferrante P, Bregni M. Generation of tumor-specific cytotoxic T-lymphocytes from the peripheral blood of colorectal cancer patients for adoptive T-cell transfer. J Cell Physiol 2015; 230:1457-65. [PMID: 25556900 DOI: 10.1002/jcp.24886] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 12/05/2014] [Indexed: 12/31/2022]
Abstract
This study designs a strategy for an adoptive cellular therapy (ACT) protocol based on the ex-vivo selection of autologous peripheral blood-derived CD8-enriched T-cells, stimulated with dendritic cells (DCs) that had been pulsed with apoptotic tumor cells to generate cytotoxic T lymphocytes (CTLs) with anti-tumor activity. Seventy-eight colorectal cancer (CRC) patients were enrolled in this study. Tumor tissues and peripheral blood (PB) were obtained at surgery. Tissues were mechanically dissociated and cultured to obtain a primary tumor cell line from each patient. DCs were derived from peripheral blood mononuclear cells (PBMCs) using magnetic positive selection of CD14+ monocytes. Anti-tumor CTLs were elicited in co-/micro-cultures using DCs as antigen-presenting cells, autologous apoptotic tumor cells as a source of antigens, and CD8+ T lymphocytes as effectors. Interferon-γ (IFN-γ) secretion was assessed by ELISpot assays to evaluate the activation of the CTLs against the autologous tumor cells. Primary tumor cell lines were obtained from 20 of 78 patients (25.6%). DCs were generated from 26 patients, and of them, corresponding tumor cell lines were derived from six patients. ELISpot results showed that significant IFN-γ secretion was detected after different numbers of stimulations for two patients, whereas weak secretion was observed for three patients. Despite difficulties due to contamination of several primary tumor cell lines with gut intestinal flora, the results suggest that the generation of tumor-specific CTLs is feasible from patients with CRC, and could be useful for supporting an ACT approach in CRC.
Collapse
Affiliation(s)
- Silvia Carluccio
- Department of Biomedical, Surgical and Dental Science, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Stepping up ELISpot: Multi-Level Analysis in FluoroSpot Assays. Cells 2014; 3:1102-15. [PMID: 25437440 PMCID: PMC4276915 DOI: 10.3390/cells3041102] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 11/18/2022] Open
Abstract
ELISpot is one of the most commonly used immune monitoring assays, which allows the functional assessment of the immune system at the single cell level. With its outstanding sensitivity and ease of performance, the assay has recently advanced from the mere single function cell analysis to multifunctional analysis by implementing detection reagents that are labeled with fluorophores (FluoroSpot), allowing the detection of secretion patterns of two or more analytes in a single well. However, the automated evaluation of such assays presents various challenges for image analysis. Here we dissect the technical and methodological requirements for a reliable analysis of FluoroSpot assays, introduce important quality control measures and provide advice for proper interpretation of results obtained by automated imaging systems.
Collapse
|
16
|
Chudley L, McCann KJ, Coleman A, Cazaly AM, Bidmon N, Britten CM, van der Burg SH, Gouttefangeas C, Jandus C, Laske K, Maurer D, Romero P, Schröder H, Stynenbosch LFM, Walter S, Welters MJP, Ottensmeier CH. Harmonisation of short-term in vitro culture for the expansion of antigen-specific CD8(+) T cells with detection by ELISPOT and HLA-multimer staining. Cancer Immunol Immunother 2014; 63:1199-211. [PMID: 25134947 PMCID: PMC4209099 DOI: 10.1007/s00262-014-1593-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/01/2014] [Indexed: 10/31/2022]
Abstract
Ex vivo ELISPOT and multimer staining are well-established tests for the assessment of antigen-specific T cells. Many laboratories are now using a period of in vitro stimulation (IVS) to enhance detection. Here, we report the findings of a multi-centre panel organised by the Association for Cancer Immunotherapy Immunoguiding Program to investigate the impact of IVS protocols on the detection of antigen-specific T cells of varying ex vivo frequency. Five centres performed ELISPOT and multimer staining on centrally prepared PBMCs from 3 donors, both ex vivo and following IVS. A harmonised IVS protocol was designed based on the best-performing protocol(s), which was then evaluated in a second phase on 2 donors by 6 centres. All centres were able to reliably detect antigen-specific T cells of high/intermediate frequency both ex vivo (Phase I) and post-IVS (Phase I and II). The highest frequencies of antigen-specific T cells ex vivo were mirrored in the frequencies following IVS and in the detection rates. However, antigen-specific T cells of a low/undetectable frequency ex vivo were not reproducibly detected post-IVS. Harmonisation of the IVS protocol reduced the inter-laboratory variation observed for ELISPOT and multimer analyses by approximately 20 %. We further demonstrate that results from ELISPOT and multimer staining correlated after (P < 0.0001 and R (2) = 0.5113), but not before IVS. In summary, IVS was shown to be a reproducible method that benefitted from method harmonisation.
Collapse
Affiliation(s)
- Lindsey Chudley
- Cancer Sciences Unit, Faculty of Medicine, Experimental Cancer Medicine Centre, Southampton General Hospital, University of Southampton, Tremona Road, Southampton, SO16 6YD UK
| | - Katy J. McCann
- Cancer Sciences Unit, Faculty of Medicine, Experimental Cancer Medicine Centre, Southampton General Hospital, University of Southampton, Tremona Road, Southampton, SO16 6YD UK
| | - Adam Coleman
- Cancer Sciences Unit, Faculty of Medicine, Experimental Cancer Medicine Centre, Southampton General Hospital, University of Southampton, Tremona Road, Southampton, SO16 6YD UK
| | - Angelica M. Cazaly
- Cancer Sciences Unit, Faculty of Medicine, Experimental Cancer Medicine Centre, Southampton General Hospital, University of Southampton, Tremona Road, Southampton, SO16 6YD UK
| | - Nicole Bidmon
- Translational Oncology, University Medical Center, Johannes-Gutenberg University GmbH, Mainz, Germany
| | - Cedrik M. Britten
- Translational Oncology, University Medical Center, Johannes-Gutenberg University GmbH, Mainz, Germany
| | - Sjoerd H. van der Burg
- Department of Clinical Oncology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Cecile Gouttefangeas
- Department of Immunology, Institute for Cell Biology, Eberhard-Karls University, Tübingen, Germany
| | - Camilla Jandus
- Translational Tumour Immunology, Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Karoline Laske
- Department of Immunology, Institute for Cell Biology, Eberhard-Karls University, Tübingen, Germany
| | | | - Pedro Romero
- Translational Tumour Immunology, Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Helene Schröder
- Translational Oncology, University Medical Center, Johannes-Gutenberg University GmbH, Mainz, Germany
| | | | | | - Marij J. P. Welters
- Department of Clinical Oncology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Christian H. Ottensmeier
- Cancer Sciences Unit, Faculty of Medicine, Experimental Cancer Medicine Centre, Southampton General Hospital, University of Southampton, Tremona Road, Southampton, SO16 6YD UK
- Somers Cancer Research Building (Mailpoint 824), Cancer Sciences Unit, Faculty of Medicine, Southampton General Hospital, University of Southampton, Tremona Road, Southampton, SO16 6YD UK
| |
Collapse
|
17
|
Garrod TJ, Gargett T, Yu W, Major L, Burrell CJ, Wesselingh S, Suhrbier A, Grubor-Bauk B, Gowans EJ. Loss of long term protection with the inclusion of HIV pol to a DNA vaccine encoding gag. Virus Res 2014; 192:25-33. [PMID: 25152448 DOI: 10.1016/j.virusres.2014.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 08/11/2014] [Accepted: 08/14/2014] [Indexed: 11/29/2022]
Abstract
Traditional vaccine strategies that induce antibody responses have failed to protect against HIV infection in clinical trials, and thus cell-mediated immunity is now an additional criterion. Recent clinical trials that aimed to induce strong T cell responses failed to do so. Therefore, to enhance induction of protective T cell responses, it is crucial that the optimum antigen combination is chosen. Limited research has been performed into the number of antigens selected for an HIV vaccine. This study aimed to compare DNA vaccines encoding either a single HIV antigen or a combination of two antigens, using intradermal vaccination of C57BL/6 mice. Immune assays were performed on splenocytes, and in vivo protection was examined by challenge with a chimeric virus, EcoHIV, able to infect mouse but not human leukocytes, at 10 days (short term) and 60 days (long term) post final vaccination. At 60 days there was significantly lower frequency of induced antigen-specific CD8(+) T cells in the spleens of pCMVgag-pol-vaccinated mice compared with mice which received pCMVgag only. Most importantly, short term viral control of EcoHIV was similar for pCMVgag and pCMVgag-pol-vaccinated mice at day 10, but only the pCMVgag-vaccinated significantly controlled EcoHIV at day 60 compared with pCMV-vaccinated mice, showing that control was reduced with the inclusion of the HIV pol gene.
