1
|
Alessandri-Gradt E, Moisan A, Plantier JC. HIV-1 Non-Group M Strains and ART. Viruses 2023; 15:v15030780. [PMID: 36992488 PMCID: PMC10058373 DOI: 10.3390/v15030780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/31/2023] Open
Abstract
To eliminate HIV infection, there are several elements to take into account to limit transmission and break viral replication, such as epidemiological, preventive or therapeutic management. The UNAIDS goals of screening, treatment and efficacy should allow for this elimination if properly followed. For some infections, the difficulty is linked to the strong genetic divergence of the viruses, which can impact the virological and therapeutic management of patients. To completely eliminate HIV by 2030, we must therefore also be able to act on these atypical variants (HIV-1 non-group M) which are distinct from the group M pandemic viruses. While this diversity has had an impact on the efficacy of antiretroviral treatment in the past, recent data show that there is real hope of eliminating these forms, while maintaining vigilance and constant surveillance, so as not to allow more divergent and resistant forms to emerge. The aim of this work is therefore to share an update on the current knowledge on epidemiology, diagnosis and antiretroviral agent efficacy of HIV-1 non-M variants.
Collapse
Affiliation(s)
- Elodie Alessandri-Gradt
- Univ Rouen Normandie, UNICAEN, INSERM, DYNAMICURE UMR 1311, and CHU Rouen, Department of Virology, National Reference Center of HIV, F-76000 Rouen, France
| | - Alice Moisan
- Univ Rouen Normandie, UNICAEN, INSERM, DYNAMICURE UMR 1311, and CHU Rouen, Department of Virology, National Reference Center of HIV, F-76000 Rouen, France
| | - Jean-Christophe Plantier
- Univ Rouen Normandie, UNICAEN, INSERM, DYNAMICURE UMR 1311, and CHU Rouen, Department of Virology, National Reference Center of HIV, F-76000 Rouen, France
| |
Collapse
|
2
|
Sousa JD, Müller V, Vandamme AM. The epidemic emergence of HIV: what novel enabling factors were involved? Future Virol 2017. [DOI: 10.2217/fvl-2017-0042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Humans acquired retroviruses from simians, mainly through bushmeat handling. All epidemically successful HIV groups started to spread in early 20th century, contrasting with the antiquity of T-cell lymphotropic viruses, implying that novel enabling factors were involved in HIV emergence. Here we review the Parenteral Serial Transmission and the Enhanced Heterosexual Transmission hypotheses for the adaptation and early spread of HIV. Epidemic start roughly coincides in time with peak genital ulcer disease in cities, suggesting a major role for sexual transmission. Only ill-adapted and rare HIV groups emerged after approximately 1950, when injections and transfusions attained their maximal levels, suggesting that if parenteral serial transmission was necessary for HIV adaptation, it had to be complemented by sexual transmission for HIV to reach epidemic potential. [Formula: see text]
Collapse
Affiliation(s)
- João Dinis Sousa
- Department of Microbiology & Immunology, Rega Institute for Medical Research, Clinical & Epidemiological Virology, KU Leuven - University of Leuven, B-3000, Leuven, Belgium
- Center for Global Health & Tropical Medicine, Unidade de Microbiologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Viktor Müller
- Institute of Biology, Eötvös Loránd University, Budapest, Hungary
- Evolutionary Systems Research Group, MTA Centre for Ecological Research, Tihany, Hungary
| | - Anne-Mieke Vandamme
- Department of Microbiology & Immunology, Rega Institute for Medical Research, Clinical & Epidemiological Virology, KU Leuven - University of Leuven, B-3000, Leuven, Belgium
- Center for Global Health & Tropical Medicine, Unidade de Microbiologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
3
|
Sensitive Next-Generation Sequencing Method Reveals Deep Genetic Diversity of HIV-1 in the Democratic Republic of the Congo. J Virol 2017; 91:JVI.01841-16. [PMID: 28077647 PMCID: PMC5331799 DOI: 10.1128/jvi.01841-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/07/2016] [Indexed: 01/17/2023] Open
Abstract
As the epidemiological epicenter of the human immunodeficiency virus (HIV) pandemic, the Democratic Republic of the Congo (DRC) is a reservoir of circulating HIV strains exhibiting high levels of diversity and recombination. In this study, we characterized HIV specimens collected in two rural areas of the DRC between 2001 and 2003 to identify rare strains of HIV. The env gp41 region was sequenced and characterized for 172 HIV-positive specimens. The env sequences were predominantly subtype A (43.02%), but 7 other subtypes (33.14%), 20 circulating recombinant forms (CRFs; 11.63%), and 20 unclassified (11.63%) sequences were also found. Of the rare and unclassified subtypes, 18 specimens were selected for next-generation sequencing (NGS) by a modified HIV-switching mechanism at the 5' end of the RNA template (SMART) method to obtain full-genome sequences. NGS produced 14 new complete genomes, which included pure subtype C (n = 2), D (n = 1), F1 (n = 1), H (n = 3), and J (n = 1) genomes. The two subtype C genomes and one of the subtype H genomes branched basal to their respective subtype branches but had no evidence of recombination. The remaining 6 genomes were complex recombinants of 2 or more subtypes, including subtypes A1, F, G, H, J, and K and unclassified fragments, including one subtype CRF25 isolate, which branched basal to all CRF25 references. Notably, all recombinant subtype H fragments branched basal to the H clade. Spatial-geographical analysis indicated that the diverse sequences identified here did not expand globally. The full-genome and subgenomic sequences identified in our study population significantly increase the documented diversity of the strains involved in the continually evolving HIV-1 pandemic.IMPORTANCE Very little is known about the ancestral HIV-1 strains that founded the global pandemic, and very few complete genome sequences are available from patients in the Congo Basin, where HIV-1 expanded early in the global pandemic. By sequencing a subgenomic fragment of the HIV-1 envelope from study participants in the DRC, we identified rare variants for complete genome sequencing. The basal branching of some of the complete genome sequences that we recovered suggests that these strains are more closely related to ancestral HIV-1 strains than to previously reported strains and is evidence that the local diversification of HIV in the DRC continues to outpace the diversity of global strains decades after the emergence of the pandemic.
