1
|
Morel Y, Jones JW. Utilization of LC-MS/MS and Drift Tube Ion Mobility for Characterizing Intact Oxidized Arachidonate-Containing Glycerophosphatidylethanolamine. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37369083 DOI: 10.1021/jasms.3c00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Lipid peroxidation is a key component in the pathogenesis of numerous disease states, where the oxidative damage of lipids frequently leads to membrane dysfunction and subsequent cellular death. Glycerophosphoethanolamine (PE) is the second most abundant phospholipid found in cellular membranes and, when oxidized, has been identified as an executor of ferroptotic cell death. PE commonly exists in the plasmalogen form, where the presence of the vinyl ether bond and its enrichment in polyunsaturated fatty acids make it especially susceptible to oxidative degradation. This results in a multitude of oxidized products complicating identification and often requiring several analytical techniques for interpretation. In the present study, we outline an analytical approach for the structural characterization of intact oxidized products of arachidonate-containing diacyl and plasmalogen PE. Intact oxidized PE structures, including structural and positional isomers, were identified using complementary liquid chromatography techniques, drift tube ion mobility, and high-resolution tandem mass spectrometry. This work establishes a comprehensive method for the analysis of intact lipid peroxidation products and provides an important pathway to investigate how lipid peroxidation initially impacts glycerophospholipids and their role in redox biology.
Collapse
Affiliation(s)
- Yulemni Morel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Jace W Jones
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|
2
|
Kuksis A, Pruzanski W. Destruction of polyunsaturated alkyl/acyl and alkenyl/acyl glycerophosphocholine of plasma lipoproteins during incubation with group V and X secretory phospholipase A 2 s. Lipids 2021; 57:91-104. [PMID: 34904243 DOI: 10.1002/lipd.12333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 11/08/2022]
Abstract
Plasma lipoproteins are carriers of various glycerophospholipids including diacyl, alkenyl/acyl, and alkyl/acyl glycerophosphocholines (GPCs), which become distributed among cells and tissues during metabolism. For metabolic function, these phospholipids require hydrolysis by phospholipases, but the responsible enzymes have not been identified. We had previously shown that after complete digestion of lipoprotein diacyl- and oxo-diacyl-GPCs, degradation of residual alkyl/acyl and alkenyl/acyl GPCs continues, despite the fact that ether lipids are resistant to hydrolysis by Ca2+ -activated secretory PLA2 s and require the presence of the Ca2+ -independent PLA2 . In the course of further investigation, we came across a report by Khaselev and Murphy in which the autoxidative degradation of plasmalogens in the presence of 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) proceeded beyond the formation of dihydroperoxides, hydroxides and epoxides, and led to an attack on the enyl bond of the plasmalogen, resulting in formation of 1-OH/2-20:4-GPC and 1-formyl/2-20:4-GPC. Our preliminary investigation indicated that lipoprotein 16:0p/20:4ω6-GPC yielded the same autoxidation products as those reported for synthetic 16:0p/20:4ω6-GPC in the presence of AAPH. Such autoxidative degradation of lipoprotein plasmalogens had not been previously reported with or without AAPH. Subsequent study led to the conclusion that this reaction was not limited to arachidonates, but extended to other polyunsaturated eicosanoids, docosanoids, and tetracosanoids, as well as oligounsaturated octadecanoids. These observations led to a hypothesis that the autoxidative cleavage of the lipoprotein plasmalogens proceeded under the influence of apo-protein-derived free radicals as intermediates of oxidative processes.