Collapse
Affiliation(s)
- Tamsin J Garrod
- Virology Laboratory, Basil Hetzel Institute, Department of Surgery, University of Adelaide, Adelaide, Australia.
| | - Tessa Gargett
- Virology Laboratory, Basil Hetzel Institute, Department of Surgery, University of Adelaide, Adelaide, Australia
| | - Wenbo Yu
- Virology Laboratory, Basil Hetzel Institute, Department of Surgery, University of Adelaide, Adelaide, Australia
| | - Lee Major
- Inflammation Biology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Steven Wesselingh
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Andreas Suhrbier
- Inflammation Biology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Branka Grubor-Bauk
- Virology Laboratory, Basil Hetzel Institute, Department of Surgery, University of Adelaide, Adelaide, Australia
| | - Eric J Gowans
- Virology Laboratory, Basil Hetzel Institute, Department of Surgery, University of Adelaide, Adelaide, Australia
| |
Collapse
|
18
|
The Center for HIV/AIDS Vaccine Immunology (CHAVI) multi-site quality assurance program for cryopreserved human peripheral blood mononuclear cells. J Immunol Methods 2014; 409:21-30. [PMID: 24910414 DOI: 10.1016/j.jim.2014.05.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 05/23/2014] [Accepted: 05/28/2014] [Indexed: 01/17/2023]
Abstract
The Center for HIV/AIDS Vaccine Immunology (CHAVI) consortium was established to determine the host and virus factors associated with HIV transmission, infection and containment of virus replication, with the goal of advancing the development of an HIV protective vaccine. Studies to meet this goal required the use of cryopreserved Peripheral Blood Mononuclear Cell (PBMC) specimens, and therefore it was imperative that a quality assurance (QA) oversight program be developed to monitor PBMC samples obtained from study participants at multiple international sites. Nine site-affiliated laboratories in Africa and the USA collected and processed PBMCs, and cryopreserved PBMC were shipped to CHAVI repositories in Africa and the USA for long-term storage. A three-stage program was designed, based on Good Clinical Laboratory Practices (GCLP), to monitor PBMC integrity at each step of this process. The first stage evaluated the integrity of fresh PBMCs for initial viability, overall yield, and processing time at the site-affiliated laboratories (Stage 1); for the second stage, the repositories determined post-thaw viability and cell recovery of cryopreserved PBMC, received from the site-affiliated laboratories (Stage 2); the third stage assessed the long-term specimen storage at each repository (Stage 3). Overall, the CHAVI PBMC QA oversight program results highlight the relative importance of each of these stages to the ultimate goal of preserving specimen integrity from peripheral blood collection to long-term repository storage.
Collapse
|
19
|
Dang S, Gao N, Li Y, Li M, Wang X, Jia X, Zhai S, Zhang X, Liu J, Deng H, Dong T. Dominant CD4-dependent RNA-dependent RNA polymerase-specific T-cell responses in children acutely infected with human enterovirus 71 and healthy adult controls. Immunology 2014; 142:89-100. [PMID: 24329688 DOI: 10.1111/imm.12235] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 12/05/2013] [Accepted: 12/11/2013] [Indexed: 11/29/2022] Open
Abstract
Human enterovirus 71 (EV71) is one of the major causes of hand, foot and mouth disease (HFMD), which leads to significant mortality in infected children. A prophylactic vaccine is urgently needed. However, little is known about the protective T-cell immunity in individuals infected with the EV71 virus. In this study, we performed a comprehensive ex vivo interferon-γ ELISPOT analysis in 31 children infected with EV71 as well as in 40 healthy adult controls of the CD4(+) and CD8(+) T-cell responses to overlapping peptides spanning the VP1 structural protein and RNA-dependent RNA polymerase (RdRp) non-structural protein. EV71-specific CD4 T-cell responses were detected in most of the acute patients and were mostly CD4-dependent RdRp-specific responses. CD8-dependent VP1 and RdRp-specific responses were also detected in a small proportion of recently infected children. There was no significant association between the strength of the T-cell responses and disease severity observed during the acute EV71 infection phase. Interestingly, an RdRp-specific, but no VP1-specific, CD4-dependent T-cell response was detected in 30% of the adult controls, and no T-cell responses were detected in healthy children. In addition, 24 individual peptides containing potential T-cell epitope regions were identified. The data suggest that CD4-dependent RdRp-specific T-cell responses may play an important role in protective immunity, and the epitopes identified in this study should provide valuable information for future therapeutic and prophylactic vaccine design as well as basic research.
Collapse
Affiliation(s)
- Shuangsuo Dang
- Department of Infectious Diseases, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Epidemiology and Biostatistics, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sambor A, Garcia A, Berrong M, Pickeral J, Brown S, Rountree W, Sanchez A, Pollara J, Frahm N, Keinonen S, Kijak GH, Roederer M, Levine G, D'Souza MP, Jaimes M, Koup R, Denny T, Cox J, Ferrari G. Establishment and maintenance of a PBMC repository for functional cellular studies in support of clinical vaccine trials. J Immunol Methods 2014; 409:107-16. [PMID: 24787274 DOI: 10.1016/j.jim.2014.04.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/28/2014] [Accepted: 04/08/2014] [Indexed: 11/19/2022]
Abstract
A large repository of cryopreserved peripheral blood mononuclear cells (PBMCs) samples was created to provide laboratories testing the specimens from human immunodeficiency virus-1 (HIV-1) vaccine clinical trials the material for assay development, optimization, and validation. One hundred thirty-one PBMC samples were collected using leukapheresis procedure between 2007 and 2013 by the Comprehensive T cell Vaccine Immune Monitoring Consortium core repository. The donors included 83 human immunodeficiency virus-1 (HIV-1) seronegative and 32 HIV-1 seropositive subjects. The samples were extensively characterized for the ability of T cell subsets to respond to recall viral antigens including cytomegalovirus, Epstein-Barr virus, influenza virus, and HIV-1 using Interferon-gamma (IFN-γ) enzyme linked immunospot (ELISpot) and IFN-γ/interleukin 2 (IL-2) intracellular cytokine staining (ICS) assays. A subset of samples was evaluated over time to determine the integrity of the cryopreserved samples in relation to recovery, viability, and functionality. The principal results of our study demonstrate that viable and functional cells were consistently recovered from the cryopreserved samples. Therefore, we determined that this repository of large size cryopreserved cellular samples constitutes a unique resource for laboratories that are involved in optimization and validation of assays to evaluate T, B, and NK cellular functions in the context of clinical trials.
