1
|
Mohammadzadeh N, Chomont N, Estaquier J, Cohen EA, Power C. Is the Central Nervous System Reservoir a Hurdle for an HIV Cure? Viruses 2023; 15:2385. [PMID: 38140626 PMCID: PMC10747469 DOI: 10.3390/v15122385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
There is currently no cure for HIV infection although adherence to effective antiretroviral therapy (ART) suppresses replication of the virus in blood, increases CD4+ T-cell counts, reverses immunodeficiency, and increases life expectancy. Despite these substantial advances, ART is a lifelong treatment for people with HIV (PWH) and upon cessation or interruption, the virus quickly rebounds in plasma and anatomic sites, including the central nervous system (CNS), resulting in disease progression. With recent advances in quantifying viral burden, detection of genetically intact viral genomes, and isolation of replication-competent virus from brain tissues of PWH receiving ART, it has become apparent that the CNS viral reservoir (largely comprised of macrophage type cells) poses a substantial challenge for HIV cure strategies. Other obstacles impacting the curing of HIV include ageing populations, substance use, comorbidities, limited antiretroviral drug efficacy in CNS cells, and ART-associated neurotoxicity. Herein, we review recent findings, including studies of the proviral integration sites, reservoir decay rates, and new treatment/prevention strategies in the context of the CNS, together with highlighting the next steps for investigations of the CNS as a viral reservoir.
Collapse
Affiliation(s)
- Nazanin Mohammadzadeh
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Nicolas Chomont
- Department of Immunopathology, Research Centre of the Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada;
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada;
| | - Jerome Estaquier
- Department of Microbiology and Immunology, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada;
| | - Eric A. Cohen
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada;
- Institut de Recherches Cliniques de Montreal, Montreal, QC H2W 1R7, Canada
| | - Christopher Power
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| |
Collapse
|
2
|
de Azevedo SSD, Côrtes FH, Villela LM, Hoagland B, Grinsztejn B, Veloso VG, Morgado MG, Bello G. Comparative HIV-1 Proviral Dynamics in Two Individuals That Maintained Viral Replication Control with or without Antiretroviral Therapy following Superinfection. Viruses 2022; 14:v14122802. [PMID: 36560806 PMCID: PMC9783199 DOI: 10.3390/v14122802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/12/2022] [Accepted: 09/21/2022] [Indexed: 12/23/2022] Open
Abstract
The analysis of the HIV-1 proviral dynamics after superinfection in the context of both natural and antiretroviral therapy (ART)-mediated suppression could yield unique insights into understanding the persistence of viral variants that seeded the infected cells at different times. In this study, we performed a longitudinal analysis of the env diversity of PBMC-associated HIV DNA quasispecies in two HIV controllers (EEC09 and VC32) that were superinfected with subtype F1 viruses several years after primoinfection with subtype B viruses. Patient EEC09 started ART soon after superinfection, while patient VC32 maintained a natural control of virus replication for at least six years following the superinfection. Our analysis revealed no significant temporal changes in the overall proportion of primo-infecting and superinfecting proviral variants over 2-3 years after superinfection in both HIV controllers. Upon the introduction of ART, individual EEC09 displayed no evidence of HIV-infected cell turnover or viral evolution, while subject VC32 displayed some level of HIV-infected cell reseeding and detectable evolution (divergence) of both viral variants. These results confirm that proviral variants that seeded the reservoir at different times throughout infection could persist for long periods under fully suppressive ART or natural viremic control, but the HIV-1 proviral dynamics could be different in both settings.
Collapse
Affiliation(s)
- Suwellen Sardinha Dias de Azevedo
- Laboratório de AIDS and Imunologia Molecular, Instituto Oswaldo Cruz—FIOCRUZ, Rio de Janeiro 21040-360, Brazil
- Correspondence: or Auwellendias@gmail; Tel.: +55-21-3865-8147; Fax: +55-21-3865-8173
| | - Fernanda H. Côrtes
- Laboratório de AIDS and Imunologia Molecular, Instituto Oswaldo Cruz—FIOCRUZ, Rio de Janeiro 21040-360, Brazil
| | - Larissa M. Villela
- Instituto Nacional de Infectologia Evandro Chagas-INI, FIOCRUZ, Rio de Janeiro 21040-360, Brazil
| | - Brenda Hoagland
- Instituto Nacional de Infectologia Evandro Chagas-INI, FIOCRUZ, Rio de Janeiro 21040-360, Brazil