Collapse
Affiliation(s)
- Arnis Kuksis
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
3
|
Zhuo R, Rong P, Wang J, Parvin R, Deng Y. The Potential Role of Bioactive Plasmalogens in Lung Surfactant. Front Cell Dev Biol 2021; 9:618102. [PMID: 33681198 PMCID: PMC7928286 DOI: 10.3389/fcell.2021.618102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/08/2021] [Indexed: 01/24/2023] Open
Abstract
Neonatal respiratory distress syndrome (NRDS) is a type of newborn disorder caused by the deficiency or late appearance of lung surfactant, a mixture of lipids and proteins. Studies have shown that lung surfactant replacement therapy could effectively reduce the morbidity and mortality of NRDS, and the therapeutic effect of animal-derived surfactant preparation, although with its limitations, performs much better than that of protein-free synthetic ones. Plasmalogens are a type of ether phospholipids present in multiple human tissues, including lung and lung surfactant. Plasmalogens are known to promote and stabilize non-lamellar hexagonal phase structure in addition to their significant antioxidant property. Nevertheless, they are nearly ignored and underappreciated in the lung surfactant-related research. This report will focus on plasmalogens, a minor yet potentially vital component of lung surfactant, and also discuss their biophysical properties and functions as anti-oxidation, structural modification, and surface tension reduction at the alveolar surface. At the end, we boldly propose a novel synthetic protein-free lung surfactant preparation with plasmalogen modification as an alternative strategy for surfactant replacement therapy.
Collapse
Affiliation(s)
- Ruijiang Zhuo
- Eye Hospital, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Pu Rong
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Jieli Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Rokshana Parvin
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Yuru Deng
- Eye Hospital, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| |
Collapse
|
4
|
Kimura T, Kimura AK, Ren M, Berno B, Xu Y, Schlame M, Epand RM. Substantial Decrease in Plasmalogen in the Heart Associated with Tafazzin Deficiency. Biochemistry 2018; 57:2162-2175. [PMID: 29557170 PMCID: PMC5893435 DOI: 10.1021/acs.biochem.8b00042] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tafazzin is the mitochondrial enzyme that catalyzes transacylation between a phospholipid and a lysophospholipid in remodeling. Mutations in tafazzin cause Barth syndrome, a potentially life-threatening disease with the major symptom being cardiomyopathy. In the tafazzin-deficient heart, cardiolipin (CL) acyl chains become abnormally heterogeneous unlike those in the normal heart with a single dominant linoleoyl species, tetralinoleoyl CL. In addition, the amount of CL decreases and monolysocardiolipin (MLCL) accumulates. Here we determine using high-resolution 31P nuclear magnetic resonance with cryoprobe technology the fundamental phospholipid composition, including the major but oxidation-labile plasmalogens, in the tafazzin-knockdown (TAZ-KD) mouse heart as a model of Barth syndrome. In addition to confirming a lower level of CL (6.4 ± 0.1 → 2.0 ± 0.4 mol % of the total phospholipid) and accumulation of MLCL (not detected → 3.3 ± 0.5 mol %) in the TAZ-KD, we found a substantial reduction in the level of plasmenylcholine (30.8 ± 2.8 → 18.1 ± 3.1 mol %), the most abundant phospholipid in the control wild type. A quantitative Western blot revealed that while the level of peroxisomes, where early steps of plasmalogen synthesis take place, was normal in the TAZ-KD model, expression of Far1 as a rate-determining enzyme in plasmalogen synthesis was dramatically upregulated by 8.3 (±1.6)-fold to accelerate the synthesis in response to the reduced level of plasmalogen. We confirmed lyso-plasmenylcholine or plasmenylcholine is a substrate of purified tafazzin for transacylation with CL or MLCL, respectively. Our results suggest that plasmenylcholine, abundant in linoleoyl species, is important in remodeling CL in the heart. Tafazzin deficiency thus has a major impact on the cardiac plasmenylcholine level and thereby its functions.
