1
|
Adam L, Rosenbaum P, Bonduelle O, Combadière B. Strategies for Immunomonitoring after Vaccination and during Infection. Vaccines (Basel) 2021; 9:365. [PMID: 33918841 PMCID: PMC8070333 DOI: 10.3390/vaccines9040365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 01/08/2023] Open
Abstract
Immunomonitoring is the study of an individual's immune responses over the course of vaccination or infection. In the infectious context, exploring the innate and adaptive immune responses will help to investigate their contribution to viral control or toxicity. After vaccination, immunomonitoring of the correlate(s) and surrogate(s) of protection is a major asset for measuring vaccine immune efficacy. Conventional immunomonitoring methods include antibody-based technologies that are easy to use. However, promising sensitive high-throughput technologies allowed the emergence of holistic approaches. This raises the question of data integration methods and tools. These approaches allow us to increase our knowledge on immune mechanisms as well as the identification of key effectors of the immune response. However, the depiction of relevant findings requires a well-rounded consideration beforehand about the hypotheses, conception, organization and objectives of the immunomonitoring. Therefore, well-standardized and comprehensive studies fuel insight to design more efficient, rationale-based vaccines and therapeutics to fight against infectious diseases. Hence, we will illustrate this review with examples of the immunomonitoring approaches used during vaccination and the COVID-19 pandemic.
Collapse
Affiliation(s)
| | | | | | - Behazine Combadière
- Inserm, Centre d’Immunologie et des Maladies Infectieuses, Sorbonne Université, 75013 Paris, France; (L.A.); (P.R.); (O.B.)
| |
Collapse
|
2
|
Adam L, Tchitchek N, Todorova B, Rosenbaum P, Joly C, Poux C, Chapon C, Spetz AL, Ustav M, Le Grand R, Martinon F. Innate Molecular and Cellular Signature in the Skin Preceding Long-Lasting T Cell Responses after Electroporated DNA Vaccination. THE JOURNAL OF IMMUNOLOGY 2020; 204:3375-3388. [PMID: 32385135 DOI: 10.4049/jimmunol.1900517] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 04/09/2020] [Indexed: 12/21/2022]
Abstract
DNA vaccines delivered with electroporation (EP) have shown promising results in preclinical models and are evaluated in clinical trials. In this study, we aim to characterize early mechanisms occurring in the skin after intradermal injection and EP of the auxoGTUmultiSIV DNA vaccine in nonhuman primates. First, we show that EP acts as an adjuvant by enhancing local inflammation, notably via granulocytes, monocytes/macrophages, and CD1aint-expressing cell recruitment. EP also induced Langerhans cell maturation, illustrated by CD86, CD83, and HLA-DR upregulation and their migration out of the epidermis. Second, we demonstrate the crucial role of the DNA vaccine in soluble factors release, such as MCP-1 or IL-15. Transcriptomic analysis showed that EP played a major role in gene expression changes postvaccination. However, the DNA vaccine is required to strongly upregulate several genes involved in inflammatory responses (e.g., Saa4), cell migration (e.g., Ccl3, Ccl5, or Cxcl10), APC activation (e.g., Cd86), and IFN-inducible genes (e.g., Ifit3, Ifit5, Irf7, Isg15, orMx1), illustrating an antiviral response signature. Also, AIM-2, a cytosolic DNA sensor, appeared to be strongly upregulated only in the presence of the DNA vaccine and trends to positively correlate with several IFN-inducible genes, suggesting the potential role of AIM-2 in vaccine sensing and the subsequent innate response activation leading to strong adaptive T cell responses. Overall, these results demonstrate that a combined stimulation of the immune response, in which EP and the auxoGTUmultiSIV vaccine triggered different components of the innate immunity, led to strong and persistent cellular recall responses.
Collapse
Affiliation(s)
- Lucille Adam
- Immunology of Viral Infections and Autoimmune Diseases, Infectious Disease Models and Innovative Therapies Department, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université Paris-Sud 11, INSERM U1184, 92265 Fontenay-aux-Roses, France
| | - Nicolas Tchitchek
- Immunology of Viral Infections and Autoimmune Diseases, Infectious Disease Models and Innovative Therapies Department, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université Paris-Sud 11, INSERM U1184, 92265 Fontenay-aux-Roses, France
| | - Biliana Todorova
- Immunology of Viral Infections and Autoimmune Diseases, Infectious Disease Models and Innovative Therapies Department, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université Paris-Sud 11, INSERM U1184, 92265 Fontenay-aux-Roses, France
| | - Pierre Rosenbaum
- Immunology of Viral Infections and Autoimmune Diseases, Infectious Disease Models and Innovative Therapies Department, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université Paris-Sud 11, INSERM U1184, 92265 Fontenay-aux-Roses, France
| | - Candie Joly
- Immunology of Viral Infections and Autoimmune Diseases, Infectious Disease Models and Innovative Therapies Department, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université Paris-Sud 11, INSERM U1184, 92265 Fontenay-aux-Roses, France
| | - Candice Poux
- Immunology of Viral Infections and Autoimmune Diseases, Infectious Disease Models and Innovative Therapies Department, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université Paris-Sud 11, INSERM U1184, 92265 Fontenay-aux-Roses, France
| | - Catherine Chapon
- Immunology of Viral Infections and Autoimmune Diseases, Infectious Disease Models and Innovative Therapies Department, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université Paris-Sud 11, INSERM U1184, 92265 Fontenay-aux-Roses, France
| | - Anna-Lena Spetz
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden; and
| | - Mart Ustav
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Roger Le Grand
- Immunology of Viral Infections and Autoimmune Diseases, Infectious Disease Models and Innovative Therapies Department, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université Paris-Sud 11, INSERM U1184, 92265 Fontenay-aux-Roses, France
| | - Frédéric Martinon
- Immunology of Viral Infections and Autoimmune Diseases, Infectious Disease Models and Innovative Therapies Department, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université Paris-Sud 11, INSERM U1184, 92265 Fontenay-aux-Roses, France;
| |
Collapse
|
3
|