| | - Beatriz Grinsztejn
- Instituto Nacional de Infectologia Evandro Chagas-INI, FIOCRUZ, Rio de Janeiro 21040-360, Brazil
| | - Valdilea G. Veloso
- Instituto Nacional de Infectologia Evandro Chagas-INI, FIOCRUZ, Rio de Janeiro 21040-360, Brazil
| | - Mariza G. Morgado
- Laboratório de AIDS and Imunologia Molecular, Instituto Oswaldo Cruz—FIOCRUZ, Rio de Janeiro 21040-360, Brazil
| | - Gonzalo Bello
- Laboratório de AIDS and Imunologia Molecular, Instituto Oswaldo Cruz—FIOCRUZ, Rio de Janeiro 21040-360, Brazil
| |
Collapse
|
3
|
Foot-and-Mouth Disease Virus Interserotypic Recombination in Superinfected Carrier Cattle. Pathogens 2022; 11:pathogens11060644. [PMID: 35745498 PMCID: PMC9231328 DOI: 10.3390/pathogens11060644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Viral recombination contributes to the emergence of novel strains with the potential for altered host range, transmissibility, virulence, and immune evasion. For foot-and-mouth disease virus (FMDV), cell culture experiments and phylogenetic analyses of field samples have demonstrated the occurrence of recombination. However, the frequency of recombination and associated virus–host interactions within an infected host have not been determined. We have previously reported the detection of interserotypic recombinant FMDVs in oropharyngeal fluid (OPF) samples of 42% (5/12) of heterologously superinfected FMDV carrier cattle. The present investigation consists of a detailed analysis of the virus populations in these samples including identification and characterization of additional interserotypic minority recombinants. In every animal in which recombination was detected, recombinant viruses were identified in the OPF at the earliest sampling point after superinfection. Some recombinants remained dominant until the end of the experiment, whereas others were outcompeted by parental strains. Genomic analysis of detected recombinants suggests host immune pressure as a major driver of recombinant emergence as all recombinants had capsid-coding regions derived from the superinfecting virus to which the animals did not have detectable antibodies at the time of infection. In vitro analysis of a plaque-purified recombinant virus demonstrated a growth rate comparable to its parental precursors, and measurement of its specific infectivity suggested that the recombinant virus incurred no penalty in packaging its new chimeric genome. These findings have important implications for the potential role of persistently infected carriers in FMDV ecology and the emergence of novel strains.
Collapse
|
4
|
Yabar CA, Vilcarino GF, Espetia S, Lujan F, Vásquez-Domínguez A, Yaya M, Acuña M, Santos D, Mamani E, Rodriguez-Bayona R, Salvatierra J, Obregon G, Romero S, Cardenas F, Lopez P, Rivera-Amill V. Social, Epidemiological, and Virological Characteristics from Peruvian Subjects Living with HIV-1/AIDS with Different Sexual Risk Behavior. AIDS Res Hum Retroviruses 2022; 38:288-299. [PMID: 34569275 DOI: 10.1089/aid.2021.0067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
HIV-1 genetic diversity and resistance profile might change according to the risky sexual behavior of the host. To show this, we recruited 134 individuals between the years 2015 and 2017 identified as transgender women sex workers (TWSW, n = 73) and Heterosexual Military Officers (HET-MO, n = 61). After obtaining informed consent, we collected a blood sample to perform the HIV genotyping, CD4 cell count, and viral load. We used bioinformatics approaches for detecting resistance mutations and recombination events. Epidemiological data showed that both groups reported sexually transmitted diseases and they were widespread among TWSW, especially syphilis and herpes virus (35.6%). Illegal drugs consumption was higher among TWSW (71.2%), whereas condom use was inconsistent for both HET-MO (57.4%) and TWSW (74.0%). TWSW showed the shortest time exposition to antiretroviral therapy (ART) (3.5 years) and the lowest access to ART (34.2%) that conducted treatment failure (>4 logs). HIV-1 sequences from TWSW and HET-MO were analyzed to determine the genetic diversity and antiretroviral drug resistance. Phylogeny analysis revealed 125 (93%) cases of subtype B, 01 subtype A (0.76%), 07 (5.30%) BF recombinants, and 01 (0.76%) AG recombinant. Also, TWSW showed a higher recombination index (9.5%, 7/73) than HET-MO (1.5%, 1/68). HET-MO only showed acquired resistance (26.23%, 16/61), whereas TWSW showed both acquired as transmitted resistance (9.59% for each). In conclusion, TWSW and HET-MO showed significant differences considering the epidemiological characteristics, genetic diversity, recombination events, and HIV resistance profile.