Collapse
Affiliation(s)
- Tomohiro Kimura
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Atsuko K. Kimura
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Mindong Ren
- Department of Cell Biology, NYU Langone Medical Center, New York, NY 10016
| | - Bob Berno
- Department of Chemistry, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Yang Xu
- Department of Anesthesiology, NYU Langone Medical Center, New York, NY 10016
| | - Michael Schlame
- Department of Cell Biology, NYU Langone Medical Center, New York, NY 10016
- Department of Anesthesiology, NYU Langone Medical Center, New York, NY 10016
| | - Richard M. Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
5
|
Messias MCF, Mecatti GC, Priolli DG, de Oliveira Carvalho P. Plasmalogen lipids: functional mechanism and their involvement in gastrointestinal cancer. Lipids Health Dis 2018. [PMID: 29514688 PMCID: PMC5842581 DOI: 10.1186/s12944-018-0685-9] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The plasmalogens are a class of glycerophospholipids which contain a vinyl-ether and an ester bond at the sn-1 and sn-2 positions, respectively, in the glycerol backbone. They constitute 10 mol% of the total mass of phospholipids in humans, mainly as membrane structure components. Plasmalogens are important for the organization and stability of lipid raft microdomains and cholesterol-rich membrane regions involved in cellular signaling. In addition to their structural roles, a subset of ether lipids are thought to function as endogenous antioxidants and emerging studies suggest that they are involved in cell differentiation and signaling pathways. Although the clinical significance of plasmalogens is linked to peroxisomal disorders, the pathophysiological roles and their possible metabolic pathways are not fully understood since they present unique structural attributes for the different tissue types. Studies suggest that changes in plasmalogen metabolism may contribute to the development of various types of cancer. Here, we review the molecular characteristics of plasmalogens in order to significantly increase our understanding of the plasmalogen molecule and its involvement in gastrointestinal cancers as well as other types of cancers.
Collapse
Affiliation(s)
- Márcia Cristina Fernandes Messias
- Laboratory of Multidisciplinary Research, São Francisco University, USF, São Francisco de Assis Avenue, 218, Bragança Paulista, SP, 12916-900, Brazil.
| | - Giovana Colozza Mecatti
- Laboratory of Multidisciplinary Research, São Francisco University, USF, São Francisco de Assis Avenue, 218, Bragança Paulista, SP, 12916-900, Brazil
| | - Denise Gonçalves Priolli
- Laboratory of Multidisciplinary Research, São Francisco University, USF, São Francisco de Assis Avenue, 218, Bragança Paulista, SP, 12916-900, Brazil
| | - Patrícia de Oliveira Carvalho
- Laboratory of Multidisciplinary Research, São Francisco University, USF, São Francisco de Assis Avenue, 218, Bragança Paulista, SP, 12916-900, Brazil.
| |
Collapse
|
6
|
Lordan R, Tsoupras A, Zabetakis I. Phospholipids of Animal and Marine Origin: Structure, Function, and Anti-Inflammatory Properties. Molecules 2017; 22:E1964. [PMID: 29135918 PMCID: PMC6150200 DOI: 10.3390/molecules22111964] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/06/2017] [Accepted: 11/11/2017] [Indexed: 12/29/2022] Open
Abstract
In this review paper, the latest literature on the functional properties of phospholipids in relation to inflammation and inflammation-related disorders has been critically appraised and evaluated. The paper is divided into three sections: Section 1 presents an overview of the relationship between structures and biological activities (pro-inflammatory or anti-inflammatory) of several phospholipids with respect to inflammation. Section 2 and Section 3 are dedicated to the structures, functions, compositions and anti-inflammatory properties of dietary phospholipids from animal and marine sources. Most of the dietary phospholipids of animal origin come from meat, egg and dairy products. To date, there is very limited work published on meat phospholipids, undoubtedly due to the negative perception that meat consumption is an unhealthy option because of its putative associations with several chronic diseases. These assumptions are addressed with respect to the phospholipid composition of meat products. Recent research trends indicate that dairy phospholipids possess anti-inflammatory properties, which has led to an increased interest into their molecular structures and reputed health benefits. Finally, the structural composition of phospholipids of marine origin is discussed. Extensive research has been published in relation to ω-3 polyunsaturated fatty acids (PUFAs) and inflammation, however this research has recently come under scrutiny and has proved to be unreliable and controversial in terms of the therapeutic effects of ω-3 PUFA, which are generally in the form of triglycerides and esters. Therefore, this review focuses on recent publications concerning marine phospholipids and their structural composition and related health benefits. Finally, the strong nutritional value of dietary phospholipids are highlighted with respect to marine and animal origin and avenues for future research are discussed.