Collapse
|
4
|
Rodgers MA, Vallari AS, Harris B, Yamaguchi J, Holzmayer V, Forberg K, Berg MG, Kenmenge J, Ngansop C, Awazi B, Mbanya D, Kaptue L, Brennan C, Cloherty G, Ndembi N. Identification of rare HIV-1 Group N, HBV AE, and HTLV-3 strains in rural South Cameroon. Virology 2017; 504:141-151. [PMID: 28193549 DOI: 10.1016/j.virol.2017.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 02/07/2023]
Abstract
Surveillance of emerging viral variants is critical to ensuring that blood screening and diagnostic tests detect all infections regardless of strain or geographic location. In this study, we conducted serological and molecular surveillance to monitor the prevalence and diversity of HIV, HBV, and HTLV in South Cameroon. The prevalence of HIV was 8.53%, HBV was 10.45%, and HTLV was 1.04% amongst study participants. Molecular characterization of 555 HIV-1 specimens identified incredible diversity, including 7 subtypes, 12 CRFs, 6 unclassified, 24 Group O and 2 Group N infections. Amongst 401 HBV sequences were found a rare HBV AE recombinant and two emerging sub-genotype A strains. In addition to HTLV-1 and HTLV-2 strains, sequencing confirmed the fifth known HTLV-3 infection to date. Continued HIV/HBV/HTLV surveillance and vigilance for newly emerging strains in South Cameroon will be essential to ensure diagnostic tests and research stay a step ahead of these rapidly evolving viruses.
Collapse
Affiliation(s)
| | | | - B Harris
- Abbott Laboratories, Abbott Park, IL, USA
| | | | | | - K Forberg
- Abbott Laboratories, Abbott Park, IL, USA
| | - M G Berg
- Abbott Laboratories, Abbott Park, IL, USA
| | - J Kenmenge
- Université de Yaoundé I, Yaoundé, Cameroon
| | - C Ngansop
- Université de Yaoundé I, Yaoundé, Cameroon
| | - B Awazi
- Université de Yaoundé I, Yaoundé, Cameroon
| | - D Mbanya
- Université de Yaoundé I, Yaoundé, Cameroon
| | - L Kaptue
- Université des Montagnes, Montagnes, Bangangté, Cameroon
| | - C Brennan
- Abbott Laboratories, Abbott Park, IL, USA
| | - G Cloherty
- Abbott Laboratories, Abbott Park, IL, USA
| | - N Ndembi
- Institute of Human Virology Nigeria, Abuja, Nigeria
| |
Collapse
|
5
|
Iwami S, Sato K, Morita S, Inaba H, Kobayashi T, Takeuchi JS, Kimura Y, Misawa N, Ren F, Iwasa Y, Aihara K, Koyanagi Y. Pandemic HIV-1 Vpu overcomes intrinsic herd immunity mediated by tetherin. Sci Rep 2015; 5:12256. [PMID: 26184634 PMCID: PMC4505337 DOI: 10.1038/srep12256] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/23/2015] [Indexed: 12/26/2022] Open
Abstract
Among the four groups of HIV-1 (M, N, O, and P), HIV-1M alone is pandemic and has rapidly expanded across the world. However, why HIV-1M has caused a devastating pandemic while the other groups remain contained is unclear. Interestingly, only HIV-1M Vpu, a viral protein, can robustly counteract human tetherin, which tethers budding virions. Therefore, we hypothesize that this property of HIV-1M Vpu facilitates human-to-human viral transmission. Adopting a multilayered experimental-mathematical approach, we demonstrate that HIV-1M Vpu confers a 2.38-fold increase in the prevalence of HIV-1 transmission. When Vpu activity is lost, protected human populations emerge (i.e., intrinsic herd immunity develops) through the anti-viral effect of tetherin. We also reveal that all Vpus of transmitted/founder HIV-1M viruses maintain anti-tetherin activity. These findings indicate that tetherin plays the role of a host restriction factor, providing ‘intrinsic herd immunity’, whereas Vpu has evolved in HIV-1M as a tetherin antagonist.
Collapse
Affiliation(s)
- Shingo Iwami
- 1] Mathematical Biology Laboratory, Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Fukuoka 8128581, Japan [2] PRESTO, JST, Kawaguchi, Saitama 3320012, Japan [3] CREST, JST, Kawaguchi, Saitama 3320012, Japan
| | - Kei Sato
- 1] Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Kyoto 6068507, Japan [2] CREST, JST, Kawaguchi, Saitama 3320012, Japan
| | - Satoru Morita
- 1] Department of Mathematical and Systems Engineering, Shizuoka University, Hamamatsu, Shizuoka 4328561, Japan [2] CREST, JST, Kawaguchi, Saitama 3320012, Japan
| | - Hisashi Inaba
- 1] Graduate School of Mathematical Sciences, The University of Tokyo, Meguro-ku, Tokyo 1538914, Japan [2] CREST, JST, Kawaguchi, Saitama 3320012, Japan
| | - Tomoko Kobayashi
- Laboratory for Animal Health, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, Atsugi, Kanagawa 2430034, Japan
| | - Junko S Takeuchi
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Kyoto 6068507, Japan
| | - Yuichi Kimura
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Kyoto 6068507, Japan
| | - Naoko Misawa
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Kyoto 6068507, Japan
| | - Fengrong Ren
- Department of Bioinformatics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 1138510, Japan
| | - Yoh Iwasa
- Mathematical Biology Laboratory, Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Fukuoka 8128581, Japan
| | - Kazuyuki Aihara
- 1] Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo 1538505, Japan [2] Graduate School of Information Science and Technology, The University of Tokyo, Meguro-ku, Tokyo 1138656, Japan
| | - Yoshio Koyanagi
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Kyoto 6068507, Japan
| |
Collapse
|
6
|
Burchard PR, Abou Tayoun AN, Scherer A, Tsongalis GJ. A rapid RT-PCR assay for the detection of HIV-1 in human plasma specimens. Exp Mol Pathol 2014; 97:111-5. [PMID: 24945443 DOI: 10.1016/j.yexmp.2014.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 06/16/2014] [Indexed: 10/25/2022]
Abstract
INTRODUCTION The CDC estimates that there are currently over 1million people living with human immunodeficiency virus (HIV-1) in the United States, with new cases increasing by approximately 50,000 each year. HIV-1 consists of four distinct groups: the major M group, and the rare N, O, and P groups, each comprising of various subtypes. Without proper care, HIV-1 can lead to cardiovascular, kidney, and liver diseases, cancer, and rapid progression into acquired immune deficiency syndrome (AIDS). Here, we describe a novel, rapid, and highly sensitive assay for the detection of HIV-1 using intercalating dye based RT-PCR and melt curve analysis. MATERIALS AND METHODS We designed an RT-PCR assay for the detection of the major M subtypes in addition to the rare (O, N, and P) HIV-1 groups, as well as an extraction/RT-PCR control, using melt curve analysis. Viral RNA was extracted using the automated Qiagen EZ1 robotic system (Qiagen, Valencia, CA). To establish the limit of detection (LOD) for this assay, we diluted the AcroMetrix HIV-1 panel (LifeTechnologies, Grand Island, NY) to concentrations ranging from 25 to 500 copies/ml. Armored RNA BCR/ABL b3/a2 (Asuragen, Austin, Texas) was used as our extraction and RT-PCR control. Specificity and accuracy were assessed by testing plasma specimens from 48 anonymized patients negative for HIV-1. RESULTS This assay has a turnaround time of less than 2.5h and has a limit of detection of 50 copies/ml of plasma. Our assay also demonstrated 100% concordance with 53 previously quantified plasma patient specimens, including 48 negative samples and 5 positive samples. HIV-1 and our extraction/RT-PCR control were consistently identified at 79 °C and 82.5 °C, respectively. CONCLUSIONS We developed a comprehensive, easy to use assay for the detection of HIV-1 in human plasma. Our assay combines a rapid and cost-effective method for molecular diagnostics with the versatility necessary for widespread laboratory use. These performance characteristics make this HIV-1 detection assay highly suitable for use in a clinical laboratory.