Collapse
Affiliation(s)
- Carlos Augusto Yabar
- Laboratorio de VTS/VIH-SIDA, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Chorrillos, Lima - Perú
- Facultad de Medicina Humana, Universidad de San Martín de Porres, La Molina, Lima - Perú
| | - Giovanny Francesco Vilcarino
- Laboratorio de VTS/VIH-SIDA, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Chorrillos, Lima - Perú
| | - Susan Espetia
- Laboratorio de VTS/VIH-SIDA, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Chorrillos, Lima - Perú
| | - Fiorela Lujan
- Laboratorio de VTS/VIH-SIDA, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Chorrillos, Lima - Perú
| | - Andres Vásquez-Domínguez
- Laboratorio de VTS/VIH-SIDA, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Chorrillos, Lima - Perú
| | - Mariela Yaya
- Laboratorio de VTS/VIH-SIDA, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Chorrillos, Lima - Perú
| | - Maribel Acuña
- Laboratorio de VTS/VIH-SIDA, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Chorrillos, Lima - Perú
| | - Daniel Santos
- Laboratorio de VTS/VIH-SIDA, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Chorrillos, Lima - Perú
| | - Edgardo Mamani
- Laboratorio de VTS/VIH-SIDA, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Chorrillos, Lima - Perú
| | | | - Javier Salvatierra
- Servicio de ITS VIH, Centro de Salud, “Alberto Barton,” Callao, Lima - Perú
| | - George Obregon
- Laboratorio de VTS/VIH-SIDA, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Chorrillos, Lima - Perú
| | - Soledad Romero
- Laboratorio de VTS/VIH-SIDA, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Chorrillos, Lima - Perú
| | - Fany Cardenas
- Laboratorio de VTS/VIH-SIDA, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Chorrillos, Lima - Perú
| | - Pablo Lopez
- Center for Research Resources, Ponce Health Sciences University-Ponce Research Institute, Ponce, Puerto Rico
| | - Vanessa Rivera-Amill
- Center for Research Resources, Ponce Health Sciences University-Ponce Research Institute, Ponce, Puerto Rico
| |
Collapse
|
5
|
Zhang H, Cao S, Gao Y, Sun X, Jiang F, Zhao B, Ding H, Dong T, Han X, Shang H. HIV-1-Specific Immunodominant T-Cell Responses Drive the Dynamics of HIV-1 Recombination Following Superinfection. Front Immunol 2022; 12:820628. [PMID: 35095925 PMCID: PMC8794799 DOI: 10.3389/fimmu.2021.820628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
A series of HIV-1 CRF01_AE/CRF07_BC recombinants were previously found to have emerged gradually in a superinfected patient (patient LNA819). However, the extent to which T-cell responses influenced the development of these recombinants after superinfection is unclear. In this study, we undertook a recombination structure analysis of the gag, pol, and nef genes from longitudinal samples of patient LNA819. A total of 9 pol and 5 nef CRF01_AE/CRF07_BC recombinants were detected. The quasispecies makeup and the composition of the pol and nef gene recombinants changed continuously, suggestive of continuous evolution in vivo. T-cell responses targeting peptides of the primary strain and the recombination regions were screened. The results showed that Pol-LY10, Pol-RY9, and Nef-GL9 were the immunodominant epitopes. Pol-LY10 overlapped with the recombination breakpoints in multiple recombinants. For the LY10 epitope, escape from T-cell responses was mediated by both recombination with a CRF07_BC insertion carrying the T467E/T472V variants and T467N/T472V mutations originating in the CRF01_AE strain. In pol recombinants R8 and R9, the recombination breakpoints were located ~23 amino acids upstream of the RY9 epitope. The appearance of new recombination breakpoints harboring a CRF07_BC insertion carrying a R984K variant was associated with escape from RY9-specific T-cell responses. Although the Nef-GL9 epitope was located either within or 10~11 amino acids downstream of the recombination breakpoints, no variant of this epitope was observed in the nef recombinants. Instead, a F85V mutation originating in the CRF01_AE strain was the main immune escape mechanism. Understanding the cellular immune pressure on recombination is critical for monitoring the new circulating recombinant forms of HIV and designing epitope-based vaccines. Vaccines targeting antigens that are less likely to escape immune pressure by recombination and/or mutation are likely to be of benefit to patients with HIV-1.
Collapse
Affiliation(s)
- Hui Zhang
- National Health Commission (NHC) Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Shuang Cao
- National Health Commission (NHC) Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China.,Clinical Laboratory, China Medical University Shengjing Hospital Nanhu Branch, Shenyang, China
| | - Yang Gao
- National Health Commission (NHC) Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Xiao Sun
- National Health Commission (NHC) Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Fanming Jiang
- National Health Commission (NHC) Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Bin Zhao
- National Health Commission (NHC) Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Haibo Ding
- National Health Commission (NHC) Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Tao Dong
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom.,Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford University, Oxford, United Kingdom
| | - Xiaoxu Han
- National Health Commission (NHC) Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Hong Shang
- National Health Commission (NHC) Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China.,Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
| |
Collapse
|
6
|
Musema GMA, Akilimali PZ, za Balega TKN, Tshala-Katumbay D, Lusamba PSD. Predictive Factors of HIV-1 Drug Resistance and Its Distribution among Female Sex Workers in the Democratic Republic of the Congo (DRC). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042021. [PMID: 35206211 PMCID: PMC8872192 DOI: 10.3390/ijerph19042021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 01/27/2023]
Abstract
The predictive factors of HIV-1 drug resistance and its distribution are poorly documented in female sex workers (FSWs) in the Democratic Republic of the Congo (DRC). However, the identification of predictive factors can lead to the development of improved and effective antiretroviral therapy (ART). The objective of the current study was to determine the predictive factors of HIV-1 drug resistance and its distribution based on FSWs in the studied regions in the Democratic Republic of the Congo (DRC). HIV-positive FSWs who were diagnosed as part of the DRC Integrated Biological and Behavioral Surveillance Survey (IBBS) were included in this study. A total of 325 FSWs participated. The HIV-1 viral load (VL) was measured according to the Abbott m2000sp and m2000rt protocols. The homogeneity chi-square test was conducted to determine the homogeneity of HIV-1 drug resistance distribution. Using a significance level of 0.05, multivariate analyses were performed to identify factors associated with HIV-1 drug resistance to ART. HIV drug resistance mutation (HIVDRM) distribution was homogeneous in the three study regions (p = 0.554) but differed based on the HIV-1 VLs of the FSWs. FSWs with high HIV-1 VLs harbored more HIVDRMs (p = 0.028) of predominantly pure HIV-1 strains compared with those that had low HIV-1 VLs. Sexually transmitted infection (STI) history (aOR [95%CI] = 8.51 [1.62, 44.74]), high HIV-1 VLs (aOR [95%CI] = 5.39 [1.09, 26.74]), and HIV-1-syphilis coinfection (aOR [95%CI] = 9.71 [1.84, 51.27]) were associated with HIV drug resistance among FSWs in the DRC. A history of STIs (e.g., abnormal fluid) in the 12 months prior to the survey, a high HIV-1 VL, and HIV-1-syphilis coinfection were associated with HIV-1 drug resistance among FSWs in the DRC. Efforts should be made to systematically test for other infections which increase the HIV-1 VL, in the case of HIV-1 coinfection, in order to maintain ART effectiveness across the DRC.