Collapse
Affiliation(s)
- Anna Sambor
- Foundation for National Institutes of Health, Bethesda, MD, USA
| | - Ambrosia Garcia
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA; Duke University Medical Center, Durham, NC, USA
| | | | | | - Sara Brown
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
| | - Wes Rountree
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA; Duke University Medical Center, Durham, NC, USA
| | - Ana Sanchez
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA; Duke University Medical Center, Durham, NC, USA
| | | | - Nicole Frahm
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sarah Keinonen
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA; Duke University Medical Center, Durham, NC, USA
| | - Gustavo H Kijak
- Viral Genetics Section, US Military HIV Research Program, Henry M Jackson Foundation for the Advancement of Military Medicine, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - Gail Levine
- Foundation for National Institutes of Health, Bethesda, MD, USA
| | | | | | - Richard Koup
- Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Thomas Denny
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA; Duke University Medical Center, Durham, NC, USA
| | - Josephine Cox
- International AIDS Vaccine Initiative, New York, NY, USA
| | - Guido Ferrari
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA; Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
21
|
Sanchez AM, Rountree W, Berrong M, Garcia A, Schuetz A, Cox J, Frahm N, Manak M, Sarzotti-Kelsoe M, D'Souza MP, Denny T, Ferrari G. The External Quality Assurance Oversight Laboratory (EQAPOL) proficiency program for IFN-gamma enzyme-linked immunospot (IFN-γ ELISpot) assay. J Immunol Methods 2014; 409:31-43. [PMID: 24685833 DOI: 10.1016/j.jim.2014.03.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 02/28/2014] [Accepted: 03/20/2014] [Indexed: 10/25/2022]
Abstract
The interferon-gamma enzyme-linked immunospot (IFN-γ ELISpot) assay has been developed and used as an end-point assay in clinical trials for infectious diseases and cancer to detect the magnitude of antigen-specific immune responses. The ability to compare data generated by different laboratories across organizations is pivotal to understand the relative potency of different therapeutic and vaccine strategies. We developed an external proficiency program for the IFN-γ ELISpot assay that evaluates laboratory performance based on five parameters: timeliness for data reporting; ability to handle cellular samples; detection of background (non-specific) responses; accuracy to consensus of the results; and precision of the measurements. Points are awarded for each criterion, and the sum of the points is used to determine a numeric and adjectival performance rating. Importantly, the evaluation of the accuracy to the consensus mean for the detection of antigen-specific responses using laboratory-specific procedures informs each laboratory and its sponsor on the degree of concordance of its results with those obtained by other laboratories. This study will ultimately provide the scientific community with information on how to organize and implement an external proficiency program to evaluate longitudinally the performance of the participating laboratories and, therefore, fulfill the requirements of the GCLP guidelines for laboratories performing end-point IFN-γ ELISpot assay for clinical trials.
Collapse
Affiliation(s)
- Ana M Sanchez
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Wes Rountree
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Mark Berrong
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Ambrosia Garcia
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | | | - Josephine Cox
- International AIDS Vaccine Initiative, New York, New York, USA
| | - Nicole Frahm
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Mark Manak
- Department of Diagnostics and Monitoring, US Military HIV Research Program (MHRP), HJF, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Marcella Sarzotti-Kelsoe
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA.,Department of Surgery, Duke University Medical Center, Durham, NC, USA.,Department of Immunology, Duke University Medical Center, Durham, NC, USA.,Duke Center for AIDS Research, Duke University Medical Center, Durham, NC, USA
| | - M Patricia D'Souza
- Vaccine Clinical Research Branch, Division of AIDS, NIAID, Bethesda, MD, USA
| | - Thomas Denny
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA.,Department of Medicine, Duke University Medical Center, Durham, NC, USA.,Duke Global Health Institute; Duke University Medical Center, Durham, NC, USA
| | - Guido Ferrari
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA.,Department of Surgery, Duke University Medical Center, Durham, NC, USA.,Duke Center for AIDS Research, Duke University Medical Center, Durham, NC, USA.,Duke Global Health Institute; Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
22
|
Statistical methods for the assessment of EQAPOL proficiency testing: ELISpot, Luminex, and Flow Cytometry. J Immunol Methods 2014; 409:72-81. [PMID: 24456626 DOI: 10.1016/j.jim.2014.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/20/2013] [Accepted: 01/10/2014] [Indexed: 11/21/2022]
Abstract
In September 2011 Duke University was awarded a contract to develop the National Institutes of Health/National Institute of Allergy and Infectious Diseases (NIH/NIAID) External Quality Assurance Program Oversight Laboratory (EQAPOL). Through EQAPOL, proficiency testing programs are administered for Interferon-γ (IFN-γ) Enzyme-linked immunosorbent spot (ELISpot), Intracellular Cytokine Staining Flow Cytometry (ICS) and Luminex-based cytokine assays. One of the charges of the EQAPOL program was to apply statistical methods to determine overall site performance. We utilized various statistical methods for each program to find the most appropriate for assessing laboratory performance using the consensus average as the target value. Accuracy ranges were calculated based on Wald-type confidence intervals, exact Poisson confidence intervals, or via simulations. Given the nature of proficiency testing data, which has repeated measures within donor/sample made across several laboratories; the use of mixed effects models with alpha adjustments for multiple comparisons was also explored. Mixed effects models were found to be the most useful method to assess laboratory performance with respect to accuracy to the consensus. Model based approaches to the proficiency testing data in EQAPOL will continue to be utilized. Mixed effects models also provided a means of performing more complex analyses that would address secondary research questions regarding within and between laboratory variability as well as longitudinal analyses.
Collapse
|
23
|
van der Burg SH. Therapeutic vaccines in cancer: moving from immunomonitoring to immunoguiding. Expert Rev Vaccines 2014; 7:1-5. [DOI: 10.1586/14760584.7.1.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Enumeration and characterization of human memory T cells by enzyme-linked immunospot assays. Clin Dev Immunol 2013; 2013:637649. [PMID: 24319467 PMCID: PMC3844203 DOI: 10.1155/2013/637649] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 09/07/2013] [Indexed: 11/27/2022]
Abstract
The enzyme-linked immunospot (ELISPOT) assay has advanced into a useful and widely applicable tool for the evaluation of T-cell responses in both humans and animal models of diseases and/or vaccine candidates. Using synthetic peptides (either individually or as overlapping peptide mixtures) or whole antigens, total lymphocyte or isolated T-cell subset responses can be assessed either after short-term stimulation (standard ELISPOT) or after their expansion during a 10-day culture (cultured ELISPOT). Both assays detect different antigen-specific immune responses allowing the analysis of effector memory T cells and central memory T cells. This paper describes the principle of ELISPOT assays and discusses their application in the evaluation of immune correlates of clinical interest with a focus on the vaccine field.
Collapse
|
25
|
Reber A, Katz J. Immunological assessment of influenza vaccines and immune correlates of protection. Expert Rev Vaccines 2013; 12:519-36. [PMID: 23659300 DOI: 10.1586/erv.13.35] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Influenza vaccines remain the primary public health tool in reducing the ever-present burden of influenza and its complications. In seeking more immunogenic, more effective and more broadly cross-protective influenza vaccines, the landscape of influenza vaccines is rapidly expanding, both in near-term advances and next-generation vaccine design. Although the first influenza vaccines were licensed over 60 years ago, the hemagglutination-inhibition antibody titer is currently the only universally accepted immune correlate of protection against influenza. However, hemagglutination-inhibition titers appear to be less effective at predicting protection in populations at high risk for severe influenza disease; older adults, young children and those with certain medical conditions. The lack of knowledge and validated methods to measure alternate immune markers of protection against influenza remain a substantial barrier to the development of more immunogenic, broadly cross-reactive and effective influenza vaccines. Here, the authors review the knowledge of immune effectors of protection against influenza and discuss assessment methods for a broader range of immunological parameters that could be considered in the evaluation of traditional or new-generation influenza vaccines.
Collapse
Affiliation(s)
- Adrian Reber
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road Atlanta, GA 30333, USA
| | | |
Collapse
|
26
|
Phetsouphanh C, Xu Y, Amin J, Seddiki N, Procopio F, Sekaly RP, Zaunders JJ, Kelleher AD. Characterization of transcription factor phenotypes within antigen-specific CD4+ T cells using qualitative multiplex single-cell RT-PCR. PLoS One 2013; 8:e74946. [PMID: 24124462 PMCID: PMC3790772 DOI: 10.1371/journal.pone.0074946] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 08/07/2013] [Indexed: 11/25/2022] Open
Abstract
Current research on antigen specific CD4+ T cells indicates that there is functional and phenotypic heterogeneity within these populations, but the extent of this heterogeneity is poorly described. The CD134/CD25 assay allows live isolation of antigen specific cells in vitro for down-stream molecular analysis. Antigen specific CD4+ T cells were examined at the molecular level by lineage specific transcription factor profiling using qualitative multiplex single cell RT-PCR and Lock Nucleic Acid (LNA) probes allowed unbiased amplification and delineation of expression of Tbx21, Gata3, Rorc, Foxp3 and Bcl-6. It overcomes the limitations of previous assays by allowing identification of transcription factor mRNA in single antigen specific cells with high sensitivity (down to 10 femtograms) and specificity. Patterns of responses can be robustly characterized using <200 cells based on exact binomial calculations. These results are reproducible with a CV of ≈6%. The patterns of heterogeneity are stable within an individual antigen specific response but vary between responses to different antigens. Responses to CMV have a Th1 predominant profile (35.6% of responding cells expressing tbx21) whereas responses to Tetanus Toxoid have a Th2 biased profile (22% of responding cells expressing gata3), with unexpectedly high levels of Treg cells found in both populations. Here we describe a methodology that allows live isolation of Ag specific cells and transcription factor profiling at a single cell level to robustly delineate the different CD4+ T cell subsets within this population. This novel method is a powerful tool that can be used to study CD4+ T cell heterogeneity within extremely small populations of cells and where cell numbers are limited.