Collapse
Affiliation(s)
- Paul R Burchard
- Department of Pathology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States; Dartmouth Hitchcock Medical Center and Norris Cotton Cancer Center, Lebanon, NH, United States
| | - Ahmad N Abou Tayoun
- Department of Pathology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States; Dartmouth Hitchcock Medical Center and Norris Cotton Cancer Center, Lebanon, NH, United States
| | - Axel Scherer
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Gregory J Tsongalis
- Department of Pathology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States; Dartmouth Hitchcock Medical Center and Norris Cotton Cancer Center, Lebanon, NH, United States.
| |
Collapse
|
7
|
Fonjungo PN, Kalish ML, Schaefer A, Rayfield M, Mika J, Rose LE, Heslop O, Soudré R, Pieniazek D. Recombinant viruses initiated the early HIV-1 epidemic in Burkina Faso. PLoS One 2014; 9:e92423. [PMID: 24647246 PMCID: PMC3960253 DOI: 10.1371/journal.pone.0092423] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 02/22/2014] [Indexed: 11/28/2022] Open
Abstract
We analyzed genetic diversity and phylogenetic relationships among 124 HIV-1 and 19 HIV-2 strains in sera collected in 1986 from patients of the state hospital in Ouagadougou, Burkina Faso. Phylogenetic analysis of the HIV-1 env gp41 region of 65 sequences characterized 37 (56.9%) as CRF06_cpx strains, 25 (38.5%) as CRF02_AG, 2 (3.1%) as CRF09_cpx, and 1 (1.5%) as subtype A. Similarly, phylogenetic analysis of the protease (PR) gene region of 73 sequences identified 52 (71.2%) as CRF06_cpx, 15 (20.5%) as CRF02_AG, 5 (6.8%) as subtype A, and 1 (1.4%) was a unique strain that clustered along the B/D lineage but basal to the node connecting the two lineages. HIV-2 PR or integrase (INT) groups A (n = 17 [89.5%]) and B (n = 2 [10.5%]) were found in both monotypic (n = 11) and heterotypic HIV-1/HIV-2 (n = 8) infections, with few HIV-2 group B infections. Based on limited available sampling, evidence suggests two recombinant viruses, CRF06_cpx and CRF02_AG, appear to have driven the beginning of the mid-1980s HIV-1 epidemic in Burkina Faso.
Collapse
Affiliation(s)
- Peter N. Fonjungo
- HIV and Retrovirology Branch, Division of AIDS, STD, and TB Laboratory Research, National Center for Infectious Diseases, Atlanta, Georgia, United States of America
- Division of Global HIV/AIDS, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| | - Marcia L. Kalish
- HIV and Retrovirology Branch, Division of AIDS, STD, and TB Laboratory Research, National Center for Infectious Diseases, Atlanta, Georgia, United States of America
| | - Amanda Schaefer
- HIV and Retrovirology Branch, Division of AIDS, STD, and TB Laboratory Research, National Center for Infectious Diseases, Atlanta, Georgia, United States of America
| | - Mark Rayfield
- HIV and Retrovirology Branch, Division of AIDS, STD, and TB Laboratory Research, National Center for Infectious Diseases, Atlanta, Georgia, United States of America
| | - Jennifer Mika
- HIV and Retrovirology Branch, Division of AIDS, STD, and TB Laboratory Research, National Center for Infectious Diseases, Atlanta, Georgia, United States of America
| | - Laura E. Rose
- HIV and Retrovirology Branch, Division of AIDS, STD, and TB Laboratory Research, National Center for Infectious Diseases, Atlanta, Georgia, United States of America
| | - Orville Heslop
- HIV and Retrovirology Branch, Division of AIDS, STD, and TB Laboratory Research, National Center for Infectious Diseases, Atlanta, Georgia, United States of America
| | - Robert Soudré
- Unité de Formation et de Recherche en Sciences de la Santé (UFR/SDS), Université de Ouagadougou, Ouagadougou, Burkina Faso
| | - Danuta Pieniazek
- HIV and Retrovirology Branch, Division of AIDS, STD, and TB Laboratory Research, National Center for Infectious Diseases, Atlanta, Georgia, United States of America
| |
Collapse
|
8
|
Abstract
The AIDS pandemic that started in the early 1980s is due to human immunodeficiency virus type 1 (HIV-1) group M (HIV-M), but apart from this major group, many divergent variants have been described (HIV-1 groups N, O, and P and HIV-2). The four HIV-1 groups arose from independent cross-species transmission of the simian immunodeficiency viruses (SIVs) SIVcpz, infecting chimpanzees, and SIVgor, infecting gorillas. This, together with human adaptation, accounts for their genomic, phylogenetic, and virological specificities. Nevertheless, the natural course of non-M HIV infection seems similar to that of HIV-M. The virological monitoring of infected patients is now possible with commercial kits, but their therapeutic management remains complex. All non-M variants were principally described for patients linked to Cameroon, where HIV-O accounts for 1% of all HIV infections; only 15 cases of HIV-N infection and 2 HIV-P infections have been reported. Despite improvements in our knowledge, many fascinating questions remain concerning the origin, genetic evolution, and slow spread of these variants. Other variants may already exist or may arise in the future, calling for close surveillance. This review provides a comprehensive, up-to-date summary of the current knowledge on these pathogens, including the historical background of their discovery; the latest advances in the comprehension of their origin and spread; and clinical, therapeutic, and laboratory aspects that may be useful for the management and the treatment of patients infected with these divergent viruses.