Collapse
Affiliation(s)
- Godefroid Mulakilwa Ali Musema
- Kinshasa School of Public Health, University of Kinshasa, Kinshasa P.O. Box 11850, Democratic Republic of the Congo; (G.M.A.M.); (P.-S.D.L.)
| | - Pierre Zalagile Akilimali
- Kinshasa School of Public Health, University of Kinshasa, Kinshasa P.O. Box 11850, Democratic Republic of the Congo; (G.M.A.M.); (P.-S.D.L.)
- Correspondence: ; Tel.: +24-38-1580-0288
| | | | - Désiré Tshala-Katumbay
- Department of Neurology, School of Medicine and School of Public Health, Oregon Health & Science University, Portland, OR 97239, USA;
- Department of Neurology, School of Medicine, University of Kinshasa, Kinshasa P.O. Box 11850, Democratic Republic of the Congo
- Institut National de Recherches Biomédicales, Kinshasa P.O. Box 11850, Democratic Republic of the Congo
| | - Paul-Samson Dikasa Lusamba
- Kinshasa School of Public Health, University of Kinshasa, Kinshasa P.O. Box 11850, Democratic Republic of the Congo; (G.M.A.M.); (P.-S.D.L.)
| |
Collapse
|
7
|
First complete-genome documentation of HIV-1 intersubtype superinfection with transmissions of diverse recombinants over time to five recipients. PLoS Pathog 2021; 17:e1009258. [PMID: 33577588 PMCID: PMC7906459 DOI: 10.1371/journal.ppat.1009258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/25/2021] [Accepted: 12/22/2020] [Indexed: 11/19/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) recombinants in the world are believed to be generated through recombination between distinct HIV-1 strains among coinfection or superinfection cases. However, direct evidence to support transmission of HIV-1 recombinants from a coinfected/superinfected donor to putative recipient is lacking. Here, we report on the origin and evolutionary relationship between a set of recombinants from a CRF01_AE/CRF07_BC superinfected putative donor and diverse CRF01_AE/CRF07_BC recombinants from five putative recipients. Interviews on sociodemographic characteristics and sexual behaviors for these six HIV-1-infected men who have sex with men showed that they had similar ways of partner seeking: online dating sites and social circles. Phylogenetic and recombination analyses demonstrated that the near-full-length genome sequences from six patients formed a monophyletic cluster different from known HIV-1 genotypes in maximum likelihood phylogenetic trees, were all composed of CRF01_AE and CRF07_BC fragments with two common breakpoints on env, and shared 4-7 breakpoints with each other. Moreover, 3' half-genomes of recombinant strains from five recipients had identical/similar recombinant structures with strains at longitudinal samples from the superinfected donor. Recombinants from the donor were paraphyletic, whereas five recipients were monophyletic or polyphyletic in the maximum clade credibility tree. Bayesian analyses confirmed that the estimated time to the most recent common ancestor (tMRCA) of CRF01_AE and CRF07_BC strains of the donor was 2009.2 and 2010.7, respectively, and all were earlier than the emergence of recombinants from five recipients. Our results demonstrated that the closely related unique recombinant forms of HIV-1 might be the descendent of a series of recombinants generated gradually in a superinfected patient. This finding highlights the importance of early initiation of antiretroviral therapy as well as tracing and testing of partners in patients with multiple HIV-1 infection.