Collapse
Affiliation(s)
- Chansavath Phetsouphanh
- Kirby Institute, University of New South Wales, Sydney, Australia
- Centre for Applied Medical Research, St Vincent's Hospital, Sydney, Australia
- * E-mail:
| | - Yin Xu
- Kirby Institute, University of New South Wales, Sydney, Australia
- Centre for Applied Medical Research, St Vincent's Hospital, Sydney, Australia
| | - Janaki Amin
- Kirby Institute, University of New South Wales, Sydney, Australia
| | - Nabila Seddiki
- Kirby Institute, University of New South Wales, Sydney, Australia
- Centre for Applied Medical Research, St Vincent's Hospital, Sydney, Australia
| | - Francesco Procopio
- Vaccine and Gene Therapy Institute (VGTI), Port St. Lucie, Florida, United States of America
| | - Rafick Pierre Sekaly
- Vaccine and Gene Therapy Institute (VGTI), Port St. Lucie, Florida, United States of America
| | - John J. Zaunders
- Kirby Institute, University of New South Wales, Sydney, Australia
- Centre for Applied Medical Research, St Vincent's Hospital, Sydney, Australia
| | - Anthony D. Kelleher
- Kirby Institute, University of New South Wales, Sydney, Australia
- Centre for Applied Medical Research, St Vincent's Hospital, Sydney, Australia
| |
Collapse
|
27
|
Britten CM, Walter S, Janetzki S. Immunological Monitoring to Rationally Guide AAV Gene Therapy. Front Immunol 2013; 4:273. [PMID: 24062741 PMCID: PMC3770921 DOI: 10.3389/fimmu.2013.00273] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/27/2013] [Indexed: 12/12/2022] Open
Abstract
Recent successes with adeno-associated virus (AAV)-based gene therapies fuel the hope for new treatments for hereditary diseases. Pre-existing as well as therapy-induced immune responses against both AAV and the encoded transgenes have been described and may impact on safety and efficacy of gene therapy approaches. Consequently, monitoring of vector- and transgene-specific immunity is mandated and may rationally guide clinical development. Next to the humoral immune response, the cellular response is central in our understanding of the host reaction in gene therapy. But in contrast to the monitoring of antibodies, which has matured over many decades, sensitive and robust monitoring of T cells is a relatively new development. To make cellular immune assessments fit for purpose, investigators need to know, control and report the critical assay variables that influence the results. In addition, the quality of immune assays needs to be continuously adjusted to allow for exploratory hypothesis generation in early stages and confirmatory hypothesis validation in later stages of clinical development. The concept of immune assay harmonization which includes use of field-wide benchmarks, harmonization guidelines, and external quality control can support the context-specific evolution of immune assays. Multi-center studies pose particular challenges to sample logistics and quality control of sample specimens. Cooperative groups need to define if immune assessments should be performed in one central facility, in peripheral labs or including a combination of both. Finally, engineered reference samples that contain a defined number of antigen-specific T cells may become broadly applicable tools to control assay performance over time or across institutions.
Collapse
Affiliation(s)
- Cedrik Michael Britten
- Translational Oncology, University Medical Center, Johannes Gutenberg-University Mainz (TRON gGmbH) , Mainz , Germany ; Association for Cancer Immunotherapy (CIMT) , Mainz , Germany
| | | | | |
Collapse
|
28
|
Madan RA, Schwaab T, Gulley JL. Strategies for optimizing the clinical impact of immunotherapeutic agents such as sipuleucel-T in prostate cancer. J Natl Compr Canc Netw 2013; 10:1505-12. [PMID: 23221788 DOI: 10.6004/jnccn.2012.0156] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sipuleucel-T is a therapeutic cancer vaccine that has shown improved survival in men with metastatic castration-resistant prostate cancer. As a first-in-class agent, it has been met with both fan-fare and controversy. A broad review of immune-based therapies may reveal the delayed clinical impact of sipuleucel-T to be a class effect. As new strategies of immune-based therapy are developed, their effects can be optimized through better understanding of how they affect disease differently from more standard therapeutics. Furthermore, combination therapy with agents that can either work synergistically with immune-activating therapies or deplete immune-regulating cells may result in more vigorous immune responses and improved clinical outcomes. In addition, therapeutic vaccines may be ideal candidates to safely combine with standard-of-care therapies because of their nonoverlapping toxicity profile. The ultimate role of immunotherapy may not be to supplant standard therapies, but rather to work in concert with them to maximize clinical benefit for patients.
Collapse
Affiliation(s)
- Ravi A Madan
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|
29
|
Alexander N, Fox A, Lien VTK, Dong T, Lee LYH, Hang NLK, Mai LQ, Horby P. Defining ELISpot cut-offs from unreplicated test and control wells. J Immunol Methods 2013; 392:57-62. [PMID: 23500146 PMCID: PMC3657161 DOI: 10.1016/j.jim.2013.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 02/27/2013] [Accepted: 02/27/2013] [Indexed: 11/16/2022]
Abstract
In the absence of replication of wells, empirical criteria for enzyme-linked immunospot (ELISpot) positivity use fixed differences or ratios between spot forming units (SFU) counts between test and control. We propose an alternative approach which first identifies the optimally variance-stabilizing transformation of the SFU counts, based on the Bland-Altman plot of the test and control wells. The second step is to derive a positivity threshold from the difference in between-plate distribution functions of the transformed test and control SFU counts. This method is illustrated using 1309 assay results from a cohort study of influenza in Vietnam in which some, but not all, of the peptide pools have clear tendencies for SFU counts to be higher in test than control wells.
Collapse
Affiliation(s)
- Neal Alexander
- London School of Hygiene and Tropical Medicine, London, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Kim JW, Bilusic M, Heery CJ, Madan RA. Therapeutic cancer vaccines in prostate cancer: the quest for intermediate markers of response. Cancers (Basel) 2012; 4:1229-46. [PMID: 24213505 PMCID: PMC3712729 DOI: 10.3390/cancers4041229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/09/2012] [Accepted: 11/14/2012] [Indexed: 11/17/2022] Open
Abstract
Despite recent advances in cancer immunotherapy, no prospectively validated intermediate biomarkers exist to predict response. These biomarkers are highly desirable given modern immunotherapy's paradoxical pattern of clinical benefit; that is, improvement in overall survival without short-term change in progression. Immunotherapy clinical trials have evaluated biomarkers that may correlate with clinical outcomes. Many of them are performed on peripheral blood to evaluate the systemic response, such as tumor-targeted humoral and cellular immunity, and cytokine responses. Accumulating evidence suggests that immune infiltrates in tumors may suggest evidence for the therapy's mechanism of action, and have greater potential for providing prognostic and predictive information. In addition, a non-immunologic biomarker, such as tumor growth kinetics, may explain this paradoxical pattern of clinical benefit, and predict survival in patients treated with an immunotherapy. Prospective assessment and validation of these and other intermediate markers would be required to better understand their potential clinical role.