Cheeseman HM, Day S, McFarlane LR, Fleck S, Miller A, Cole T, Sousa-Santos N, Cope A, Cizmeci D, Tolazzi M, Hwekwete E, Hannaman D, Kratochvil S, McKay PF, Chung AW, Kent SJ, Cook A, Scarlatti G, Abraham S, Combadiere B, McCormack S, Lewis DJ, Shattock RJ. Combined Skin and Muscle DNA Priming Provides Enhanced Humoral Responses to a Human Immunodeficency Virus Type 1 Clade C Envelope Vaccine. Hum Gene Ther 2019; 29:1011-1028. [PMID: 30027768 PMCID: PMC6214652 DOI: 10.1089/hum.2018.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Intradermal (i.d.) and intramuscular (i.m.) injections when administered with or without electroporation (EP) have the potential to tailor the immune response to DNA vaccination. This Phase I randomized controlled clinical trial in human immunodeficiency virus type 1–negative volunteers investigated whether the site and mode of DNA vaccination influences the quality of induced cellular and humoral immune responses following the DNA priming phase and subsequent protein boost with recombinant clade C CN54 gp140. A strategy of concurrent i.d. and i.m. DNA immunizations administered with or without EP was adopted. Subtle differences were observed in the shaping of vaccine-induced virus-specific CD4+ and CD8+ T cell–mediated immune responses between groups receiving: i.d.EP + i.m., i.d. + i.m.EP, and i.d.EP + i.m.EP regimens. The DNA priming phase induced 100% seroconversion in all of the groups. A single, non-adjuvanted protein boost induced a rapid and profound increase in binding antibodies in all groups, with a trend for higher responses in i.d.EP + i.m.EP. The magnitude of antigen-specific binding immunoglobulin G correlated with neutralization of closely matched clade C 93MW965 virus and Fc-dimer receptor binding (FcγRIIa and FcγRIIIa). These results offer new perspectives on the use of combined skin and muscle DNA immunization in priming humoral and cellular responses to recombinant protein.
Collapse
Affiliation(s)
- Hannah Mary Cheeseman
- 1 Department of Medicine, Section of Virology, Group of Mucosal Infection and Immunity, Imperial College London, London, United Kingdom; UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Suzanne Day
- 1 Department of Medicine, Section of Virology, Group of Mucosal Infection and Immunity, Imperial College London, London, United Kingdom; UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Leon Robert McFarlane
- 1 Department of Medicine, Section of Virology, Group of Mucosal Infection and Immunity, Imperial College London, London, United Kingdom; UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Sue Fleck
- 2 Medical Research Council Clinical Trials Unit at UCL, University College London, London, United Kingdom; UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Aleisha Miller
- 1 Department of Medicine, Section of Virology, Group of Mucosal Infection and Immunity, Imperial College London, London, United Kingdom; UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Tom Cole
- 3 Imperial Clinical Research Facility, Hammersmith Hospital, Imperial College Healthcare NHS Trust, United Kingdom; UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Nelson Sousa-Santos
- 3 Imperial Clinical Research Facility, Hammersmith Hospital, Imperial College Healthcare NHS Trust, United Kingdom; UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Alethea Cope
- 1 Department of Medicine, Section of Virology, Group of Mucosal Infection and Immunity, Imperial College London, London, United Kingdom; UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Deniz Cizmeci
- 1 Department of Medicine, Section of Virology, Group of Mucosal Infection and Immunity, Imperial College London, London, United Kingdom; UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Monica Tolazzi
- 4 Viral Evolution and Transmission Unit, Division of Immunology, Transplant and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy; UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Edith Hwekwete
- 3 Imperial Clinical Research Facility, Hammersmith Hospital, Imperial College Healthcare NHS Trust, United Kingdom; UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Drew Hannaman
- 5 Ichor Medical Systems, Inc., San Diego, California; UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Sven Kratochvil
- 1 Department of Medicine, Section of Virology, Group of Mucosal Infection and Immunity, Imperial College London, London, United Kingdom; UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Paul Francis McKay
- 1 Department of Medicine, Section of Virology, Group of Mucosal Infection and Immunity, Imperial College London, London, United Kingdom; UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Amy W Chung
- 6 Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, and UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Stephen J Kent
- 6 Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, and UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France .,7 ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, Australia; UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France .,8 Melbourne Sexual Health Centre, Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University , Melbourne, Australia; and UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Adrian Cook
- 2 Medical Research Council Clinical Trials Unit at UCL, University College London, London, United Kingdom; UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Gabriella Scarlatti
- 4 Viral Evolution and Transmission Unit, Division of Immunology, Transplant and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy; UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Sonya Abraham
- 3 Imperial Clinical Research Facility, Hammersmith Hospital, Imperial College Healthcare NHS Trust, United Kingdom; UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Behazine Combadiere
- 9 Sorbonne Universités, UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Sheena McCormack
- 2 Medical Research Council Clinical Trials Unit at UCL, University College London, London, United Kingdom; UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - David John Lewis
- 3 Imperial Clinical Research Facility, Hammersmith Hospital, Imperial College Healthcare NHS Trust, United Kingdom; UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Robin John Shattock
- 1 Department of Medicine, Section of Virology, Group of Mucosal Infection and Immunity, Imperial College London, London, United Kingdom; UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| |
Collapse
|
4
|
Surenaud M, Lacabaratz C, Zurawski G, Lévy Y, Lelièvre JD. Development of an epitope-based HIV-1 vaccine strategy from HIV-1 lipopeptide to dendritic-based vaccines. Expert Rev Vaccines 2018; 16:955-972. [PMID: 28879788 DOI: 10.1080/14760584.2017.1374182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Development of a safe, effective and globally affordable Human Immunodeficiency Virus strain 1 (HIV-1) vaccine offers the best hope for future control of the HIV-1 pandemic. However, with the exception of the recent RV144 trial, which elicited a modest level of protection against infection, no vaccine candidate has shown efficacy in preventing HIV-1 infection or in controlling virus replication in humans. There is also a great need for a successful immunotherapeutic vaccine since combination antiretroviral therapy (cART) does not eliminate the reservoir of HIV-infected cells. But to date, no vaccine candidate has proven to significantly alter the natural history of an individual with HIV-1 infection. Areas covered: For over 25 years, the ANRS (France Recherche Nord&Sud Sida-HIV hépatites) has been committed to an original program combining basic science and clinical research developing an epitope-based vaccine strategy to induce a multiepitopic cellular response against HIV-1. This review describes the evolution of concepts, based on strategies using HIV-1 lipopeptides towards the use of dendritic cell (DC) manipulation. Expert commentary: Understanding the crucial role of DCs in immune responses allowed moving from the non-specific administration of HIV-1 sequences with lipopeptides to DC-based vaccines. These DC-targeting strategies should improve HIV-1 vaccine efficacy.