Collapse
Affiliation(s)
- Ronan Lordan
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland.
| | - Alexandros Tsoupras
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland.
| | - Ioannis Zabetakis
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland.
| |
Collapse
|
7
|
Broniec A, Żądło A, Pawlak A, Fuchs B, Kłosiński R, Thompson D, Sarna T. Interaction of plasmenylcholine with free radicals in selected model systems. Free Radic Biol Med 2017; 106:368-378. [PMID: 28232206 DOI: 10.1016/j.freeradbiomed.2017.02.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/10/2017] [Accepted: 02/13/2017] [Indexed: 12/13/2022]
Abstract
Plasmalogens (Plg) - naturally occurring glycerophospholipids with the vinyl-ether group in the sn-1 position are generally viewed as physiological antioxidants. Although there are numerous examples of antioxidant action of plasmalogen in cell cultures and in experimental animals, this hypothesis is far from being satisfactorily proven due to substantial limitations of such studies. Thus, plasmalogen reactivity in cells results in the accumulation of toxic byproducts and the experimental design is usually too complicated to evaluate the protective function of solely one type of lipid molecular species. In this study, experiments were performed in homogenous and heterogeneous model systems consisting of solutions in organic solvents as well as micelles and liposomes containing pure synthetic plasmenylcholines. Under the experimental conditions used, chemical reactivity of plasmalogens could be attributed to specific fatty acid esterification pattern. This is important because the chemical reactivity cannot be separated from physico-chemical properties of the lipids. Time-dependent formation of phospholipid and cholesterol hydroperoxides were determined by iodometric assay and HPLC-EC. EPR oximetry and Clark electrode were employed to detect the accompanying changes in oxygen concentration. Oxidation of the studied lipids was monitored by standard colorimetric TBARS method as well as MALDI-TOF mass spectrometry. Our data indicate that the reactivity of sn-2 monounsaturated vinyl ether lipids in peroxyl radical-induced or iron-catalyzed peroxidation reactions is comparable with that of their diacyl analogs. In samples containing cholesterol and plasmalogens, oxidative processes lead to accumulation of the radical oxidation product of cholesterol. It can be concluded that the antioxidant action of plasmalogens takes place intramolecularly rather than intermolecularly and depends on the degree of unsaturation of esterified fatty acids. Thus, it is questionable if plasmalogens can really be viewed as "endogenous antioxidant", even though they may exhibit, under special conditions, protective effect.
Collapse
Affiliation(s)
- A Broniec
- Biophysics Department, Biochemistry, Biophysics and Biotechnology Faculty, Jagiellonian University, Krakow, Poland.