Collapse
|
9
|
Human tetherin exerts strong selection pressure on the HIV-1 group N Vpu protein. PLoS Pathog 2012; 8:e1003093. [PMID: 23308067 PMCID: PMC3534379 DOI: 10.1371/journal.ppat.1003093] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 10/30/2012] [Indexed: 12/19/2022] Open
Abstract
HIV-1 groups M and N emerged within the last century following two independent cross-species transmissions of SIVcpz from chimpanzees to humans. In contrast to pandemic group M strains, HIV-1 group N viruses are exceedingly rare, with only about a dozen infections identified, all but one in individuals from Cameroon. Poor adaptation to the human host may be responsible for this limited spread of HIV-1 group N in the human population. Here, we analyzed the function of Vpu proteins from seven group N strains from Cameroon, the place where this zoonosis originally emerged. We found that these N-Vpus acquired four amino acid substitutions (E15A, V19A and IV25/26LL) in their transmembrane domain (TMD) that allow efficient interaction with human tetherin. However, despite these adaptive changes, most N-Vpus still antagonize human tetherin only poorly and fail to down-modulate CD4, the natural killer (NK) cell ligand NTB-A as well as the lipid-antigen presenting protein CD1d. These functional deficiencies were mapped to amino acid changes in the cytoplasmic domain that disrupt putative adaptor protein binding sites and an otherwise highly conserved ßTrCP-binding DSGxxS motif. As a consequence, N-Vpus exhibited aberrant intracellular localization and/or failed to recruit the ubiquitin-ligase complex to induce tetherin degradation. The only exception was the Vpu of a group N strain recently discovered in France, but originally acquired in Togo, which contained intact cytoplasmic motifs and counteracted tetherin as effectively as the Vpus of pandemic HIV-1 M strains. These results indicate that HIV-1 group N Vpu is under strong host-specific selection pressure and that the acquisition of effective tetherin antagonism may lead to the emergence of viral variants with increased transmission fitness. Differences in their degree of adaptation to humans may explain why only one of four ape-derived SIV zoonoses spawned the AIDS pandemic. Specifically, only HIV-1 strains of the pandemic M group evolved a fully functional Vpu that efficiently antagonizes human tetherin and degrades CD4. In comparison, the rare group N viruses gained some anti-tetherin activity but lost the CD4 degradation function. Here, we show that the N-Vpu transmembrane domain has adapted to interact with human tetherin and identified the mutations that enable this interaction. However, we also show that most N-Vpus remain poor tetherin antagonists and fail to reduce the surface expression of CD4, the natural killer cell ligand NTB-A and the lipid-antigen presenting protein CD1d. This is due to mutations in their cytoplasmic region that are associated with aberrant protein localization and impaired interaction with the ubiquitin/proteasome pathway. A remarkable exception is the Vpu of the first HIV-1 N strain known to be transmitted outside of Cameroon, which contains a functional cytoplasmic domain and is a highly effective tetherin antagonist. These data indicate that group N viruses are still adapting to humans and that the acquisition of potent anti-tetherin activity may eventually lead to the emergence of viral variants that exhibit increased transmission fitness.
Collapse
|
10
|
Affiliation(s)
- Constance Delaugerre
- Service de Microbiologie, CHU Saint Louis, INSERM U 941, Faculté de Médecine Paris-Diderot, Paris, France
| | | | | | | | | |
Collapse
|
11
|
Ragupathy V, Zhao J, Wood O, Tang S, Lee S, Nyambi P, Hewlett I. Identification of new, emerging HIV-1 unique recombinant forms and drug resistant viruses circulating in Cameroon. Virol J 2011; 8:185. [PMID: 21513545 PMCID: PMC3118203 DOI: 10.1186/1743-422x-8-185] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 04/23/2011] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The HIV epidemic in Cameroon is characterized by a high degree of viral genetic diversity with circulating recombinant forms (CRFs) being predominant. The goal of our study was to determine recent trends in virus evolution and emergence of drug resistance in blood donors and HIV positive patients. METHODOLOGY Blood specimens of 73 individuals were collected from three cities and a few villages in Cameroon and viruses were isolated by co-cultivation with PBMCs. Nested PCR was performed for gag p17 (670 bp) pol (840 bp) and Env gp41 (461 bp) genes. Sequences were phylogenetically analyzed using a reference set of sequences from the Los Alamos database. RESULTS Phylogenetic analysis based on partial sequences revealed that 65% (n = 48) of strains were CRF02_AG, 4% (n = 3) subtype F2, 1% each belonged to CRF06 (n = 1), CRF11 (n = 1), subtype G (n = 1), subtype D (n = 1), CRF22_01A1 (n = 1), and 26% (n = 18) were Unique Recombinant Forms (URFs). Most URFs contained CRF02_AG in one or two HIV gene fragments analyzed. Furthermore, pol sequences of 61 viruses revealed drug resistance in 55.5% of patients on therapy and 44% of drug naïve individuals in the RT and protease regions. Overall URFs that had a primary HIV subtype designation in the pol region showed higher HIV-1 p24 levels than other recombinant forms in cell culture based replication kinetics studies. CONCLUSIONS Our results indicate that although CRF02_AG continues to be the predominant strain in Cameroon, phylogenetically the HIV epidemic is continuing to evolve as multiple recombinants of CRF02_AG and URFs were identified in the individuals studied. CRF02_AG recombinants that contained the pol region of a primary subtype showed higher replicative advantage than other variants. Identification of drug resistant strains in drug-naïve patients suggests that these viruses are being transmitted in the population studied. Our findings support the need for continued molecular surveillance in this region of West Central Africa and investigating impact of variants on diagnostics, viral load and drug resistance assays on an ongoing basis.