Collapse
Affiliation(s)
- Mathieu Surenaud
- a INSERM, U955 , Créteil , France.,b Faculté de médecine , Université Paris Est , Créteil , France.,c Vaccine Research Institute (VRI) , Créteil , France
| | - Christine Lacabaratz
- a INSERM, U955 , Créteil , France.,b Faculté de médecine , Université Paris Est , Créteil , France.,c Vaccine Research Institute (VRI) , Créteil , France
| | - Gérard Zurawski
- a INSERM, U955 , Créteil , France.,c Vaccine Research Institute (VRI) , Créteil , France.,d Baylor Institute for Immunology Research , Dallas , TX , USA
| | - Yves Lévy
- a INSERM, U955 , Créteil , France.,b Faculté de médecine , Université Paris Est , Créteil , France.,c Vaccine Research Institute (VRI) , Créteil , France.,e AP-HP, Hôpital H. Mondor - A. Chenevier, Service d'Immunologie Clinique et Maladies Infectieuses , Créteil , France
| | - Jean-Daniel Lelièvre
- a INSERM, U955 , Créteil , France.,b Faculté de médecine , Université Paris Est , Créteil , France.,c Vaccine Research Institute (VRI) , Créteil , France.,e AP-HP, Hôpital H. Mondor - A. Chenevier, Service d'Immunologie Clinique et Maladies Infectieuses , Créteil , France
| |
Collapse
|
5
|
Hollevoet K, De Smidt E, Geukens N, Declerck P. Prolonged in vivo expression and anti-tumor response of DNA-based anti-HER2 antibodies. Oncotarget 2018; 9:13623-13636. [PMID: 29568382 PMCID: PMC5862603 DOI: 10.18632/oncotarget.24426] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/01/2018] [Indexed: 11/25/2022] Open
Abstract
Antibody gene transfer presents an appealing alternative to conventional antibody protein therapy. This pre-clinical study evaluates the impact of various parameters on the pharmacokinetics and efficacy of in vivo expressed DNA-based anti-HER2 monoclonal antibodies (mAbs), newly engineered and delivered via intramuscular electrotransfer in mice. Plasma concentrations of trastuzumab and 4D5, its murine IgG1 equivalent, peaked on average between 1-15 µg/ml, depending on the administration and configuration of the encoding plasmid DNA (pDNA). A dual expression cassette system outperformed a single 2A-based cassette, and the CAG promoter was superior to a muscle-specific ΔUSE-based promoter. A 'gene therapy-compatible' Gene Transport Unit (gtGTU, FIT Biotech), a plasmid backbone that co-encodes viral elements, failed to improve in vivo reporter and mAb expression compared to a conventional plasmid. In BALB/c mice, trastuzumab detection was lost within two weeks after pDNA administration due to anti-drug antibodies. This host immune response was addressed by expressing trastuzumab in immune-compromised mice, or by gene transfer of murine 4D5 in BALB/c mice. Both approaches maintained single-digit µg/ml mAb concentrations for at least six to nine months, and allowed to boost mAb expression over time by pDNA re-dosing. In a breast cancer mouse model, prophylactic and therapeutic DNA-based trastuzumab or 4D5 led to complete tumor regressions, thereby rivalling with the administration of milligrams of mAb protein. In conclusion, our study demonstrates proof of concept for antibody gene transfer in cancer, provides critical insights in the engineering and application of DNA-based antibodies, and serves to advance this modality in oncology and beyond.