Collapse
Affiliation(s)
- Joseph W Kim
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
31
|
Abstract
Therapeutic cancer vaccines represent an emerging therapeutic modality that may play a more prominent role in cancer treatment in the future. Therapeutic cancer vaccines are designed to generate a targeted, immune-mediated antitumor response. There are 2 main types of therapeutic vaccines: patient-specific (generated either from a patient's own cells or tumor) and patient- nonspecific, where a peptide- or vector-based vaccine induces an immune response in vivo against specific tumor-associated antigens. Studies are currently underway to investigate methods to enhance vaccine strategies, including combinations with standard anticancer therapies or immune-modulating agents. Cancer vaccines are usually well tolerated, with minimal toxicity compared with chemotherapy. This review summarizes selected therapeutic cancer vaccines in late clinical development.
Collapse
Affiliation(s)
- Marijo Bilusic
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Medical Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ravi A. Madan
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Medical Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW The purpose of this article is to describe the requirements for clinical laboratories supporting large-scale multinational trials of prophylactic AIDS vaccine trials and review the progress made. RECENT FINDINGS There is an increasing need for laboratories in Africa, Asia and the Caribbean to support internationally initiated and funded clinical trials of preventive HIV vaccine candidates. A number of qualified laboratories are currently supporting AIDS vaccine trials in these regions, although there remains a need to develop capacity further. The standardization of all tests is key in order that data can be pooled and compared across multiple sites and products. Significant progress has been made towards this aim. The recent development of quality programmes including good clinical laboratory practices are key to ensuring data are reliable and meet the requirements of regulatory bodies. In addition, HIV diagnostic tests are being developed to distinguish true HIV infection from vaccine-induced antibodies. SUMMARY Significant advances have been made to develop laboratories capable of supporting multinational AIDS vaccine trials.
Collapse
|
33
|
Keefer MC, Gilmour J, Hayes P, Gill D, Kopycinski J, Cheeseman H, Cashin-Cox M, Naarding M, Clark L, Fernandez N, Bunce CA, Hay CM, Welsh S, Komaroff W, Hachaambwa L, Tarragona-Fiol T, Sayeed E, Zachariah D, Ackland J, Loughran K, Barin B, Cormier E, Cox JH, Fast P, Excler JL. A phase I double blind, placebo-controlled, randomized study of a multigenic HIV-1 adenovirus subtype 35 vector vaccine in healthy uninfected adults. PLoS One 2012; 7:e41936. [PMID: 22870265 PMCID: PMC3411704 DOI: 10.1371/journal.pone.0041936] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 06/26/2012] [Indexed: 11/28/2022] Open
Abstract
Background We conducted a phase I, randomized, double-blind, placebo-controlled trial to assess the safety and immunogenicity of escalating doses of two recombinant replication defective adenovirus serotype 35 (Ad35) vectors containing gag, reverse transcriptase, integrase and nef (Ad35-GRIN) and env (Ad35-ENV), both derived from HIV-1 subtype A isolates. The trial enrolled 56 healthy HIV-uninfected adults. Methods Ad35-GRIN/ENV (Ad35-GRIN and Ad35-ENV mixed in the same vial in equal proportions) or Ad35-GRIN was administered intramuscularly at 0 and 6 months. Participants were randomized to receive either vaccine or placebo (10/4 per group, respectively) within one of four dosage groups: Ad35-GRIN/ENV 2×109 (A), 2×1010 (B), 2×1011 (C), or Ad35-GRIN 1×1010 (D) viral particles. Results No vaccine-related serious adverse event was reported. Reactogenicity events reported were dose-dependent, mostly mild or moderate, some severe in Group C volunteers, all transient and resolving spontaneously. IFN-γ ELISPOT responses to any vaccine antigen were detected in 50, 56, 70 and 90% after the first vaccination, and in 75, 100, 88 and 86% of Groups A–D vaccine recipients after the second vaccination, respectively. The median spot forming cells (SFC) per 106 PBMC to any antigen was 78–139 across Groups A–C and 158–174 in Group D, after each of the vaccinations with a maximum of 2991 SFC. Four to five HIV proteins were commonly recognized across all the groups and over multiple timepoints. CD4+ and CD8+ T-cell responses were polyfunctional. Env antibodies were detected in all Group A–C vaccinees and Gag antibodies in most vaccinees after the second immunization. Ad35 neutralizing titers remained low after the second vaccination. Conclusion/Significance Ad35-GRIN/ENV reactogenicity was dose-related. HIV-specific cellular and humoral responses were seen in the majority of volunteers immunized with Ad35-GRIN/ENV or Ad35-GRIN and increased after the second vaccination. T-cell responses were broad and polyfunctional. Trial Registration ClinicalTrials.gov NCT00851383
Collapse
Affiliation(s)
- Michael C Keefer
- University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ramachandran H, Laux J, Moldovan I, Caspell R, Lehmann PV, Subbramanian RA. Optimal thawing of cryopreserved peripheral blood mononuclear cells for use in high-throughput human immune monitoring studies. Cells 2012; 1:313-24. [PMID: 24710478 PMCID: PMC3901099 DOI: 10.3390/cells1030313] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 06/29/2012] [Accepted: 07/03/2012] [Indexed: 11/20/2022] Open
Abstract
Cryopreserved peripheral blood mononuclear cells (PBMC) constitute an important component of immune monitoring studies as they allow for efficient batch- testing of samples as well as for the validation and extension of original studies in the future. In this study, we systematically test the permutations of PBMC thawing practices commonly employed in the field and identify conditions that are high and low risk for the viability of PBMC and their functionality in downstream ELISPOT assays. The study identifies the addition of ice-chilled washing media to thawed cells at the same temperature as being a high risk practice, as it yields significantly lower viability and functionality of recovered PBMC when compared to warming the cryovials to 37 °C and adding a warm washing medium. We found thawed PBMC in cryovials could be kept up to 30 minutes at 37 °C in the presence of DMSO before commencement of washing, which surprisingly identifies exposure to DMSO as a low risk step during the thawing process. This latter finding is of considerable practical relevance since it permits batch-thawing of PBMC in high-throughput immune monitoring environments.
Collapse
Affiliation(s)
| | - Jessica Laux
- Cellular Technology Limited, Shaker Heights, OH 44122, USA.
| | - Ioana Moldovan
- Cellular Technology Limited, Shaker Heights, OH 44122, USA.
| | | | - Paul V Lehmann
- Cellular Technology Limited, Shaker Heights, OH 44122, USA.
| | | |
Collapse
|
35
|
Abstract
During more than 25 years of application in immunological sciences, ELISPOT has been established as a routine, robust, versatile, and reliable assay. From basic research to clinical immune monitoring, ELISPOT is being used to address the quantification and (to a lesser extent) functional characterization of immune cells secreting different molecules in the context of health and disease, immune intervention, and therapy in humans and other species [Kalyuzhny (Ed.) (2005) Handbook of Elispot: methods and protocols, Vol. 302, Humana Press Inc., Totowa, NJ]. Over the last decade, ELISPOT assays have been increasingly implemented as an immune-monitoring tool in clinical trials [Schmittel et al. J Immunother 23:289-295, 2000; Whiteside Immunol Invest 29:149-162, 2000; Nagata et al. Ann N Y Acad Sci 1037:10-15, 2004; Cox et al. (2005) Cellular immune assays for evaluation of vaccine efficacy in developing countries., In Manual of Clinical Immunology Laboratory (Rose, N. R., Hamilton, R. G., and Detrick, B., Eds.), p 301, ASM Press, Washington, DC; Cox et al. Methods 38:274-282, 2006]. While the principles of the original protocol have changed little since its first introduction [Czerkinsky J Immunol Methods 110:29-36, 1988], individual laboratories have adapted assay procedures based on experimental needs, availability of reagents and equipment, obtained recommendations, and gained experience, leading to a wide disparity of applied ELISPOT protocols with inevitable consequences. This chapter addresses the resulting challenges for ELISPOT use in clinical trial settings, and discusses the influence of harmonization strategies as a tool for overcoming these challenges. Furthermore, harmonization is discussed in the context of assay standardization and validation strategies.