Collapse
Affiliation(s)
- Viswanath Ragupathy
- Lab of Molecular Virology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Sayer JM, Agniswamy J, Weber IT, Louis JM. Autocatalytic maturation, physical/chemical properties, and crystal structure of group N HIV-1 protease: relevance to drug resistance. Protein Sci 2011; 19:2055-72. [PMID: 20737578 DOI: 10.1002/pro.486] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The mature protease from Group N human immunodeficiency virus Type 1 (HIV-1) (PR1(N)) differs in 20 amino acids from the extensively studied Group M protease (PR1(M)) at positions corresponding to minor drug-resistance mutations (DRMs). The first crystal structure (1.09 Å resolution) of PR1(N) with the clinical inhibitor darunavir (DRV) reveals the same overall structure as PR1(M), but with a slightly larger inhibitor-binding cavity. Changes in the 10s loop and the flap hinge propagate to shift one flap away from the inhibitor, whereas L89F and substitutions in the 60s loop perturb inhibitor-binding residues 29-32. However, kinetic parameters of PR1(N) closely resemble those of PR1(M), and calorimetric results are consistent with similar binding affinities for DRV and two other clinical PIs, suggesting that minor DRMs coevolve to compensate for the detrimental effects of drug-specific major DRMs. A miniprecursor (TFR 1-61-PR1(N)) comprising the transframe region (TFR) fused to the N-terminus of PR1(N) undergoes autocatalytic cleavage at the TFR/PR1(N) site concomitant with the appearance of catalytic activity characteristic of the dimeric, mature enzyme. This cleavage is inhibited at an equimolar ratio of precursor to DRV (∼6 μM), which partially stabilizes the precursor dimer from a monomer. However, cleavage at L34/W35 within the TFR, which precedes the TFR 1-61/PR1(N) cleavage at pH ≤ 5, is only partially inhibited. Favorable properties of PR1(N) relative to PR1(M) include its suitability for column fractionation by size under native conditions and >10-fold higher dimer dissociation constant (150 nM). Exploiting these properties may facilitate testing of potential dimerization inhibitors that perturb early precursor processing steps.
Collapse
Affiliation(s)
- Jane M Sayer
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, Maryland 20892-0520, USA
| | | | | | | |
Collapse
|
13
|
Van Heuverswyn F, Peeters M. The origins of HIV and implications for the global epidemic. Curr Infect Dis Rep 2010; 9:338-46. [PMID: 17618555 DOI: 10.1007/s11908-007-0052-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
HIV type 1 (HIV-1) and type 2 (HIV-2) are the result of several cross-species transmissions from primates to humans. Recently, the ancestral strains of HIV-1 groups M and N were shown to still persist in today's wild chimpanzee populations (Pan troglodytes troglodytes) in south Cameroon. Lately, HIV-1 group O-related viruses have been identified in western gorillas (Gorilla gorilla), called SIVgor, but chimpanzees are most likely the original reservoir of this simian immunodeficiency virus (SIV) infection. HIV-2 is the result of at least eight distinct cross-species transmissions of SIV from sooty mangabeys (Cercocebus atys) in West Africa. Although the origin of HIV-1 and HIV-2 became clearer, some important questions concerning pathogenicity and epidemic spread of certain HIV/SIV variants need to be further elucidated. Because humans are still exposed to a plethora of primate lentiviruses through hunting and handling of primate bushmeat, the possibility of additional zoonotic transfers of primate lentiviruses from other primates must be considered.
Collapse
Affiliation(s)
- Fran Van Heuverswyn
- UMR145, 'Institut de Recherche pour le Développement (IRD)' and University of Montpellier 1, 911 Avenue Agropolis, BP64501, 34394 Montpellier Cdx5, France
| | | |
Collapse
|
14
|
High GUD incidence in the early 20 century created a particularly permissive time window for the origin and initial spread of epidemic HIV strains. PLoS One 2010; 5:e9936. [PMID: 20376191 PMCID: PMC2848574 DOI: 10.1371/journal.pone.0009936] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 03/06/2010] [Indexed: 02/07/2023] Open
Abstract
The processes that permitted a few SIV strains to emerge epidemically as HIV groups remain elusive. Paradigmatic theories propose factors that may have facilitated adaptation to the human host (e.g., unsafe injections), none of which provide a coherent explanation for the timing, geographical origin, and scarcity of epidemic HIV strains. Our updated molecular clock analyses established relatively narrow time intervals (roughly 1880-1940) for major SIV transfers to humans. Factors that could favor HIV emergence in this time frame may have been genital ulcer disease (GUD), resulting in high HIV-1 transmissibility (4-43%), largely exceeding parenteral transmissibility; lack of male circumcision increasing male HIV infection risk; and gender-skewed city growth increasing sexual promiscuity. We surveyed colonial medical literature reporting incidences of GUD for the relevant regions, concentrating on cities, suffering less reporting biases than rural areas. Coinciding in time with the origin of the major HIV groups, colonial cities showed intense GUD outbreaks with incidences 1.5-2.5 orders of magnitude higher than in mid 20(th) century. We surveyed ethnographic literature, and concluded that male circumcision frequencies were lower in early 20(th) century than nowadays, with low rates correlating spatially with the emergence of HIV groups. We developed computer simulations to model the early spread of HIV-1 group M in Kinshasa before, during and after the estimated origin of the virus, using parameters derived from the colonial literature. These confirmed that the early 20(th) century was particularly permissive for the emergence of HIV by heterosexual transmission. The strongest potential facilitating factor was high GUD levels. Remarkably, the direct effects of city population size and circumcision frequency seemed relatively small. Our results suggest that intense GUD in promiscuous urban communities was the main factor driving HIV emergence. Low circumcision rates may have played a role, probably by their indirect effects on GUD.
Collapse
|
15
|
Vallari A, Bodelle P, Ngansop C, Makamche F, Ndembi N, Mbanya D, Kaptué L, Gürtler LG, McArthur CP, Devare SG, Brennan CA. Four new HIV-1 group N isolates from Cameroon: Prevalence continues to be low. AIDS Res Hum Retroviruses 2010; 26:109-15. [PMID: 20059396 DOI: 10.1089/aid.2009.0178] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Analysis of 3555 HIV-seropositive specimens, collected in Cameroon from 2002 to 2006, led to the identification of four HIV-1 group N infections based on differential seroreactivity to HIV env-derived peptides and proteins and confirmation by nucleic acid amplification. Group N prevalence continues to be low accounting for only 0.1% of HIV infections in Cameroon. Near full-length genomic sequences were obtained from viral RNA or proviral DNA by PCR amplification of overlapping fragments for three isolates, 06CM-U14296, 06CM-U14842, and 02CM-SJGddd. Two genome segments, partial pol and env-nef, were obtained from viral RNA for the fourth isolate, 02CM-TIM0217. With the four group N isolates identified in this study and group N sequences previously reported, eight near full-length and five partial genome sequences are now available. Despite genetic divergence from HIV-1 group M and O, all of the group N infections evaluated by five commercial HIV immunoassays were detected.