Collapse
Affiliation(s)
- Kevin Hollevoet
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven – University of Leuven, Leuven B-3000, Belgium
| | - Elien De Smidt
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven – University of Leuven, Leuven B-3000, Belgium
- PharmAbs, the KU Leuven Antibody Center – University of Leuven, Leuven B-3000, Belgium
| | - Nick Geukens
- PharmAbs, the KU Leuven Antibody Center – University of Leuven, Leuven B-3000, Belgium
| | - Paul Declerck
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven – University of Leuven, Leuven B-3000, Belgium
| |
Collapse
|
6
|
Haidari G, Cope A, Miller A, Venables S, Yan C, Ridgers H, Reijonen K, Hannaman D, Spentzou A, Hayes P, Bouliotis G, Vogt A, Joseph S, Combadiere B, McCormack S, Shattock RJ. Combined skin and muscle vaccination differentially impact the quality of effector T cell functions: the CUTHIVAC-001 randomized trial. Sci Rep 2017; 7:13011. [PMID: 29026141 PMCID: PMC5638927 DOI: 10.1038/s41598-017-13331-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/21/2017] [Indexed: 02/07/2023] Open
Abstract
Targeting of different tissues via transcutaneous (TC), intradermal (ID) and intramuscular (IM) injection has the potential to tailor the immune response to DNA vaccination. In this Phase I randomised controlled clinical trial in HIV-1 negative volunteers we investigate whether the site and mode of DNA vaccination influences the quality of the cellular immune responses. We adopted a strategy of concurrent immunization combining IM injection with either ID or TC administration. As a third arm we assessed the response to IM injection administered with electroporation (EP). The DNA plasmid encoded a MultiHIV B clade fusion protein designed to induce cellular immunity. The vaccine and regimens were well tolerated. We observed differential shaping of vaccine induced virus-specific CD4 + and CD8 + cell-mediated immune responses. DNA given by IM + EP promoted strong IFN-γ responses and potent viral inhibition. ID + IM without EP resulted in a similar pattern of response but of lower magnitude. By contrast TC + IM (without EP) shifted responses towards a more Th-17 dominated phenotype, associated with mucosal and epidermal protection. Whilst preliminary, these results offer new perspectives for differential shaping of desired cellular immunity required to fight the wide range of complex and diverse infectious diseases and cancers.
Collapse
Affiliation(s)
- G Haidari
- Imperial College London, Department of Medicine, Section of Virology, Group of Mucosal Infection and Immunity, London, United Kingdom
| | - A Cope
- Imperial College London, Department of Medicine, Section of Virology, Group of Mucosal Infection and Immunity, London, United Kingdom
| | - A Miller
- Imperial College London, Department of Medicine, Section of Virology, Group of Mucosal Infection and Immunity, London, United Kingdom
| | - S Venables
- Imperial College London, Department of Medicine, Section of Virology, Group of Mucosal Infection and Immunity, London, United Kingdom
| | - C Yan
- Imperial College London, Department of Medicine, Section of Virology, Group of Mucosal Infection and Immunity, London, United Kingdom
| | - H Ridgers
- Imperial College London, Department of Medicine, Section of Virology, Group of Mucosal Infection and Immunity, London, United Kingdom
| | | | - D Hannaman
- Ichor Medical Systems Inc, San Diego, CA, United States
| | - A Spentzou
- Imperial College London, Department of Medicine, Section of Virology, Group of Mucosal Infection and Immunity, London, United Kingdom
| | - P Hayes
- Human Immunology Laboratory, International AIDS Vaccine Initiative, London, United Kingdom
| | - G Bouliotis
- Imperial College London, Department of Medicine, Section of Virology, Group of Mucosal Infection and Immunity, London, United Kingdom
| | - A Vogt
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - S Joseph
- Medical Research Council Clinical Trials Unit at UCL, University College London, London, UK
| | - B Combadiere
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 91 Boulevard de l'Hôpital, F-75013, Paris, France
| | - S McCormack
- Medical Research Council Clinical Trials Unit at UCL, University College London, London, UK
| | - R J Shattock
- Imperial College London, Department of Medicine, Section of Virology, Group of Mucosal Infection and Immunity, London, United Kingdom.
| |
Collapse
|
7
|
Electroporation as a vaccine delivery system and a natural adjuvant to intradermal administration of plasmid DNA in macaques. Sci Rep 2017. [PMID: 28646234 PMCID: PMC5482824 DOI: 10.1038/s41598-017-04547-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In vivo electroporation (EP) is used to enhance the uptake of nucleic acids and its association with DNA vaccination greatly stimulates immune responses to vaccine antigens delivered through the skin. However, the effect of EP on cutaneous cell behavior, the dynamics of immune cell recruitment and local inflammatory factors, have not been fully described. Here, we show that intradermal DNA vaccination combined with EP extends antigen expression to the epidermis and the subcutaneous skin muscle in non-human primates. In vivo fibered confocal microscopy and dynamic ex vivo imaging revealed that EP promotes the mobility of Langerhans cells (LC) and their interactions with transfected cells prior to their migration from the epidermis. At the peak of vaccine expression, we detected antigen in damaged keratinocyte areas in the epidermis and we characterized recruited immune cells in the skin, the hypodermis and the subcutaneous muscle. EP alone was sufficient to induce the production of pro-inflammatory cytokines in the skin and significantly increased local concentrations of Transforming Growth Factor (TGF)-alpha and IL-12. Our results show the kinetics of inflammatory processes in response to EP of the skin, and reveal its potential as a vaccine adjuvant.