Collapse
|
36
|
Zhang Y, Liu Y, Zhao Y, Shi L, Ma L, Yan H, Wu H, Wei L, Dong T, Chen X. Hepatitis C virus nonstructural protein specific T cells are associated with virological responses to combination therapy in chronic HCV patients. Liver Int 2012; 32:102-9. [PMID: 22098382 DOI: 10.1111/j.1478-3231.2011.02652.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 08/26/2011] [Indexed: 02/13/2023]
Abstract
BACKGROUND Virus-specific T-cell responses play a major role in antiviral immune response. However, the effect of hepatitis C virus (HCV)-specific T-cell responses on combination therapy still remains controversial. AIMS To identify the association between HCV-specific T cell responses and efficiency of combination therapy. METHODS To address this issue, a longitudinal analysis of HCV-specific T-cell responses to overlapping peptides covering HCV-nonstructural protein (NS) was performed using ELISpot assay in 48 chronically infected HCV-1b patients during combination treatment with peginterferon-alfa and ribavirin. RESULTS Fifty-two percent of chronic HCV patients showed detectable HCV-NS3, NS4 or NS5A specific T-cell responses before therapy, with NS3 appearing to be the most immunodominant protein followed by NS5A and NS4. In addition, the percentage of patients responding to peptide stimulation was higher in patients with sustained virological response (SVR) when compared with those without SVR. Dynamics of HCV-NS-specific T-cell responses were further analysed; we found that HCV-specific T-cell responses maintained higher levels at 12 weeks into treatment in patients with SVR. In contrast, HCV-specific T-cell responses in patients without SVR declined significantly at 4 weeks into treatment and maintained low levels at 12 weeks. CONCLUSION We found that the HCV-specific T-cell responses were associated with good viral control in patients with combination therapy.
Collapse
Affiliation(s)
- Yonghong Zhang
- Beijing You'an Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Moodie Z, Price L, Janetzki S, Britten CM. Response determination criteria for ELISPOT: toward a standard that can be applied across laboratories. Methods Mol Biol 2012; 792:185-96. [PMID: 21956511 DOI: 10.1007/978-1-61779-325-7_15] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
ELISPOT assay readout is often dichomized as positive or negative responses according to prespecified criteria. However, these criteria can vary widely across institutions. The adoption of a common response criterion is a key step toward cross-laboratory comparability. This chapter describes the two main approaches to response determination, identifying the strengths and limitations of each. Nonparametric statistical tests and consideration of data quality are recommended and instructions provided for their ready implementation by nonstatisticians and statisticians alike.
Collapse
Affiliation(s)
- Zoe Moodie
- Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | | | | | | |
Collapse
|
38
|
Bilusic M, Heery C, Madan RA. Immunotherapy in prostate cancer: emerging strategies against a formidable foe. Vaccine 2011; 29:6485-97. [PMID: 21741424 PMCID: PMC3605720 DOI: 10.1016/j.vaccine.2011.06.088] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 06/22/2011] [Accepted: 06/23/2011] [Indexed: 11/29/2022]
Abstract
Recent clinical trials have shown therapeutic vaccines to be promising treatment modalities against prostate cancer. Unlike preventive vaccines that teach the immune system to fight off specific microorganisms, therapeutic vaccines stimulate the immune system to recognize and attack certain cancer-associated proteins. Additional strategies are being investigated that combine vaccines and standard therapeutics, including radiation, chemotherapy, targeted therapies, and hormonal therapy, to optimize the vaccines' effects. Recent vaccine late-phase clinical trials have reported evidence of clinical benefit while maintaining excellent quality of life. One such vaccine, sipuleucel-T, was recently FDA-approved for the treatment of metastatic prostate cancer. Another vaccine, PSA-TRICOM, is also showing promise in completed and ongoing randomized multicenter clinical trials in both early- and late-stage prostate cancer. Clinical results available to date indicate that immune-based therapies could play a significant role in the treatment of prostate and other malignancies.
Collapse
Affiliation(s)
- Marijo Bilusic
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Christopher Heery
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ravi A. Madan
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
39
|
Attig S, Price L, Janetzki S, Kalos M, Pride M, McNeil L, Clay T, Yuan J, Odunsi K, Hoos A, Romero P, Britten CM. A critical assessment for the value of markers to gate-out undesired events in HLA-peptide multimer staining protocols. J Transl Med 2011; 9:108. [PMID: 21745365 PMCID: PMC3148571 DOI: 10.1186/1479-5876-9-108] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 07/11/2011] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The introduction of antibody markers to identify undesired cell populations in flow-cytometry based assays, so called DUMP channel markers, has become a practice in an increasing number of labs performing HLA-peptide multimer assays. However, the impact of the introduction of a DUMP channel in multimer assays has so far not been systematically investigated across a broad variety of protocols. METHODS The Cancer Research Institute's Cancer Immunotherapy Consortium (CRI-CIC) conducted a multimer proficiency panel with a specific focus on the impact of DUMP channel use. The panel design allowed individual laboratories to use their own protocol for thawing, staining, gating, and data analysis. Each experiment was performed twice and in parallel, with and without the application of a dump channel strategy. RESULTS The introduction of a DUMP channel is an effective measure to reduce the amount of non-specific MULTIMER binding to T cells. Beneficial effects for the use of a DUMP channel were observed across a wide range of individual laboratories and for all tested donor-antigen combinations. In 48% of experiments we observed a reduction of the background MULTIMER-binding. In this subgroup of experiments the median background reduction observed after introduction of a DUMP channel was 0.053%. CONCLUSIONS We conclude that appropriate use of a DUMP channel can significantly reduce background staining across a large fraction of protocols and improve the ability to accurately detect and quantify the frequency of antigen-specific T cells by multimer reagents. Thus, use of a DUMP channel may become crucial for detecting low frequency antigen-specific immune responses. Further recommendations on assay performance and data presentation guidelines for publication of MULTIMER experimental data are provided.
Collapse
Affiliation(s)
- Sebastian Attig
- Division of Translational and Experimental Oncology, Department of Internal Medicine III, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Leah Price
- Department of Biostatistics, New York University, New York, NY USA
| | | | - Michael Kalos
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Abramson Family Cancer Research Institute, Philadelphia, PA USA
| | - Michael Pride
- Vaccine Research East and Early Development, Pfizer Inc. Pearl River, NY USA
| | - Lisa McNeil
- Vaccine Research East and Early Development, Pfizer Inc. Pearl River, NY USA
| | - Tim Clay
- Surgery and Immunology, Duke University Medical Center, Durham, NC, USA
| | - Jianda Yuan
- Ludwig Center for Cancer Immunotherapy, Memorial Sloan-Kettering Cancer Center, New York, NY USA
| | - Kunle Odunsi
- Departments of Gynecologic Oncology and Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Axel Hoos
- Bristol-Myers Squibb, Wallingford, CT USA
| | - Pedro Romero
- Translational Tumor Immunology Group, Ludwig Center for Cancer Research of the University of Lausanne, Switzerland
| | - Cedrik M Britten
- Division of Translational and Experimental Oncology, Department of Internal Medicine III, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Research & Development, BioNTech AG, Mainz, Germany
| |
Collapse
|
40
|
Chakera A, Bennett S, Lawrence S, Morteau O, Mason PD, O'Callaghan CA, Cornall RJ. Antigen-specific T cell responses to BK polyomavirus antigens identify functional anti-viral immunity and may help to guide immunosuppression following renal transplantation. Clin Exp Immunol 2011; 165:401-9. [PMID: 21671906 DOI: 10.1111/j.1365-2249.2011.04429.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Infection with the polyoma virus BK (BKV) is a major cause of morbidity following renal transplantation. Limited understanding of the anti-viral immune response has prevented the design of a strategy that balances treatment with the preservation of graft function. The proven utility of interferon-gamma enzyme-linked immunospot (ELISPOT) assays to measure T cell responses in immunocompetent hosts was the basis for trying to develop a rational approach to the management of BKV following renal transplantation. In a sample of transplant recipients and healthy controls, comparisons were made between T cell responses to the complete panel of BKV antigens, the Epstein-Barr virus (EBV) antigens, BZLF1 and EBNA1, and the mitogen phytohaemagglutinin (PHA). Correlations between responses to individual antigens and immunosuppressive regimens were also analysed. Antigen-specific T cell responses were a specific indicator of recent or ongoing recovery from BKV infection (P < 0·05), with responses to different BKV antigens being highly heterogeneous. Significant BKV immunity was undetectable in transplant patients with persistent viral replication or no history of BKV reactivation. Responses to EBV antigens and mitogen were reduced in patients with BKV reactivation, but these differences were not statistically significant. The T cell response to BKV antigens is a useful and specific guide to recovery from BKV reactivation in renal transplant recipients, provided that the full range of antigenic responses is measured.
