1
|
Khan A, Paneerselvam N, Lawson BR. Antiretrovirals to CCR5 CRISPR/Cas9 gene editing - A paradigm shift chasing an HIV cure. Clin Immunol 2023; 255:109741. [PMID: 37611838 PMCID: PMC10631514 DOI: 10.1016/j.clim.2023.109741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/18/2023] [Accepted: 08/13/2023] [Indexed: 08/25/2023]
Abstract
The evolution of drug-resistant viral strains and anatomical and cellular reservoirs of HIV pose significant clinical challenges to antiretroviral therapy. CCR5 is a coreceptor critical for HIV host cell fusion, and a homozygous 32-bp gene deletion (∆32) leads to its loss of function. Interestingly, an allogeneic HSCT from an HIV-negative ∆32 donor to an HIV-1-infected recipient demonstrated a curative approach by rendering the recipient's blood cells resistant to viral entry. Ex vivo gene editing tools, such as CRISPR/Cas9, hold tremendous promise in generating allogeneic HSC grafts that can potentially replace allogeneic ∆32 HSCTs. Here, we review antiretroviral therapeutic challenges, clinical successes, and failures of allogeneic and allogeneic ∆32 HSCTs, and newer exciting developments within CCR5 editing using CRISPR/Cas9 in the search to cure HIV.
Collapse
Affiliation(s)
- Amber Khan
- The Scintillon Research Institute, 6868 Nancy Ridge Drive, San Diego, CA 92121, USA
| | | | - Brian R Lawson
- The Scintillon Research Institute, 6868 Nancy Ridge Drive, San Diego, CA 92121, USA.
| |
Collapse
|
3
|
Immune-Related Gene Profile in HIV-Infected Patients with Discordant Immune Response. IRANIAN BIOMEDICAL JOURNAL 2022; 26:485-91. [PMID: 36380676 PMCID: PMC9841224 DOI: 10.52547/ibj.3750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Background: In spite of many reports on persistent low CD4 T cell counts and change in immune-related gene expression level in patients with HIV infection, there is still uncertainty about significant association between gene expression level and HIV infection in patients with and without discordant immune response (DIR). The aim of this study was to compare the expression level of CD4, CCL5, IFN-γ, STAT1, APOBEC3G, CD45, and ICAM-1 genes in HIV-1-positive patients with and without DIR. Methods Methods: In this study, 30 HIV-1-positive patients (15 patients with and 15 patients without DIR [control group]) were included. PBMCs of the patients were collected through density radient centrifugation with Ficoll-Hypaque. RNeasy Plus Mini kit was used to extract RNA. Relative expression levels of CD4, CCL5, IFN-γ, STAT1, APOBEC3G, CD45, and ICAM-1 genes were evaluated by real-time PCR. The data were analyzed using one-way ANOVA. Results Results: CD4 T cell counts were significantly lower in DIR patients than the control group (p < 0.01). While there was no significant difference in the relative expression levels of CD4, CCL5, IFN-γ, STAT1, CD45, and ICAM-1 between patients with DIR and control group, APOBEC3G expression level was significantly higher in the patients with DIR as compare to the control group (p < 0.01). Conclusion Conclusion: Our findings suggest a significantly higher APOBEC3G expression level in patients with DIR, suggesting the potential role of APOBEC3G in patients with immunological discordance besides its suppressing role in HIV-1 infection. Confirmation of this hypothesis requires further research.
Collapse
|
4
|
Shi Y, Su J, Chen R, Wei W, Yuan Z, Chen X, Wang X, Liang H, Ye L, Jiang J. The Role of Innate Immunity in Natural Elite Controllers of HIV-1 Infection. Front Immunol 2022; 13:780922. [PMID: 35211115 PMCID: PMC8861487 DOI: 10.3389/fimmu.2022.780922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/19/2022] [Indexed: 12/26/2022] Open
Abstract
The natural process of human immunodeficiency virus type 1(HIV-1) infection is characterized by high viral load, immune cell exhaustion, and immunodeficiency, which eventually leads to the stage of acquired immunodeficiency syndrome (AIDS) and opportunistic infections. Rapidly progressing HIV-1 individuals often die of AIDS several years after infection without treatment. The promotion of ART greatly prolongs the survival time of HIV-infected persons. However, some patients have incomplete immune function reconstruction after ART due to latent storage of HIV-infected cells. Therefore, how to achieve a functional cure has always been the focus and hot spot of global AIDS research. Fortunately, the emergence of ECs/LTNPs who can control virus replication naturally has ignited new hope for realizing a functional cure for AIDS. Recently, a special category of infected individuals has attracted attention that can delay the progression of the disease more rigorously than the natural progression of HIV-1 infection described above. These patients are characterized by years of HIV-1 infection, long-term asymptomatic status, and normal CD4+T cell count without ART, classified as HIV-infected long-term nonprogressors (LTNPs) and elite controllers (ECs). Numerous studies have shown that the host and virus jointly determine the progression of HIV-1 infection, in which the level of innate immunity activation plays an important role. As the first line of defense against pathogen invasion, innate immunity is also a bridge to induce adaptive immunity. Compared with natural progressors, innate immunity plays an antiviral role in HIV-1 infection by inducing or activating many innate immune-related factors in the natural ECs. Learning the regulation of ECs immunity, especially the innate immunity in different characteristics, and thus studying the mechanism of the control of disease progression naturally, will contribute to the realization of the functional cure of AIDS. Therefore, this review will explore the relationship between innate immunity and disease progression in ECs of HIV-1 infection from the aspects of innate immune cells, signaling pathways, cytokines, which is helpful to provide new targets and theoretical references for the functional cure, prevention and control of AIDS, and development of a vaccine.
Collapse
Affiliation(s)
- Yuting Shi
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Jinming Su
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Rongfeng Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Wudi Wei
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Zongxiang Yuan
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Xiu Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Xinwei Wang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Junjun Jiang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| |
Collapse
|
5
|
Mehlotra RK. Chemokine receptor gene polymorphisms and COVID-19: Could knowledge gained from HIV/AIDS be important? INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 85:104512. [PMID: 32858232 PMCID: PMC7448762 DOI: 10.1016/j.meegid.2020.104512] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 02/08/2023]
Abstract
Emerging results indicate that an uncontrolled host immune response, leading to a life-threatening condition called cytokine release syndrome (also termed "cytokine storm"), is the major driver of pathology in severe COVID-19. In this pandemic, considerable effort is being focused on identifying host genomic factors that increase susceptibility or resistance to the complications of COVID-19 and translating these findings to improved patient care. In this regard, the chemokine receptor-ligand nexus has been reported as potentially important in severe COVID-19 disease pathogenesis and its treatment. Valuable genomic insights into the chemokine receptor-ligand nexus have been gained from HIV infection and disease progression studies. Applying that knowledge, together with newly discovered potential host genomic factors associated with COVID-19, may lead to a more comprehensive understanding of the pathogenesis and treatment outcomes in COVID-19 patients.
Collapse
Affiliation(s)
- Rajeev K. Mehlotra
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Biomedical Research Building, #409A, 2109 Adelbert Rd., Cleveland, OH 44106, USA,Department of Biological Sciences, Case Western Reserve University School of Dental Medicine, 10900 Euclid Ave., Cleveland, OH 44106, USA,Corresponding author at: Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Biomedical Research Building, #409A, 2109 Adelbert Rd., Cleveland, OH 44106, USA
| |
Collapse
|