Collapse
|
8
|
Herasimtschuk A, Downey J, Nelson M, Moyle G, Mandalia S, Sikut R, Adojaan M, Stanescu I, Gotch F, Imami N. Therapeutic immunisation plus cytokine and hormone therapy improves CD4 T-cell counts, restores anti-HIV-1 responses and reduces immune activation in treated chronic HIV-1 infection. Vaccine 2014; 32:7005-7013. [PMID: 25454870 DOI: 10.1016/j.vaccine.2014.09.072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 08/04/2014] [Accepted: 09/08/2014] [Indexed: 11/27/2022]
Abstract
BACKGROUND This randomised, open label, phase I, immunotherapeutic study investigated the effects of interleukin (IL)-2, granulocyte-macrophage colony-stimulating factor (GM-CSF), recombinant human growth hormone (rhGH), and therapeutic immunisation (a Clade B DNA vaccine) on combination antiretroviral therapy (cART)-treated HIV-1-infected individuals, with the objective to reverse residual T-cell dysfunction. METHODS Twelve HIV-1(+) patients on suppressive cART with baseline CD4 T-cell counts >400 cells/mm(3) blood were randomised into one of three groups: (1) vaccine, IL-2, GM-CSF and rhGH (n=3); (2) vaccine alone (n=4); or (3) IL-2, GM-CSF and rhGH (n=5). Samples were collected at weeks 0, 1, 2, 4, 6, 8, 12, 16, 24 and 48. Interferon (IFN)-γ, IL-2, IL-4 and perforin ELISpot assays performed at each time point quantified functional responses to Gag p17/p24, Nef, Rev, and Tat peptides; and detailed T-cell immunophenotyping was undertaken by flow cytometry. Proviral DNA was also measured. RESULTS Median baseline CD4 T-cell count was 757 cells/mm(3) (interquartile range [IQR] 567-886 cells/mm(3)), median age 48 years (IQR 42-51 years), and plasma HIV-1-RNA <50 copies/ml for all subjects. Patients who received vaccine plus IL-2, GM-CSF and rhGH (group 1) showed the most marked changes. Assessing mean changes from baseline to week 48 revealed significantly elevated numbers of CD4 T cells (p=0.0083) and improved CD4/CD8 T-cell ratios (p=0.0033). This was accompanied by a significant reduction in expression of CD38 on CD4 T cells (p=0.0194), significantly increased IFN-γ and IL-2 production in response to Gag (p=0.0122) and elevated IFN-γ production in response to Tat (p=0.041) at week 48 compared to baseline. Subjects in all treatment groups showed significantly reduced PD-1 expression at week 48 compared to baseline, with some reductions in proviral DNA. CONCLUSIONS Multifarious immunotherapeutic approaches in the context of fully suppressive cART further reduce immune activation, and improve both CD4 T-lymphocyte counts and HIV-1-specific T-cell responses (NCT01130376).
Collapse
Affiliation(s)
| | | | - Mark Nelson
- Chelsea and Westminster Hospital, London, UK
| | | | - Sundhiya Mandalia
- Imperial College London, London, UK; Chelsea and Westminster Hospital, London, UK
| | | | | | | | | | | |
Collapse
|
9
|
Smith PL, Tanner H, Dalgleish A. Developments in HIV-1 immunotherapy and therapeutic vaccination. F1000PRIME REPORTS 2014; 6:43. [PMID: 24991420 PMCID: PMC4047951 DOI: 10.12703/p6-43] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Since the human immunodeficiency virus (HIV-1) pandemic began, few prophylactic vaccines have reached phase III trials. Only one has shown partial efficacy in preventing HIV-1 infection. The introduction of antiretroviral therapy (ART) has had considerable success in controlling infection and reducing transmission but in so doing has changed the nature of HIV-1 infection for those with access to ART. Access, compliance, and toxicity alongside the emergence of serious non-AIDS morbidity and the sometimes poor immune reconstitution in ART-treated patients have emphasized the need for additional therapies. Such therapy is intended to contribute to control of HIV-1 infection, permit structured treatment interruptions, or even establish a functional cure of permanently suppressed and controlled infection. Both immunotherapy and therapeutic vaccination have the potential to reach these goals. In this review, the latest developments in immunotherapy and therapeutic vaccination are discussed.
Collapse
|
10
|
Enhanced immunogenicity of an HIV-1 DNA vaccine delivered with electroporation via combined intramuscular and intradermal routes. J Virol 2014; 88:6959-69. [PMID: 24719412 DOI: 10.1128/jvi.00183-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
UNLABELLED It is accepted that an effective prophylactic HIV-1 vaccine is likely to have the greatest impact on viral transmission rates. As previous reports have implicated DNA-priming, protein boost regimens to be efficient activators of humoral responses, we sought to optimize this regimen to further augment vaccine immunogenicity. Here we evaluated single versus concurrent intradermal (i.d.) and intramuscular (i.m.) vaccinations as a DNA-priming strategy for their abilities to elicit humoral and cellular responses against a model HIV-1 vaccine antigen, CN54-gp140. To further augment vaccine-elicited T and B cell responses, we enhanced cellular transfection with electroporation and then boosted the DNA-primed responses with homologous protein delivered subcutaneously (s.c.), intranasally (i.n.), i.m., or transcutaneously (t.c.). In mice, the concurrent priming regimen resulted in significantly elevated gamma interferon T cell responses and high-avidity antigen-specific IgG B cell responses, a hallmark of B cell maturation. Protein boosting of the concurrent DNA strategy further enhanced IgG concentrations but had little impact on T cell reactivity. Interestingly protein boosting by the subcutaneous route increased antibody avidity to a greater extent than protein boosting by either the i.m., i.n., or t.c. route, suggesting that this route may be preferential for driving B cell maturation. Using an alternative and larger animal model, the rabbit, we found the concurrent DNA-priming strategy followed by s.c. protein boosting to again be capable of eliciting high-avidity humoral responses and to also be able to neutralize HIV-1 pseudoviruses from diverse clades (clades A, B, and C). Taken together, we show that concurrent multiple-route DNA vaccinations induce strong cellular immunity, in addition to potent and high-avidity humoral immune responses. IMPORTANCE The route of vaccination has profound effects on prevailing immune responses. Due to the insufficient immunogenicity and protection of current DNA delivery strategies, we evaluated concurrent DNA delivery via simultaneous administration of plasmid DNA by the i.m. and i.d. routes. The rationale behind this study was to provide clear evidence of the utility of concurrent vaccinations for an upcoming human clinical trial. Furthermore, this work will guide future preclinical studies by evaluating the use of model antigens and plasmids for prime-boost strategies. This paper will be of interest not only to virologists and vaccinologists working in the HIV field but also to researchers working in other viral vaccine settings and, critically, to the wider field of vaccine delivery.