Collapse
|
8
|
Caetano DG, Côrtes FH, Bello G, de Azevedo SSD, Hoagland B, Villela LM, Grinsztejn B, Veloso VG, Guimarães ML, Morgado MG. A case report of HIV-1 superinfection in an HIV controller leading to loss of viremia control: a retrospective of 10 years of follow-up. BMC Infect Dis 2019; 19:588. [PMID: 31277590 PMCID: PMC6612226 DOI: 10.1186/s12879-019-4229-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/26/2019] [Indexed: 12/03/2022] Open
Abstract
Background HIV controllers (HICs) are a rare group of HIV-1-infected individuals able to naturally control viral replication. Several studies have identified the occurrence of HIV dual infections in seropositive individuals leading to disease progression. In HICs, however, dual infections with divergent outcomes in pathogenesis have been described. Case presentation Here, we present a case report of a HIC diagnosed in late 1999 who displayed stable CD4+ T cell levels and low plasmatic viral load across 12 years of follow-up. In early 2013, the patient started to present an increase in viral load, reaching a peak of 10,000 copies/ml in early 2014, followed by an oscillation of viremia at moderate levels in the following years. The genetic diversity of env proviral quasispecies from peripheral blood mononuclear cells (PBMCs) was studied by single genome amplification (SGA) at six timepoints across 2009–2017. Phylogenetic analyses of env sequences from 2009 and 2010 samples showed the presence of a single subtype B variant (called B1). Analyses of sequences from 2011 and after revealed an additional subtype B variant (called B2) and a subsequent dominance shift in the proviral quasispecies frequencies, with the B2 variant becoming the most frequent from 2014 onwards. Latent syphilis related to unprotected sexual intercourse was diagnosed a year before the first detection of B2, evidencing risk behavior and supporting the superinfection hypothesis. Immunologic analyses revealed an increase in CD8+ and CD4+ T cell immune activation following viremia increase and minor T cell subset alterations during follow-up. HIV-specific T cell responses remained low throughout the follow-up period. Conclusions Altogether, these results show that loss of viremia control in the HIC was associated with superinfection. These data alert to the negative consequences of reinfection on HIV pathogenesis, even in patients with a long history of viremia control and an absence of disease progression, reinforcing the need for continued use of adequate prevention strategies.
Collapse
Affiliation(s)
- Diogo Gama Caetano
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz (IOC) -FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Fernanda Heloise Côrtes
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz (IOC) -FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, 21045-900, Brazil.
| | - Gonzalo Bello
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz (IOC) -FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Suwellen Sardinha Dias de Azevedo
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz (IOC) -FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Brenda Hoagland
- Instituto Nacional de Infectologia Evandro Chagas (INI), Laboratório de Pesquisa clínica em DST e Aids, Rio de Janeiro, Brazil
| | - Larissa Melo Villela
- Instituto Nacional de Infectologia Evandro Chagas (INI), Laboratório de Pesquisa clínica em DST e Aids, Rio de Janeiro, Brazil
| | - Beatriz Grinsztejn
- Instituto Nacional de Infectologia Evandro Chagas (INI), Laboratório de Pesquisa clínica em DST e Aids, Rio de Janeiro, Brazil
| | - Valdiléa Gonçalves Veloso
- Instituto Nacional de Infectologia Evandro Chagas (INI), Laboratório de Pesquisa clínica em DST e Aids, Rio de Janeiro, Brazil
| | - Monick Lindenmeyer Guimarães
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz (IOC) -FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Mariza Gonçalves Morgado
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz (IOC) -FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, 21045-900, Brazil
| |
Collapse
|
9
|
Reduced frequency of HIV superinfection in a high-risk cohort in Zambia. Virology 2019; 535:11-19. [PMID: 31254743 DOI: 10.1016/j.virol.2019.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 11/20/2022]
Abstract
Rates of HIV-1 superinfection, re-infection with a genetically distinct virus despite HIV-1 specific immune responses, vary in different risk populations. We previously found the rates of superinfection were similar to primary HIV infection (PHI) in a Zambian heterosexual transmission cohort. Here, we conduct a similar analysis of 47 HIV-positive Zambians from an acute infection cohort with more frequent follow-up, all infected by non-spousal partners. We identified only one case of superinfection in the first two years, significantly fewer than in our previous study, which was likely due to increased counseling during acute infection and an overall population-wide decline in factors associated with HIV transmission. The predominant virus detected after superinfection was a recombinant of the transmitted founder (TF) and the superinfecting strain. The superinfected individual mounted a neutralizing antibody response to the primary TF virus, which remained TF-specific over time and even after superinfection, did not neutralize the superinfecting variant.
Collapse
|
10
|
HIV controllers suppress viral replication and evolution and prevent disease progression following intersubtype HIV-1 superinfection. AIDS 2019; 33:399-410. [PMID: 30531316 DOI: 10.1097/qad.0000000000002090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the impact of intersubtype HIV-1 superinfection on viremia, reservoir reseeding, viral evolution and disease progression in HIV controllers (HIC). DESIGN A longitudinal analysis of two Brazilian HIC individuals (EEC09 and VC32) previously identified as dually infected with subtypes B and F1 viruses. METHODS Changes in plasma viremia, total HIV-1 DNA levels, CD4+ T-cell counts and HIV-1 quasispecies composition were measured over time. HIV-1 env diversity in peripheral blood mononuclear cell (PBMC) and plasma samples was accessed by single genome amplification and next-generation sequencing approaches, respectively. Viral evolution was evaluated by estimating nucleotide diversity and divergence. RESULTS Individual EEC09 was probably initially infected with a CCR5-tropic subtype B strain and sequentially superinfected with a CXCR4-tropic subtype B strain and with a subtype F1 variant. Individual VC32 was infected with a subtype B strain and superinfected with a subtype F1 variant. The intersubtype superinfection events lead to a moderate increase in viremia and extensive turnover of viral population in plasma but exhibited divergent impact on the size and composition of cell-associated HIV DNA population. Both individuals maintained virologic control (<2000 copies/ml) and presented no evidence of viral evolution or immunologic progression for at least 2 years after the intersubtype superinfection event. CONCLUSION These data revealed that some HIC are able to repeatedly limit replication and evolution of superinfecting viral strains of a different subtype with no signs of disease progression.