Collapse
Affiliation(s)
- A Chakera
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | | | | | | | | | | | | |
Collapse
|
41
|
Gill DK, Huang Y, Levine GL, Sambor A, Carter DK, Sato A, Kopycinski J, Hayes P, Hahn B, Birungi J, Tarragona-Fiol T, Wan H, Randles M, Cooper AR, Ssemaganda A, Clark L, Kaleebu P, Self SG, Koup R, Wood B, McElrath MJ, Cox JH, Hural J, Gilmour J. Equivalence of ELISpot assays demonstrated between major HIV network laboratories. PLoS One 2010; 5:e14330. [PMID: 21179404 PMCID: PMC3001861 DOI: 10.1371/journal.pone.0014330] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 11/22/2010] [Indexed: 12/29/2022] Open
Abstract
Background The Comprehensive T Cell Vaccine Immune Monitoring Consortium (CTC-VIMC) was created to provide standardized immunogenicity monitoring services for HIV vaccine trials. The ex vivo interferon-gamma (IFN-γ) ELISpot is used extensively as a primary immunogenicity assay to assess T cell-based vaccine candidates in trials for infectious diseases and cancer. Two independent, GCLP-accredited central laboratories of CTC-VIMC routinely use their own standard operating procedures (SOPs) for ELISpot within two major networks of HIV vaccine trials. Studies are imperatively needed to assess the comparability of ELISpot measurements across laboratories to benefit optimal advancement of vaccine candidates. Methods We describe an equivalence study of the two independently qualified IFN-g ELISpot SOPs. The study design, data collection and subsequent analysis were managed by independent statisticians to avoid subjectivity. The equivalence of both response rates and positivity calls to a given stimulus was assessed based on pre-specified acceptance criteria derived from a separate pilot study. Findings Detection of positive responses was found to be equivalent between both laboratories. The 95% C.I. on the difference in response rates, for CMV (−1.5%, 1.5%) and CEF (−0.4%, 7.8%) responses, were both contained in the pre-specified equivalence margin of interval [−15%, 15%]. The lower bound of the 95% C.I. on the proportion of concordant positivity calls for CMV (97.2%) and CEF (89.5%) were both greater than the pre-specified margin of 70%. A third CTC-VIMC central laboratory already using one of the two SOPs also showed comparability when tested in a smaller sub-study. Interpretation The described study procedure provides a prototypical example for the comparison of bioanalytical methods in HIV vaccine and other disease fields. This study also provides valuable and unprecedented information for future vaccine candidate evaluations on the comparison and pooling of ELISpot results generated by the CTC-VIMC central core laboratories.
Collapse
Affiliation(s)
- Dilbinder K Gill
- International AIDS Vaccine Initiative Human Immunology Laboratory, Imperial College, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Recent phase III trial results have demonstrated the effectiveness of sipuleucel-T, a therapeutic cancer vaccine, in the treatment of metastatic prostate cancer. Yet, despite the survival benefit of sipuleucel-T, questions remain about how immunologic agents can be used in the treatment of metastatic prostate cancer. The primary issue confounding researchers and practitioners about the benefits of sipuleucel-T is the lack of effect on time to progression. It may be helpful to note that recent phase II data from a different therapeutic prostate cancer vaccine (Prostvac), as well as phase III data from an anti-cytotoxic T-lymphocyte antigen-4 (CTLA-4) blocking agent in metastatic melanoma, also show improved survival without short-term changes in disease progression. Furthermore, mathematical tumor growth models provide some insight into the fact that immunologic therapies do allow for continued tumor growth, but at a slower rate, thus prolonging survival. This understanding can help to clarify the role of the newly approved sipuleucel-T in the treatment of metastatic prostate cancer. It is also possible that appropriate sequencing of therapies could further improve the clinical course for such patients. Additional clinical trials will further our understanding of the role of therapeutic cancer vaccines and add new agents to the armamentarium of therapy for patients with prostate cancer.
Collapse
Affiliation(s)
- Ravi A. Madan
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - James L. Gulley
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
43
|
Jaimes MC, Maecker HT, Yan M, Maino VC, Hanley MB, Greer A, Darden JM, D'Souza MP. Quality assurance of intracellular cytokine staining assays: analysis of multiple rounds of proficiency testing. J Immunol Methods 2010; 363:143-57. [PMID: 20727897 DOI: 10.1016/j.jim.2010.08.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 07/13/2010] [Accepted: 08/11/2010] [Indexed: 12/01/2022]
Abstract
When evaluating candidate prophylactic HIV and cancer vaccines, intracellular cytokine staining (ICS) assays that measure the frequency and magnitude of antigen-specific T-cell subsets are one tool to monitor immunogen performance and make product advancement decisions. To assess the inter-laboratory assay variation among multiple laboratories testing vaccine candidates, the NIH/NIAID/DAIDS in collaboration with BD Biosciences implemented an ICS Quality Assurance Program (QAP). Seven rounds of testing have been conducted in which 16 laboratories worldwide participated. In each round, IFN-γ, IL-2 and/or TNF-α responses in CD4+ and CD8+ T-cells to CEF or CMV pp65 peptide mixes were tested using cryopreserved peripheral blood mononuclear cells (PBMC) from CMV seropositive donors. We found that for responses measured above 0.2%, inter-laboratory %CVs were, on average, 35%. No differences in inter-laboratory variation were observed if a 4-color antibody cocktail or a 7-color combination was used. Moreover, the data allowed identification of important sources of variability for flow cytometry-based assays, including: number of collected events, gating strategy and instrument setup and performance. As a consequence, in this multi-site study we were able to define pass and fail criteria for ICS assays, which will be adopted in the subsequent rounds of testing and could be easily extrapolated to QAP for other flow cytometry-based assays.
Collapse
Affiliation(s)
- Maria C Jaimes
- BD Biosciences, 2350 Qume Drive, San Jose, CA 95131, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Moodie Z, Price L, Gouttefangeas C, Mander A, Janetzki S, Löwer M, Welters MJP, Ottensmeier C, van der Burg SH, Britten CM. Response definition criteria for ELISPOT assays revisited. Cancer Immunol Immunother 2010; 59:1489-501. [PMID: 20549207 PMCID: PMC2909425 DOI: 10.1007/s00262-010-0875-4] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 05/31/2010] [Indexed: 11/28/2022]
Abstract
No consensus has been reached on how to determine if an immune response has been detected based on raw data from an ELISPOT assay. The goal of this paper is to enable investigators to understand and readily implement currently available methods for response determination. We describe empirical and statistical approaches, identifying the strengths and limitations of each approach to allow readers to rationally select and apply a scientifically sound method appropriate to their specific laboratory setting. Five representative approaches were applied to data sets from the CIMT Immunoguiding Program and the response detection and false positive rates were compared. Simulation studies were also performed to compare empirical and statistical approaches. Based on these, we recommend the use of a non-parametric statistical test. Further, we recommend that six medium control wells or four wells each for both medium control and experimental conditions be performed to increase the sensitivity in detecting a response, that replicates with large variation in spot counts be filtered out, and that positive responses arising from experimental spot counts below the estimated limit of detection be interpreted with caution. Moreover, a web-based user interface was developed to allow easy access to the recommended statistical methods. This interface allows the user to upload data from an ELISPOT assay and obtain an output file of the binary responses.