Collapse
Affiliation(s)
- Ana Vallari
- Abbott Diagnostics, Abbott Park, Illinois 60064
| | | | | | | | - Nicaise Ndembi
- MRC/UVRI Uganda Research Unit on AIDS, Entebbe, Uganda
- Université des Montagnes, Bangangté, Cameroon
| | | | - Lazare Kaptué
- Université de Yaoundé, Yaoundé, Cameroon
- Université des Montagnes, Bangangté, Cameroon
| | | | | | | | | |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW This review attempts to acquaint the reader with the molecular epidemiology of HIV-1 and to describe some of the more promising approaches to vaccine development in the light of this diversity. RECENT FINDINGS The primary genetic forms of HIV-1 in the world today are subtypes A, B, C, CRF01-AE and CRF02-AG. In sub-Saharan Africa, subtypes A and C and CRF02-AG account for most of the infections. In Asia, there are subtypes B, C and CRF01 AE. Europe, the Americas and the Caribbean are dominated by subtype B, and subtype A is in the former Soviet Union. While the genetic diversity of HIV-1 in the world can seem daunting, the vast majority of infections are actually caused by one of these five genetic forms. Approaches to dealing with this in the development of vaccines include targeting conserved regions of the genome, creating ancestral forms of the virus or putting many different forms together into a cocktail. Each of these approaches shows promise. To optimize the chances of initially showing efficacy in HIV vaccine trials, the genetic form of the vaccine strains will resemble those of the circulating strains in the target population. Once efficacy is demonstrated, however, it will be possible to determine whether genetic subtype is at all predictive of vaccine protection. SUMMARY Although the genetic diversity of HIV-1 is impressive, it is not limitless. Most of the infections worldwide are actually due to a handful of strains. It should be possible for a few vaccine strategies to conquer HIV-1 definitively.
Collapse
|
17
|
Geuenich S, Kaderali L, Allespach I, Sertel S, Keppler OT. Biological signature characteristics of primary isolates from human immunodeficiency virus type 1 group O in ex vivo human tonsil histocultures. J Virol 2009; 83:10494-503. [PMID: 19706709 PMCID: PMC2753123 DOI: 10.1128/jvi.00928-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2009] [Accepted: 07/30/2009] [Indexed: 01/09/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) group M viruses have achieved a global distribution, while HIV-1 group O viruses are endemic only in particular regions of Africa. Here, we evaluated biological characteristics of group O and group M viruses in ex vivo models of HIV-1 infection. The replicative capacity and ability to induce CD4 T-cell depletion of eight group O and seven group M primary isolates were monitored in cultures of human peripheral blood mononuclear cells and tonsil explants. Comparative and longitudinal infection studies revealed HIV-1 group-specific activity patterns: CCR5-using (R5) viruses from group M varied considerably in their replicative capacity but showed similar levels of cytopathicity. In contrast, R5 isolates from group O were relatively uniform in their replicative fitness but displayed a high and unprecedented variability in their potential to deplete CD4 T cells. Two R5 group O isolates were identified that cause massive depletion of CD4 T cells, to an extent comparable to CXCR4-using viruses and not documented for any R5 isolate from group M. Intergroup comparisons found a five- to eightfold lower replicative fitness of isolates from group O than for isolates from group M yet a similar overall intrinsic pathogenicity in tonsil cultures. This study establishes biological ex vivo characteristics of HIV-1 group O primary isolates. The current findings challenge the belief that a grossly reduced replicative fitness or inherently impaired cytopathicity of viruses from this group underlies their low global prevalence.
Collapse
Affiliation(s)
- Silvia Geuenich
- Department of Virology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
18
|
Ndembi N, Abraha A, Pilch H, Ichimura H, Mbanya D, Kaptue L, Salata R, Arts EJ. Molecular characterization of human immunodeficiency virus type 1 (HIV-1) and HIV-2 in Yaounde, Cameroon: evidence of major drug resistance mutations in newly diagnosed patients infected with subtypes other than subtype B. J Clin Microbiol 2007; 46:177-84. [PMID: 17855574 PMCID: PMC2224252 DOI: 10.1128/jcm.00428-07] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prior to current studies on the emergence of drug resistance with the introduction of antiretroviral therapy (ART) in Cameroon, we performed genotypic analysis on samples from drug-naïve, human immunodeficiency virus (HIV)-infected individuals in this country. Of the 79 HIV type 1 (HIV-1) pol sequences analyzed from Cameroonian samples, 3 (3.8%) were identified as HIV-1 group O, 1 (1.2%) was identified as an HIV-2 intergroup B/A recombinant, and the remaining 75 (95.0%) were identified as HIV-1 group M. Group M isolates were further classified as subtypes A1 (n = 4), D (n = 4), F2 (n = 6), G (n = 12), H (n = 2), and K (n = 1) and as circulating recombinant forms CRF02_AG (n = 41), CRF11_cpx (n = 1), and CRF13_cpx (n = 2). Two pol sequences were identified as unique recombinant forms of CRF02_AG/F2 (n = 2). M46L (n = 2), a major resistance mutation associated with resistance to protease inhibitors, was observed in 2/75 (2.6%) group M samples. Single mutations associated with resistance to nucleoside reverse transcriptase inhibitors (T215Y/F [n = 3]) and nonnucleoside reverse transcriptase inhibitors (V108I [n = 1], L100I [n = 1], and Y181C [n = 2]) were observed in 7 of 75 (9.3%) group M samples. None of the patients had any history of ART exposure. Population surveillance of transmitted HIV drug resistance is required and should be included to aid in the development of appropriate guidelines.
Collapse
Affiliation(s)
- Nicaise Ndembi
- Laboratory of Hematology and Virology, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
The enormous genetic diversity of HIV-1 is a major challenge to vaccine development and may have important clinical consequences. HIV-1 group M predominates globally, with nine subtypes, several sub-subtypes and over 30 circulating recombinant forms that may exhibit differences with respect to transmissibility, pathogenicity and development of antiretroviral resistance. Subtype D appears to be more virulent than other subtypes, in particular subtype A. Subtype C may be less virulent and more transmissible, although the evidence for this is inconclusive. All group M non-B subtypes appear to be equally susceptible to combination antiretroviral therapy, but development of resistance mutations may vary significantly between subtypes. Further research into the clinical implications of HIV-1 diversity is crucial for effective HIV-1 prevention and treatment.
Collapse
Affiliation(s)
- Susan M Graham
- University of Washington, Box 359909, 325 Ninth Avenue, Seattle, WA 98104, USA
| |
Collapse
|
20
|
Abstract
OBJECTIVE To quantify the similarity (or lack of) between the phylogenetic substructure of HIV-1 groups O and M. METHODS Two phylogenetic tree statistics--the subtype diversity ratio (SDR) and the subtype diversity variance (SDV)--were used in conjunction with bootstrap replicates on gag, pol and env sequence alignments of group O and M strains. Randomly generated phylogenetic trees were used as a control. RESULTS We show that, as expected, the established global-group M subtypes have a high degree of phylogenetic symmetry in relation to each other in terms of inter- and intra-subtype diversification. They are significantly different from the substructure present amongst the random trees. To the contrary, the group O diversification does not display this highly symmetrical substructure and is not significantly different from the substructure present on randomly generated trees. Phylogenies comprised of group M strains from the epicentre of the HIV/AIDS pandemic, the Democratic Republic of Congo (DRC), exhibit a substructure more similar to group O than to global-group M. CONCLUSIONS The substructure present within groups O and M is quantifiably different. The well defined clades, the subtypes that characterize group M diversification, are not present in group O or amongst group M strains from the DRC. The group M subtypes are thus unique and a signature of pandemic HIV-1.