Collapse
|
11
|
Wertheim JO, Oster AM, Murrell B, Saduvala N, Heneine W, Switzer WM, Johnson JA. Maintenance and reappearance of extremely divergent intra-host HIV-1 variants. Virus Evol 2018; 4:vey030. [PMID: 30538823 PMCID: PMC6279948 DOI: 10.1093/ve/vey030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Understanding genetic variation in human immunodeficiency virus (HIV) is clinically and immunologically important for patient treatment and vaccine development. We investigated the longitudinal intra-host genetic variation of HIV in over 3,000 individuals in the US National HIV Surveillance System with at least four reported HIV-1 polymerase (pol) sequences. In this population, we identified 149 putative instances of superinfection (i.e. an individual sequentially infected with genetically divergent, polyphyletic viruses). Unexpectedly, we discovered a group of 240 individuals with consecutively sampled viral strains that were >0.015 substitutions/site divergent, despite remaining monophyletic in the phylogeny. Viruses in some of these individuals had a maximum genetic divergence approaching that found between two random, unrelated HIV-1 subtype-B pol sequences within the US population. Individuals with these highly divergent viruses tended to be diagnosed nearly a decade earlier in the epidemic than people with superinfection or virus with less intra-host genetic variation, and they had distinct transmission risk factor profiles. To better understand this genetic variation in cases with extremely divergent, monophyletic viruses, we performed molecular clock phylogenetic analysis. Our findings suggest that, like Hepatitis C virus, extremely divergent HIV lineages can be maintained within an individual and reemerge over a period of years.
Collapse
Affiliation(s)
- Joel O Wertheim
- Department of Medicine, University of California, San Diego, USA
| | - Alexandra M Oster
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, USA
| | - Ben Murrell
- Department of Medicine, University of California, San Diego, USA
| | | | - Walid Heneine
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, USA
| | - William M Switzer
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, USA
| | - Jeffrey A Johnson
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, USA
| |
Collapse
|
12
|
Dual Infection Contributes to Rapid Disease Progression in Men Who Have Sex With Men in China. J Acquir Immune Defic Syndr 2017; 75:480-487. [PMID: 28490044 PMCID: PMC5483982 DOI: 10.1097/qai.0000000000001420] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Supplemental Digital Content is Available in the Text. Background: Considerable numbers of HIV-1–infected men who have sex with men (MSM) show a relatively rapid disease progression in China; however, the cause remains elusive. HIV-1 dual infection was reported to occur commonly among the MSM population, and its contribution to clinical prognosis remains controversial. We investigated the occurrence and impact on disease progression of dual infection in a prospective MSM cohort in China. Methods: Sixty-four HIV-1 early-infected participants were longitudinally followed up for 2 years. Deep sequencing was used as dual-infection screening. CD4+ T-cell counts and HIV-1 viral load were compared between coinfection and single-infection participants and pre- versus post-superinfection. Results: Eight coinfected participants and 10 superinfected participants were identified, including 9 participants with intersubtype and 9 with intrasubtype dual infections. The prevalence of coinfection was 13.1%, with a superinfection incidence of 15.6%. Coinfection participants showed lower CD4+ T-cell counts at 120 days after infection (P = 0.042) and a higher viral set point tendency (P = 0.053) as compared with single-infection participants. Kaplan–Meier analysis showed that the time for the viral load to increase to above 4 log10 copies per milliliter was shorter in coinfection participants than in single-infection participants (P < 0.001). After superinfection, the median CD4+ T-cell count decreased from 635 to 481 cells/μL (P = 0.027). Conclusions: The occurrence of dual infection among Chinese MSM is relatively high, and HIV-1 dual infection might contribute to rapid disease progression seen in the MSM population.
Collapse
|
13
|
Multimethod Longitudinal HIV Drug Resistance Analysis in Antiretroviral-Therapy-Naive Patients. J Clin Microbiol 2017; 55:2785-2800. [PMID: 28659324 DOI: 10.1128/jcm.00634-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 06/27/2017] [Indexed: 11/20/2022] Open
Abstract
The global intensification of antiretroviral therapy (ART) can lead to increased rates of HIV drug resistance (HIVDR) mutations in treated and also in ART-naive patients. ART-naive HIV-1-infected patients from Cameroon were subjected to a multimethod HIVDR analysis using amplification-refractory mutation system (ARMS)-PCR, Sanger sequencing, and longitudinal next-generation sequencing (NGS) to determine their profiles for the mutations K103N, Y181C, K65R, M184V, and T215F/Y. We processed 66 ART-naive HIV-1-positive patients with highly diverse subtypes that underlined the predominance of CRF02_AG and the increasing rate of F2 and other recombinant forms in Cameroon. We compared three resistance testing methods for 5 major mutation sites. Using Sanger sequencing, the overall prevalence of HIVDR mutations was 7.6% (5/66) and included all studied mutations except K65R. Comparing ARMS-PCR with Sanger sequencing as a reference, we obtained a sensitivity of 100% (5/5) and a specificity of 95% (58/61), caused by three false-positive calls with ARMS-PCR. For 32/66 samples, we obtained NGS data and we observed two additional mismatches made up of minority variants (7% and 18%) that might not be clinically relevant. Longitudinal NGS analyses revealed changes in HIVDR mutations in all five positive subjects that could not be attributed to treatment. In one of these cases, superinfection led to the temporary masking of a resistant virus. HIVDR mutations can be sensitively detected by ARMS-PCR and sequencing methods with comparable performances. Longitudinal changes in HIVDR mutations have to be considered even in the absence of treatment.