Collapse
|
11
|
Co-delivery of LIGHT expression plasmid enhances humoral and cellular immune responses to HIV-1 Nef in mice. Arch Virol 2014; 159:1663-9. [PMID: 24435162 DOI: 10.1007/s00705-014-1981-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 01/03/2014] [Indexed: 01/17/2023]
Abstract
The immunogenicity and efficacy of a DNA vaccine can be greatly enhanced when a gene adjuvant is used. LIGHT, a member of TNF superfamily, can function as a costimulatory molecule for human naïve T cells to proliferate and can be a potential gene adjuvant. In the current study, the eukaryotic expression plasmid pcDNA-nef was constructed by inserting a full-length nef gene into pcDNA3.1(+), and an in vitro transfection experiment suggested that the nef gene could be expressed successfully in mammalian cells. BALB/c mice were immunized with HIV-1 nef DNA vaccine plasmids alone or in combination with LIGHT expression plasmids, and the specific humoral and cellular immune responses were measured. The data showed that HIV-1 nef DNA vaccine plasmids could induce anti-Nef antibodies, Nef-specific lymphocyte proliferation and CTL activity, whereas stronger specific immune responses were induced in mice when co-immunizing with HIV-1 nef DNA vaccine plasmids and LIGHT expression plasmids, suggesting that the eukaryotic expression vector encoding HIV-1 nef is capable of inducing specific immune responses towards HIV-1 Nef and that LIGHT could be considered as a gene adjuvant for HIV-1 DNA vaccination.
Collapse
|
12
|
Adam L, Le Grand R, Martinon F. Electroporation-mediated intradermal delivery of DNA vaccines in nonhuman primates. Methods Mol Biol 2014; 1121:309-313. [PMID: 24510834 DOI: 10.1007/978-1-4614-9632-8_27] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Strategies to improve vaccine efficacy are still required. The immunogenicity of DNA vaccines is strongly improved by electroporation (EP). The skin is populated with a wide variety of immune cells, making it an attractive tissue for vaccine delivery. Here we describe a method for the EP-mediated intradermal delivery of DNA vaccines in nonhuman primates, as a model for preclinical development of human vaccines, using noninvasive needleless electrodes.
Collapse
Affiliation(s)
- Lucille Adam
- Division of Immuno-Virology, CEA, Institute for Emerging Diseases and Innovative Therapies (iMETI), Fontenay-aux-Roses, France
| | | | | |
Collapse
|
13
|
Vardas E, Stanescu I, Leinonen M, Ellefsen K, Pantaleo G, Valtavaara M, Ustav M, Reijonen K. Indicators of therapeutic effect in FIT-06, a Phase II trial of a DNA vaccine, GTU(®)-Multi-HIVB, in untreated HIV-1 infected subjects. Vaccine 2012; 30:4046-54. [PMID: 22549090 DOI: 10.1016/j.vaccine.2012.04.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 04/02/2012] [Accepted: 04/05/2012] [Indexed: 01/07/2023]
Abstract
BACKGROUND Combination highly active antiretroviral therapy (HAART) has significantly decreased HIV-1 related morbidity and mortality globally transforming HIV into a controllable condition. HAART has a number of limitations though, including limited access in resource constrained countries, which have driven the search for simpler, affordable HIV-1 treatment modalities. Therapeutic HIV-1 vaccines aim to provide immunological support to slow disease progression and decrease transmission. We evaluated the safety, immunogenicity and clinical effect of a novel recombinant plasmid DNA therapeutic HIV-1 vaccine, GTU(®)-multi-HIVB, containing 6 different genes derived from an HIV-1 subtype B isolate. METHODS 63 untreated, healthy, HIV-1 infected, adults between 18 and 40 years were enrolled in a single-blinded, placebo-controlled Phase II trial in South Africa. Subjects were HIV-1 subtype C infected, had never received antiretrovirals, with CD4 ≥ 350 cells/mm(3) and pHIV-RNA ≥ 50 copies/mL at screening. Subjects were allocated to vaccine or placebo groups in a 2:1 ratio either administered intradermally (ID) (0.5mg/dose) or intramuscularly (IM) (1mg/dose) at 0, 4 and 12 weeks boosted at 76 and 80 weeks with 1mg/dose (ID) and 2mg/dose (IM), respectively. Safety was assessed by adverse event monitoring and immunogenicity by HIV-1-specific CD4+ and CD8+ T-cells using intracellular cytokine staining (ICS), pHIV-RNA and CD4 counts. RESULTS Vaccine was safe and well tolerated with no vaccine related serious adverse events. Significant declines in log pHIV-RNA (p=0.012) and increases in CD4+ T cell counts (p=0.066) were observed in the vaccine group compared to placebo, more pronounced after IM administration and in some HLA haplotypes (B*5703) maintained for 17 months after the final immunisation. CONCLUSIONS The GTU(®)-multi-HIVB plasmid recombinant DNA therapeutic HIV-1 vaccine is safe, well tolerated and favourably affects pHIV-RNA and CD4 counts in untreated HIV-1 infected individuals after IM administration in subjects with HLA B*57, B*8101 and B*5801 haplotypes.