Collapse
Affiliation(s)
- John Archer
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, UK
| | | |
Collapse
|
21
|
Van Heuverswyn F, Li Y, Bailes E, Neel C, Lafay B, Keele BF, Shaw KS, Takehisa J, Kraus MH, Loul S, Butel C, Liegeois F, Yangda B, Sharp PM, Mpoudi-Ngole E, Delaporte E, Hahn BH, Peeters M. Genetic diversity and phylogeographic clustering of SIVcpzPtt in wild chimpanzees in Cameroon. Virology 2007; 368:155-71. [PMID: 17651775 DOI: 10.1016/j.virol.2007.06.018] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 06/07/2007] [Accepted: 06/13/2007] [Indexed: 11/19/2022]
Abstract
It is now well established that the clade of simian immunodeficiency viruses (SIVs) infecting west central African chimpanzees (Pan troglodytes troglodytes) and western gorillas (Gorilla gorilla gorilla) comprises the progenitors of human immunodeficiency virus type 1 (HIV-1). In this study, we have greatly expanded our previous molecular epidemiological survey of SIVcpz in wild chimpanzees in Cameroon. The new results confirm a wide but uneven distribution of SIVcpzPtt in P. t. troglodytes throughout southern Cameroon and indicate the absence of SIVcpz infection in Pan troglodytes vellerosus. Analyzing 725 fecal samples from 15 field sites, we obtained partial nucleotide sequences from 16 new SIVcpzPtt strains and determined full-length sequences for two of these. Phylogenetic analyses of these new viruses confirmed the previously reported phylogeographic clustering of SIVcpzPtt lineages, with viruses related to the ancestors of HIV-1 groups M and N circulating exclusively in southeastern and south central P. t. troglodytes communities, respectively. Importantly, the SIVcpzPtt strains from the southeastern corner of Cameroon represent a relatively isolated clade indicating a defined geographic origin of the chimpanzee precursor of HIV-1 group M. Since contacts between humans and apes continue, the possibility of ongoing transmissions of SIV from chimpanzees (or gorillas) to humans has to be considered. In this context, our finding of distinct SIVcpzPtt envelope V3 sequence clades suggests that these peptides may be useful for the serological differentiation of SIVcpzPtt and HIV-1 infections, and thus the diagnosis of new cross-species transmissions if they occurred.
Collapse
Affiliation(s)
- Fran Van Heuverswyn
- UMR145, Institut de Recherche pour le Développement, Department of International Health, University of Montpellier 1, 911, Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Takehisa J, Kraus MH, Decker JM, Li Y, Keele BF, Bibollet-Ruche F, Zammit KP, Weng Z, Santiago ML, Kamenya S, Wilson ML, Pusey AE, Bailes E, Sharp PM, Shaw GM, Hahn BH. Generation of infectious molecular clones of simian immunodeficiency virus from fecal consensus sequences of wild chimpanzees. J Virol 2007; 81:7463-75. [PMID: 17494082 PMCID: PMC1933379 DOI: 10.1128/jvi.00551-07] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Studies of simian immunodeficiency viruses (SIVs) in their endangered primate hosts are of obvious medical and public health importance, but technically challenging. Although SIV-specific antibodies and nucleic acids have been detected in primate fecal samples, recovery of replication-competent virus from such samples has not been achieved. Here, we report the construction of infectious molecular clones of SIVcpz from fecal viral consensus sequences. Subgenomic fragments comprising a complete provirus were amplified from fecal RNA of three wild-living chimpanzees and sequenced directly. One set of amplicons was concatenated using overlap extension PCR. The resulting clone (TAN1.24) contained intact genes and regulatory regions but was replication defective. It also differed from the fecal consensus sequence by 76 nucleotides. Stepwise elimination of all missense mutations generated several constructs with restored replication potential. The clone that yielded the most infectious virus (TAN1.910) was identical to the consensus sequence in both protein and long terminal repeat sequences. Two additional SIVcpz clones were constructed by direct synthesis of fecal consensus sequences. One of these (TAN3.1) yielded fully infectious virus, while the second one (TAN2.69) required modification at one ambiguous site in the viral pol gene for biological activity. All three reconstructed proviruses produced infectious virions that replicated in human and chimpanzee CD4(+) T cells, were CCR5 tropic, and resembled primary human immunodeficiency virus type 1 isolates in their neutralization phenotype. These results provide the first direct evidence that naturally occurring SIVcpz strains already have many of the biological properties required for persistent infection of humans, including CD4 and CCR5 dependence and neutralization resistance. Moreover, they outline a new strategy for obtaining medically important "SIV isolates" that have thus far eluded investigation. Such isolates are needed to identify viral determinants that contribute to cross-species transmission and host adaptation.
Collapse
Affiliation(s)
- Jun Takehisa
- Department of Medicine, University of Alabama at Birmingham, 720 20th Street South, Kaul 816, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
During the rapid spread of HIV-1 in humans, the main (M) group of HIV-1 has evolved into ten distinct subtypes, undergone countless recombination events and diversified extensively. The impact of this extreme genetic diversity on the phenotype of HIV-1 has only recently become a research focus, but early findings indicate that the dominance of HIV-1 subtype C in the current epidemic might be related to the lower virulence of this subtype compared with other subtypes. Here, we explore whether HIV-1 has reached peak virulence or has already started the slow path to attenuation.