Collapse
|
14
|
Vesa J, Chaillon A, Wagner GA, Anderson CM, Richman DD, Smith DM, Little SJ. Increased HIV-1 superinfection risk in carriers of specific human leukocyte antigen alleles. AIDS 2017; 31:1149-1158. [PMID: 28244954 PMCID: PMC5559224 DOI: 10.1097/qad.0000000000001445] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The aim of this study was to characterize the demographic, behavioural, clinical and immunogenetic determinants of HIV-1 superinfection in a high-risk cohort of MSM. DESIGN A retrospective cohort study of prospectively followed MSM. METHODS Ninety-eight MSM with acute or early HIV-1 monoinfection were followed for a median of 15.6 months. Demographic and human leukocyte antigen (HLA) genotype data were collected at enrolment. Sexual behaviour, clinical and the infection status (monoinfection or superinfection) data were recorded at each visit (at enrolment and thereafter at a median of 4.2-month intervals). HIV-1 superinfection risk was determined by Cox regression and Kaplan-Meier survival analysis. RESULTS Ten individuals (10.2%) had superinfection during follow-up. Cox regression did not show significantly increased superinfection risk for individuals with an increased amount of condomless anal intercourse, lower CD4 T-cell count or higher viral load, but higher number of sexual contacts demonstrated a trend towards significance [hazard ratio, 4.74; 95% confidence interval (95% CI), 0.87-25.97; P = 0.073]. HLA-A*29 (hazard ratio, 4.10; 95% CI, 0.88-14.76; P = 0.069), HLA-B*35 (hazard ratio, 4.64; 95% CI, 1.33-18.17; P = 0.017), HLA-C*04 (hazard ratio, 5.30; 95% CI, 1.51-20.77; P = 0.010), HLA-C*16 (hazard ratio, 4.05; 95% CI, 0.87-14.62; P = 0.071), HLA-DRB1*07 (hazard ratio, 3.29; 95% CI, 0.94-12.90; P = 0.062) and HLA-DRB1*08 (hazard ratio, 15.37; 95% CI, 2.11-79.80; P = 0.011) were associated with an increased risk of superinfection at α = 0.10, whereas HLA-DRB1*11 was associated with decreased superinfection risk (hazard ratio, 0.13; 95% CI, 0.00-1.03; P = 0.054). CONCLUSION HLA genes may, in part, elucidate the genetic basis of differential superinfection risk, and provide important information for the development of efficient prevention and treatment strategies of HIV-1 superinfection.
Collapse
Affiliation(s)
- Jouni Vesa
- University of California San Diego, La Jolla
| | | | | | | | - Douglas D. Richman
- University of California San Diego, La Jolla
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| | - Davey M. Smith
- University of California San Diego, La Jolla
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| | | |
Collapse
|
15
|
Boyarsky BJ, Durand CM, Palella FJ, Segev DL. Challenges and Clinical Decision-Making in HIV-to-HIV Transplantation: Insights From the HIV Literature. Am J Transplant 2015; 15:2023-30. [PMID: 26080612 DOI: 10.1111/ajt.13344] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 03/23/2015] [Accepted: 04/04/2015] [Indexed: 01/25/2023]
Abstract
Life expectancy among HIV-infected (HIV+) individuals has improved dramatically with effective antiretroviral therapy. Consequently, chronic diseases such as end-stage liver and kidney disease are growing causes of morbidity and mortality. HIV+ individuals can have excellent outcomes after solid organ transplantation, and the need for transplantation in this population is increasing. However, there is a significant organ shortage, and HIV+ individuals experience higher mortality rates on transplant waitlists. In South Africa, the use of organs from HIV+ deceased donors (HIVDD) has been successful, but until recently federal law prohibited this practice in the United States. With the recognition that organs from HIVDD could fill a critical need, the HIV Organ Policy Equity (HOPE) Act was passed in November 2013, reversing the federal ban on the use of HIV+ donors for HIV+ recipients. In translating this policy into practice, the biologic risks of using HIV+ donors need to be carefully considered. In this mini-review, we explore relevant aspects of HIV virology, antiretroviral treatment, drug resistance, opportunistic infections and HIV-related organ dysfunction that are critical to a transplant team considering HIV-to-HIV transplantation.