Collapse
Affiliation(s)
- Eftyhia Vardas
- Lancet Laboratories, Richmond, Johannesburg, South Africa.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Lori F. DermaVir: a plasmid DNA-based nanomedicine therapeutic vaccine for the treatment of HIV/AIDS. Expert Rev Vaccines 2012; 10:1371-84. [PMID: 21988301 DOI: 10.1586/erv.11.118] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The HIV global pandemic continues to rage with over 33 million people living with the disease. Although multidrug therapy has improved the prognosis for those infected by the virus, it has not eradicated the infection. Immunological therapies, including therapeutic vaccines, are needed to supplement drug therapy in the search for a 'functional cure' for HIV. DermaVir (Genetic Immunity Kft, Budapest, Hungary and McLean, Virginia, USA), an experimental HIV/AIDS therapeutic vaccine, combines three key elements of rational therapeutic vaccine design: a single plasmid DNA (pDNA) immunogen expressing 15 HIV antigens, a synthetic pDNA nanomedicine formulation and a dendritic cell-targeting topical-vaccine administration. DermaVir's novel mechanism of action, natural transport by epidermal Langerhans cells to the lymph nodes to express the pDNA-encoded HIV antigens and induce precursor/memory T cells with high proliferation capacity, has been consistently demonstrated in mouse, rabbit, primate and human subjects. Safety, immunogenicity and preliminary efficacy of DermaVir have been clinically demonstrated in HIV-infected human subjects. The DermaVir technology platform for dendritic cell-based therapeutic vaccination might offer a new treatment paradigm for cancer and infectious diseases.
Collapse
Affiliation(s)
- Franco Lori
- ViroStatics srl, Viale Umberto I, 07100, Sassari, Italy.
| |
Collapse
|
15
|
Malm M, Krohn K, Blazevic V. Immunization with dendritic cells transfected in vivo with HIV-1 plasmid DNA induces HIV-1-specific immune responses. Arch Virol 2011; 156:1607-10. [PMID: 21526430 DOI: 10.1007/s00705-011-1003-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 04/12/2011] [Indexed: 10/18/2022]
Abstract
We evaluated the importance of dendritic cells (DCs) in the induction of the immune response after immunization of mice with DNA plasmid Auxo-GTU(®)-MultiHIV. First, GTU(®)-encoded protein was shown to be expressed by DCs of the draining lymph nodes (LNs) following intradermal (i.d.) immunization. Next, donor mice were immunized with the MultiHIV DNA plasmid, and DCs were enriched and further used to immunize naïve recipient mice. For the first time, the results show that i.d. immunization with Auxo-GTU(®)-MultiHIV transfects DCs in vivo, enabling them to present antigens and induce HIV-specific immune responses in recipient mice.
Collapse
Affiliation(s)
- Maria Malm
- FIT Biotech Oy, Biokatu 8, 33520 Tampere, Finland.
| | | | | |
Collapse
|
16
|
Martinon F, Kaldma K, Sikut R, Culina S, Romain G, Tuomela M, Adojaan M, Männik A, Toots U, Kivisild T, Morin J, Brochard P, Delache B, Tripiciano A, Ensoli F, Stanescu I, Le Grand R, Ustav M. Persistent immune responses induced by a human immunodeficiency virus DNA vaccine delivered in association with electroporation in the skin of nonhuman primates. Hum Gene Ther 2010; 20:1291-307. [PMID: 19627235 DOI: 10.1089/hum.2009.044] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Strategies to improve vaccine efficacy are still required, especially in the case of chronic infections, including human immunodeficiency virus (HIV). DNA vaccines have potential advantages over conventional vaccines; however, low immunological efficacy has been demonstrated in many experiments involving large animals and in clinical trials. To improve the immunogenicity of DNA vaccines, we have designed a plasmid vector exploiting the binding capacity of the bovine papillomavirus E2 protein and we have used electroporation (EP) to increase DNA uptake after intradermal inoculation. We demonstrated, in nonhuman primates (NHPs), efficient induction of anti-HIV immunity with an improved DNA vaccine vector encoding an artificial fusion protein, consisting of several proteins and selected epitopes from HIV-1. We show that a DNA vaccine delivery method combining intradermal injection and noninvasive EP dramatically increased expression of the vaccine antigen selectively in the epidermis, and our observations strongly suggest the involvement of Langerhans cells in the strength and quality of the anti-HIV immune response. Although the humoral responses to the vaccine were transient, the cellular responses were exceptionally robust and persisted, at high levels, more than 2 years after the last vaccine boost. The immune responses were characterized by the induction of significant proportions of T cells producing both interferon-gamma and interleukin-2 cytokines, in both subpopulations, CD4(+) and CD8(+). This strategy is an attractive approach for vaccination in humans because of its high efficacy and the possible use of newly developed devices for EP.
Collapse
Affiliation(s)
- Frédéric Martinon
- Division of Immunovirology, Life Sciences Program (DSV), Institute for Emerging Diseases and Innovative Therapies, Atomic Energy Commission (CEA), Fontenay aux Roses, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Mölder T, Adojaan M, Kaldma K, Ustav M, Sikut R. Elicitation of broad CTL response against HIV-1 by the DNA vaccine encoding artificial multi-component fusion protein MultiHIV--study in domestic pigs. Vaccine 2009; 28:293-8. [PMID: 19879232 DOI: 10.1016/j.vaccine.2009.10.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 10/08/2009] [Accepted: 10/12/2009] [Indexed: 10/20/2022]
Abstract
Broad CTL response against HIV-1 is one factor that helps to control the viral replication. We have constructed a DNA vaccine that encodes a large artificial fusion protein (MultiHIV) and shown it to be immunogenic in mice, swine and macaques. Inbred mice revealed CTL response only against two epitopes due to limited MHC class I variability. To assess the quality of the CTL response we addressed this question in domestic swine. Number of presented epitopes varied between 7 and 14 among the five selected animals. Epitopes detected in swine are localised in the same antigenic regions recognised in humans. This can be explained by the fact that swine MHC-I (SLA-I) complex is remarkably similar to human HLA-I. These results also indicate that immunogenicity profile of vaccines in domestic swine may predict the outcome of human immunisation.