Collapse
Affiliation(s)
- Kevin K. Ariën
- the Department of Microbiology, HIV and Retrovirology Research Unit, Institute of Tropical Medicine, Nationalestraat 155, Antwerp, B2000 Belgium
- Present Address: the Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, Ghent, B-9000 Belgium
| | - Guido Vanham
- the Department of Microbiology, HIV and Retrovirology Research Unit, Institute of Tropical Medicine, Nationalestraat 155, Antwerp, B2000 Belgium
| | - Eric J. Arts
- the Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, 2109, Adelbert Rd, Cleveland, 44195 Ohio USA
| |
Collapse
|
24
|
|
25
|
Brennan CA, Bodelle P, Coffey R, Harris B, Holzmayer V, Luk KC, Swanson P, Yamaguchi J, Vallari A, Devare SG, Schochetman G, Hackett J. HIV global surveillance: foundation for retroviral discovery and assay development. J Med Virol 2006; 78 Suppl 1:S24-9. [PMID: 16622874 DOI: 10.1002/jmv.20603] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The high level of HIV genetic diversity has important implications for screening, diagnostic testing and patient monitoring. Continued diversification and global redistribution of HIV groups, subtypes and recombinants make it imperative that serological and molecular assays be designed and evaluated to ensure reliable performance on all HIV infections. Recognizing the importance of this issue, we initiated a comprehensive program to monitor global diversification of HIV, search for newly emerging variants, assemble large-volume panels of genetically and geographically diverse strains, and develop strategies to determine the impact of HIV diversity on assays used for detecting and monitoring HIV infection. Efforts to identify and characterize rare and emerging HIV strains have lead to the identification of HIV-1 group O, group N, and dual infections of groups M and O. A panel of plasma specimens was established that includes specimens collected from 12 countries in Africa, Asia, Europe, and South America; the panel comprises infections due to HIV-1 group M subtypes A, B, C, D, F, and G, as well as CRF01, CRF02, and unique recombinant forms, group N, and group O. Serological and molecular characterization of this unique panel has provided vital sequence data to support assay development and an invaluable source of well-defined specimens to evaluate and compare assay performance. The ability to address the challenge posed by ongoing evolution of HIV and the emergence of new variants requires continued surveillance of global HIV strain diversity, a sound scientific foundation for assay development, and suitable panels to evaluate and validate assay performance.
Collapse
Affiliation(s)
- Catherine A Brennan
- Abbott Diagnostics, AIDS Research and Retrovirus Discovery, Abbott Park, Illinois 60064-6015, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Keele BF, Van Heuverswyn F, Li Y, Bailes E, Takehisa J, Santiago ML, Bibollet-Ruche F, Chen Y, Wain LV, Liegeois F, Loul S, Ngole EM, Bienvenue Y, Delaporte E, Brookfield JFY, Sharp PM, Shaw GM, Peeters M, Hahn BH. Chimpanzee reservoirs of pandemic and nonpandemic HIV-1. Science 2006; 313:523-6. [PMID: 16728595 PMCID: PMC2442710 DOI: 10.1126/science.1126531] [Citation(s) in RCA: 531] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1), the cause of human acquired immunodeficiency syndrome (AIDS), is a zoonotic infection of staggering proportions and social impact. Yet uncertainty persists regarding its natural reservoir. The virus most closely related to HIV-1 is a simian immunodeficiency virus (SIV) thus far identified only in captive members of the chimpanzee subspecies Pan troglodytes troglodytes. Here we report the detection of SIVcpz antibodies and nucleic acids in fecal samples from wild-living P. t. troglodytes apes in southern Cameroon, where prevalence rates in some communities reached 29 to 35%. By sequence analysis of endemic SIVcpz strains, we could trace the origins of pandemic (group M) and nonpandemic (group N) HIV-1 to distinct, geographically isolated chimpanzee communities. These findings establish P. t. troglodytes as a natural reservoir of HIV-1.
Collapse
Affiliation(s)
- Brandon F. Keele
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Fran Van Heuverswyn
- Laboratoire Retrovirus, UMR145, Institut de Recherche pour le Développement and Department of International Health, University of Montpellier I, 911 Avenue Agropolis, Boite Postale 64501, 34394 Montpellier Cedex 5, France
| | - Yingying Li
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Elizabeth Bailes
- Institute of Genetics, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH, UK
| | - Jun Takehisa
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mario L. Santiago
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Frederic Bibollet-Ruche
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yalu Chen
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Louise V. Wain
- Institute of Genetics, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH, UK
| | - Florian Liegeois
- Laboratoire Retrovirus, UMR145, Institut de Recherche pour le Développement and Department of International Health, University of Montpellier I, 911 Avenue Agropolis, Boite Postale 64501, 34394 Montpellier Cedex 5, France
| | - Severin Loul
- Projet Prevention du Sida au Cameroun (PRESICA), Boite Postale 1857, Yaoundé, Cameroun
| | - Eitel Mpoudi Ngole
- Projet Prevention du Sida au Cameroun (PRESICA), Boite Postale 1857, Yaoundé, Cameroun
| | - Yanga Bienvenue
- Projet Prevention du Sida au Cameroun (PRESICA), Boite Postale 1857, Yaoundé, Cameroun
| | - Eric Delaporte
- Laboratoire Retrovirus, UMR145, Institut de Recherche pour le Développement and Department of International Health, University of Montpellier I, 911 Avenue Agropolis, Boite Postale 64501, 34394 Montpellier Cedex 5, France
| | - John F. Y. Brookfield
- Institute of Genetics, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH, UK
| | - Paul M. Sharp
- Institute of Genetics, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH, UK
| | - George M. Shaw
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Howard Hughes Medical Institute, 720 South 20th Street, KAUL 816, Birmingham, AL 35294, USA
| | - Martine Peeters
- Laboratoire Retrovirus, UMR145, Institut de Recherche pour le Développement and Department of International Health, University of Montpellier I, 911 Avenue Agropolis, Boite Postale 64501, 34394 Montpellier Cedex 5, France
| | - Beatrice H. Hahn
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
- †To whom correspondence should be addressed. E-mail:
| |
Collapse
|
27
|
Yamaguchi J, McArthur CP, Vallari A, Coffey R, Bodelle P, Beyeme M, Schochetman G, Devare SG, Brennan CA. HIV-1 Group N: evidence of ongoing transmission in Cameroon. AIDS Res Hum Retroviruses 2006; 22:453-7. [PMID: 16706623 DOI: 10.1089/aid.2006.22.453] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
An HIV-1 group N infection, 02CM-DJO0135, was identified among specimens collected in 2002 at the D'Joungolo Hospital, Yaoundé, Cameroon. Sequences were obtained from viral RNA extracted from plasma for regions of LTR-gag, pol-vif, and env. The virus amplified from the specimen is closely related to a previously reported group N virus, 02CM-DJO0131, that was also collected at this hospital in 2002. Although the viral sequences for the two isolates differ, their close relationship suggests that the two specimens are linked. No patient histories are available for 02CM-DJO0131 and 02CM-DJO0135; the specimens could have been drawn from a husband/wife, mother/child, or a single individual. However, differences in seroreactivity indicate that it is unlikely that the specimens were drawn from the same patient. This report documents the second case that suggests linkage between group N-infected individuals and indicates that there is ongoing transmission of HIV-1 group N in Cameroon.
Collapse
|