Collapse
Affiliation(s)
- B J Boyarsky
- Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD
| | - C M Durand
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| | - F J Palella
- Department of Medicine, Feinberg School of Medicine, Northwestern University Chicago, Chicago, IL
| | - D L Segev
- Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD.,Department of Epidemiology, Johns Hopkins School of Public Health, Baltimore, MD
| |
Collapse
|
16
|
Pérez-Losada M, Arenas M, Galán JC, Palero F, González-Candelas F. Recombination in viruses: mechanisms, methods of study, and evolutionary consequences. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2015; 30:296-307. [PMID: 25541518 PMCID: PMC7106159 DOI: 10.1016/j.meegid.2014.12.022] [Citation(s) in RCA: 229] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 12/15/2014] [Accepted: 12/17/2014] [Indexed: 02/08/2023]
Abstract
Recombination is a pervasive process generating diversity in most viruses. It joins variants that arise independently within the same molecule, creating new opportunities for viruses to overcome selective pressures and to adapt to new environments and hosts. Consequently, the analysis of viral recombination attracts the interest of clinicians, epidemiologists, molecular biologists and evolutionary biologists. In this review we present an overview of three major areas related to viral recombination: (i) the molecular mechanisms that underlie recombination in model viruses, including DNA-viruses (Herpesvirus) and RNA-viruses (Human Influenza Virus and Human Immunodeficiency Virus), (ii) the analytical procedures to detect recombination in viral sequences and to determine the recombination breakpoints, along with the conceptual and methodological tools currently used and a brief overview of the impact of new sequencing technologies on the detection of recombination, and (iii) the major areas in the evolutionary analysis of viral populations on which recombination has an impact. These include the evaluation of selective pressures acting on viral populations, the application of evolutionary reconstructions in the characterization of centralized genes for vaccine design, and the evaluation of linkage disequilibrium and population structure.
Collapse
Affiliation(s)
- Marcos Pérez-Losada
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Portugal; Computational Biology Institute, George Washington University, Ashburn, VA 20147, USA
| | - Miguel Arenas
- Centre for Molecular Biology "Severo Ochoa", Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Juan Carlos Galán
- Servicio de Microbiología, Hospital Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; CIBER en Epidemiología y Salud Pública, Spain
| | - Ferran Palero
- CIBER en Epidemiología y Salud Pública, Spain; Unidad Mixta Infección y Salud Pública, FISABIO-Universitat de València, Valencia, Spain
| | - Fernando González-Candelas
- CIBER en Epidemiología y Salud Pública, Spain; Unidad Mixta Infección y Salud Pública, FISABIO-Universitat de València, Valencia, Spain.
| |
Collapse
|
17
|
Bartha I, Assel M, Sloot PMA, Zazzi M, Torti C, Schülter E, De Luca A, Sönnerborg A, Abecasis AB, Van Laethem K, Rosi A, Svärd J, Paredes R, van de Vijver DAMC, Vandamme AM, Müller V. Superinfection with drug-resistant HIV is rare and does not contribute substantially to therapy failure in a large European cohort. BMC Infect Dis 2013; 13:537. [PMID: 24219163 PMCID: PMC3879221 DOI: 10.1186/1471-2334-13-537] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/29/2013] [Indexed: 11/18/2022] Open
Abstract
Background Superinfection with drug resistant HIV strains could potentially contribute to compromised therapy in patients initially infected with drug-sensitive virus and receiving antiretroviral therapy. To investigate the importance of this potential route to drug resistance, we developed a bioinformatics pipeline to detect superinfection from routinely collected genotyping data, and assessed whether superinfection contributed to increased drug resistance in a large European cohort of viremic, drug treated patients. Methods We used sequence data from routine genotypic tests spanning the protease and partial reverse transcriptase regions in the Virolab and EuResist databases that collated data from five European countries. Superinfection was indicated when sequences of a patient failed to cluster together in phylogenetic trees constructed with selected sets of control sequences. A subset of the indicated cases was validated by re-sequencing pol and env regions from the original samples. Results 4425 patients had at least two sequences in the database, with a total of 13816 distinct sequence entries (of which 86% belonged to subtype B). We identified 107 patients with phylogenetic evidence for superinfection. In 14 of these cases, we analyzed newly amplified sequences from the original samples for validation purposes: only 2 cases were verified as superinfections in the repeated analyses, the other 12 cases turned out to involve sample or sequence misidentification. Resistance to drugs used at the time of strain replacement did not change in these two patients. A third case could not be validated by re-sequencing, but was supported as superinfection by an intermediate sequence with high degenerate base pair count within the time frame of strain switching. Drug resistance increased in this single patient. Conclusions Routine genotyping data are informative for the detection of HIV superinfection; however, most cases of non-monophyletic clustering in patient phylogenies arise from sample or sequence mix-up rather than from superinfection, which emphasizes the importance of validation. Non-transient superinfection was rare in our mainly treatment experienced cohort, and we found a single case of possible transmitted drug resistance by this route. We therefore conclude that in our large cohort, superinfection with drug resistant HIV did not compromise the efficiency of antiretroviral treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Viktor Müller
- Institute of Biology, Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|