Collapse
|
19
|
Vermasvuori R, Koskinen J, Salonen K, Sirén N, Weegar J, Dahlbacka J, Kalkkinen N, von Weymarn N. Production of recombinant HIV-1 nef protein using different expression host systems: A techno-economical comparison. Biotechnol Prog 2009; 25:95-102. [DOI: 10.1002/btpr.69] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Bråve A, Hallengärd D, Malm M, Blazevic V, Rollman E, Stanescu I, Krohn K. Combining DNA technologies and different modes of immunization for induction of humoral and cellular anti-HIV-1 immune responses. Vaccine 2008; 27:184-6. [PMID: 18992294 DOI: 10.1016/j.vaccine.2008.10.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 10/02/2008] [Accepted: 10/14/2008] [Indexed: 11/29/2022]
Abstract
We show here that it is possible to combine two different genetic immunogens, one designed to induce HIV-1 specific humoral immune responses (pKCMVgp160B) and one designed to induce cellular anti-HIV-1 immune responses (Auxo-GTU-MultiHIV), and still retain the major properties of both vaccine constructs. The two different constructs were delivered using two different methods; the gene-gun and the Biojector, which both are needle-free devices. In BALB/c mice we were able to induce high levels of HIV-1-specific T cell responses as well as high levels of anti-gp160 antibodies by co-administrating the vaccine constructs. The cellular immune responses, but not antibody responses, were moderately compromised from the combination. This study shows that it is a feasible strategy to combine different vaccines and modes of delivery, but that interference as to magnitude may occur to certain gene products.
Collapse
Affiliation(s)
- Andreas Bråve
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet and Swedish Institute for Infectious Disease Control, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
21
|
Ilyinskii PO, Meriin AB, Gabai VL, Usachev EV, Prilipov AG, Thoidis G, Shneider AM. The proteosomal degradation of fusion proteins cannot be predicted from the proteosome susceptibility of their individual components. Protein Sci 2008; 17:1077-85. [PMID: 18411420 DOI: 10.1110/ps.083443908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
It is assumed that the proteosome-processing characteristics of fusion constructs can be predicted from the sum of the proteosome sensitivity of their components. In the present study, we observed that a fusion construct consisting of proteosome-degradable proteins does not necessarily result in a proteosome-degradable chimera. Conversely, fusion of proteosome-resistant proteins may result in a proteosome-degradable composite. We previously demonstrated that conserved influenza proteins can be unified into a single fusion antigen that is protective, and that vaccination with combinations of proteosome-resistant and proteosome-degradable antigens resulted in an augmented T-cell response. In the present study we constructed proteosome-degradable mutants of conserved influenza proteins NP, M1, NS1, and M2. These were then fused into multipartite proteins in different positions. The stability and degradation profiles of these fusion constructs were demonstrated to depend on the relative position of the individual proteins within the chimeric molecule. Combining unstable sequences of either NP and M1 or NS1 and M2 resulted in either rapidly proteosome degraded or proteosome-resistant bipartite fusion mutants. However, further unification of the proteosome-degradable forms into a single four-partite fusion molecule resulted in relatively stable chimeric proteins. Conversely, the addition of proteosome-resistant wild-type M2 to proteosome-resistant NP-M1-NS1 fusion protein lead to the decreased stability of the resulting four-partite multigene products, which in one case was clearly proteosome dependent. Additionally, a highly destabilized form of M1 failed to destabilize the wild-type NP. Collectively, we did not observe any additive effect leading to proteosomal degradation/nondegradation of a multigene construct.
Collapse
|
22
|
Malm M, Sikut R, Krohn K, Blazevic V. GTU®-MultiHIV DNA vaccine results in protection in a novel P815 tumor challenge model. Vaccine 2007; 25:3293-301. [PMID: 17289222 DOI: 10.1016/j.vaccine.2007.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 12/18/2006] [Accepted: 01/04/2007] [Indexed: 10/23/2022]
Abstract
A novel animal model for testing the immunogenicity and protective immune response induced by HIV-1 DNA vaccines was developed. DBA/2 mice were immunized with GTU-MultiHIV DNA encoding multigene for Rev, Nef, Tat, optp17/24 and a stretch of Pol/Env epitopes. A single GTU-MultiHIV B-clade specific plasmid or Auxo-GTU-MultiHIV(mix) (mixture of four plasmids with A, B, C and FGH clade specific MultiHIV antigens) were administered via gene gun and cell-mediated and humoral immune responses were analysed. The protective efficacy of the immune response was evaluated by challenging the mice with syngeneic tumor cells (P815) stably transfected with the MultiHIV fusion gene. Our results show that the strong MultiHIV-specific immune response generated by the GTU-MultiHIV vaccines in DBA/2 mice was able to delay the tumor growth substantially, indicating that the CTL response detected in vitro confers protection in vivo. The model described here is a safe and feasible in vivo assay for assessment of the vaccine potency to induce protective cell-mediated immune responses.
Collapse
Affiliation(s)
- Maria Malm
- FIT Biotech Oyj Plc., Biokatu 8, 33520 Tampere, Finland.
| | | | | | | |
Collapse
|