Collapse
Affiliation(s)
- Z Moodie
- Statistical Center for HIV/AIDS Research and Prevention (SCHARP), Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Parida SK, Magalhaes I, Dubois P, Janetzki S. Training in immunology of relevance to global health issues in resource poor settings. Eur J Immunol 2010; 40:1228-31. [DOI: 10.1002/eji.201090022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
| | | | - Patrice Dubois
- Immunovacc Consulting, Brussels, Belgium and University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
46
|
Zhang W, Caspell R, Karulin AY, Ahmad M, Haicheur N, Abdelsalam A, Johannesen K, Vignard V, Dudzik P, Georgakopoulou K, Mihaylova A, Silina K, Aptsiauri N, Adams V, Lehmann PV, McArdle S. ELISPOT assays provide reproducible results among different laboratories for T-cell immune monitoring--even in hands of ELISPOT-inexperienced investigators. J Immunotoxicol 2010; 6:227-34. [PMID: 19908941 DOI: 10.3109/15476910903317546] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Measurements of antibodies in bodily fluids (e.g., by ELISA) have provided robust and reproducible results for decades and such assays have been validated for monitoring of B-cell immunity. In contrast, measuring T-cell immunity has proven to be a challenge due to the need to test live cells in functional assays ex vivo. Several previous efforts looking into the reproducibility of ex vivo T-cell assays between different laboratories, or even within the same laboratory, have provided rather discouraging results. The hypothesis we tested in this study is that those poor results are due to the lack of assay and data analysis standardization, rather than the inherent complexity of T-cell assays. In this study, 11 laboratories across Europe and the United States were provided identical reagents and were asked to follow the same protocol while testing aliquots of the same three cryopreserved peripheral blood mononuclear cells (PBMC) in an interferon-gamma (IFNgamma) ELISPOT assay measuring the antigen-specific T-cell response to a CMV peptide. All individuals performing the assays were ELISPOT novices. At their first attempt, while three of these individuals failed with the basic logistics of the trial, eight detected the peptide-specific CD8+ T-cells in frequencies approximating the values established by the Reference Laboratory. The data show that ELISPOT assays provide reproducible results among different laboratories when the assay procedure and data analysis is standardized. Since ELISPOT assays have been qualified and validated for regulated studies, they are ideal candidates for robust and reproducible monitoring of T-cell activity in vivo.
Collapse
Affiliation(s)
- W Zhang
- Cellular Technology Ltd., Shaker Hts. Ohio, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Mander A, Gouttefangeas C, Ottensmeier C, Welters MJP, Low L, van der Burg SH, Britten CM. Serum is not required for ex vivo IFN-gamma ELISPOT: a collaborative study of different protocols from the European CIMT Immunoguiding Program. Cancer Immunol Immunother 2010; 59:619-27. [PMID: 20052465 PMCID: PMC2813523 DOI: 10.1007/s00262-009-0814-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 12/21/2009] [Indexed: 02/04/2023]
Abstract
The Cancer Immunotherapy Immunoguiding Program has conducted an IFN-γ ELISPOT proficiency panel to examine the influence of serum supplementation of test media on assay performance. Sixteen European laboratories analyzed the same PBMC samples using different locally established protocols. Participants generated two simultaneous data sets—one using medium supplemented with serum and one without serum. Performances of the two test conditions were compared by quantifying: (1) the number of viable cells, (2) background spot formation induced in the medium only control and (3) the ability to detect antigen-specific T cell responses. The study demonstrated that the number of viable cells recovered and the overall background spot production were not significantly different between the two conditions. Furthermore, overall laboratory performance was equivalent for the two test conditions; 11 out of 16 laboratories reported equal or greater detection rates using serum-free medium, while 5 laboratories reported decreased detections rates under serum-free conditions. These results show that good performance of the IFN-γ ELISPOT assay can be achieved under serum-free conditions. Optimization of the protocol for serum-free conditions should result in excellent detection rates and eliminate the requirement of serum batch and stability testing, allowing further harmonization of the assay.
Collapse
Affiliation(s)
- A. Mander
- Cancer Sciences Division, Southampton University Hospitals, Southampton, UK
| | - C. Gouttefangeas
- Department of Immunology, University of Tübingen, Tübingen, Germany
| | - C. Ottensmeier
- Cancer Sciences Division, Southampton University Hospitals, Southampton, UK
| | - M. J. P. Welters
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - L. Low
- Cancer Sciences Division, Southampton University Hospitals, Southampton, UK
| | - S. H. van der Burg
- Department of Clinical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - C. M. Britten
- Division of Experimental and Translational Oncology, Department of Internal Medicine III, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
48
|
Weinberg A, Song LY, Fenton T, Nachman SA, Read JS, Patterson-Bartlett J, Levin MJ. T cell responses of HIV-infected children after administration of inactivated or live attenuated influenza vaccines. AIDS Res Hum Retroviruses 2010; 26:51-9. [PMID: 20059397 DOI: 10.1089/aid.2009.0163] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Live-attenuated influenza vaccine (LAIV) prevents significantly more cases of influenza in immune-competent children than the trivalent inactivated vaccine (TIV). We compared the T cell responses to LAIV or TIV in HIV-infected children. IFN-gamma-ELISPOT for the three vaccine-contained influenza strains, two mismatched strains, and phytohemagglutinin (PHA), was performed at 0, 4, and 24 weeks postimmunization in 175 HIV-infected children randomly assigned to LAIV or TIV. The contribution of CD8 T cells to the influenza-specific response (CD8-ELISPOT) was evaluated by CD8-cell depletion. CD8 T cells accounted for > or =87% of the total influenza-ELISPOT. At baseline, total influenza-ELISPOT and CD8-ELISPOT values were similar or higher in TIV compared with LAIV recipients. Four and 24 weeks after TIV, total influenza-ELISPOT and CD8-ELISPOT results were significantly lower than baseline results (p < or = 0.001). Responses to PHA also tended to decrease at 4 weeks after TIV (p = 0.06), but rebounded to baseline levels at 24 weeks. Four weeks after LAIV, total influenza-ELISPOT responses to vaccine-contained strains A H3N2 and B significantly decreased. Other ELISPOT values at 4 weeks and all values at 24 weeks were similar to the baseline values. At 4 and 24 weeks, TIV compared to LAIV administration resulted in a significantly greater decrease in influenza-specific ELISPOT values for vaccine-contained influenza A strains (p < or = 0.02). Responses to PHA also tended to decrease more in TIV recipients (p = 0.07). HIV-infected children immunized with TIV had significant and persistent decreases in ELISPOT responses to influenza. LAIV administration suppressed ELISPOT responses less. The clinical significance of these findings deserves further study.
Collapse
|
49
|
Streeck H, Frahm N, Walker BD. The role of IFN-gamma Elispot assay in HIV vaccine research. Nat Protoc 2009; 4:461-9. [PMID: 19282851 DOI: 10.1038/nprot.2009.7] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The interferon (IFN)-gamma Elispot assay has been widely used as a general screening method for the quantification and characterization of the human immunodeficiency virus (HIV)-specific CD8+ T cell responses. However, the predictive power of this assay has been challenged due to the lack of efficacy of a recently conducted HIV vaccine phase IIb trial, despite induction of robust Elispot responses. This finding plus improvements in multiparameter flow cytometry, which has the potential advantage of simultaneously quantifying numerous parameters, raises questions regarding the future role of IFN-gamma Elispot as a gateway to moving forward with clinical trials of candidate vaccines. However, the IFN-gamma Elispot assay has been, unlike other techniques, evaluated and validated in several proficiency panels and is advantageous in cost-effectively detecting and mapping T-cell responses. Here we present a detailed protocol for a state-of-the-art 3-d IFN-gamma Elispot assay and review further advantages and disadvantages of this method for the characterization of HIV-specific CD8+ T cell responses.
Collapse
Affiliation(s)
- Hendrik Streeck
- Ragon Institute of HGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
50
|
Sarzotti-Kelsoe M, Cox J, Cleland N, Denny T, Hural J, Needham L, Ozaki D, Rodriguez-Chavez IR, Stevens G, Stiles T, Tarragona-Fiol T, Simkins A. Evaluation and recommendations on good clinical laboratory practice guidelines for phase I-III clinical trials. PLoS Med 2009; 6:e1000067. [PMID: 19536325 PMCID: PMC2670502 DOI: 10.1371/journal.pmed.1000067] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Marcella Sarzotti-Kelsoe and colleagues harmonize various approaches to Good Clinical Laboratory Practice for clinical trials into a single set of recommendations.
Collapse
Affiliation(s)
- Marcella Sarzotti-Kelsoe
- Duke University, Center for AIDS Research Central QA Unit, Durham, North Carolina, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|