| | - A Żądło
- Biophysics Department, Biochemistry, Biophysics and Biotechnology Faculty, Jagiellonian University, Krakow, Poland
| | - A Pawlak
- Biophysics Department, Biochemistry, Biophysics and Biotechnology Faculty, Jagiellonian University, Krakow, Poland
| | - B Fuchs
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Germany
| | - R Kłosiński
- Biophysics Department, Biochemistry, Biophysics and Biotechnology Faculty, Jagiellonian University, Krakow, Poland
| | - D Thompson
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - T Sarna
- Biophysics Department, Biochemistry, Biophysics and Biotechnology Faculty, Jagiellonian University, Krakow, Poland
| |
Collapse
|
8
|
Fuchs B. Analytical methods for (oxidized) plasmalogens: Methodological aspects and applications. Free Radic Res 2015; 49:599-617. [DOI: 10.3109/10715762.2014.999675] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Astarita G, Kendall AC, Dennis EA, Nicolaou A. Targeted lipidomic strategies for oxygenated metabolites of polyunsaturated fatty acids. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1851:456-68. [PMID: 25486530 PMCID: PMC4323855 DOI: 10.1016/j.bbalip.2014.11.012] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/19/2014] [Accepted: 11/26/2014] [Indexed: 12/13/2022]
Abstract
Oxidation of polyunsaturated fatty acids (PUFA) through enzymatic or non-enzymatic free radical-mediated reactions can yield an array of lipid metabolites including eicosanoids, octadecanoids, docosanoids and related species. In mammals, these oxygenated PUFA mediators play prominent roles in the physiological and pathological regulation of many key biological processes in the cardiovascular, renal, reproductive and other systems including their pivotal contribution to inflammation. Mass spectrometry-based technology platforms have revolutionized our ability to analyze the complex mixture of lipid mediators found in biological samples, with increased numbers of metabolites that can be simultaneously quantified from a single sample in few analytical steps. The recent development of high-sensitivity and high-throughput analytical tools for lipid mediators affords a broader view of these oxygenated PUFA species, and facilitates research into their role in health and disease. In this review, we illustrate current analytical approaches for a high-throughput lipidomic analysis of eicosanoids and related mediators in biological samples. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance."
Collapse
Affiliation(s)
- Giuseppe Astarita
- Waters Corporation, Milford, MA, USA; Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA.
| | - Alexandra C Kendall
- Manchester Pharmacy School, Faculty of Medical and Human Sciences, The University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | - Edward A Dennis
- Department of Chemistry/Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0601, USA; Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0601, USA
| | - Anna Nicolaou
- Manchester Pharmacy School, Faculty of Medical and Human Sciences, The University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
10
|
Mass spectrometry and inflammation—MS methods to study oxidation and enzyme-induced changes of phospholipids. Anal Bioanal Chem 2013; 406:1291-306. [DOI: 10.1007/s00216-013-7534-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 11/14/2013] [Accepted: 11/21/2013] [Indexed: 10/25/2022]
|
11
|
Reis A, Domingues P, Domingues MRM. Structural motifs in primary oxidation products of palmitoyl-arachidonoyl-phosphatidylcholines by LC-MS/MS. JOURNAL OF MASS SPECTROMETRY : JMS 2013; 48:1207-1216. [PMID: 24259209 DOI: 10.1002/jms.3280] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 09/03/2013] [Accepted: 09/04/2013] [Indexed: 06/02/2023]
Abstract
Oxidative modifications to phospholipids (OxPL) play a major role in modulating signaling events in inflammation and infection, and complete understanding on the induced biological effects can only be understood based on knowledge of the oxidative motifs present. Specific neutral losses observed in tandem mass spectrometry data (LC-MS/MS) of primary peroxidation products in oxidized palmitoyl-arachidonoyl-phosphatidylcholines (OxPAPC) provide information on the prevailing structural motifs regarding the oxidized acyl carbon chain, the nature of oxidized group and the site of carbon oxidation. The higher hydrophobicity of hydroperoxides compared to di-hydroxy derivatives under reverse-phase conditions together with specific fragmentation patterns enabled the identification of 12 structurally different OxPAPC structural (di-hydroxy and hydroperoxide derivatives) and positional isomers as well as the presence of poly-hydroxy together with isoprostanes derivatives. The fragmentation patterns described in quadrupole time-of-flight and linear ion trap instruments complement the m/z value and retention time parameters in the identification of oxidative composition in OxPAPC products becoming a valuable tool for the exploratory screening of oxidized phosphatidylcholines in OxPAPC extracts, distinction of native and modified PC isobaric structures in complex samples contributing to the increased understanding of redox lipidomics in inflammation and infection.
Collapse
Affiliation(s)
- A Reis
- Mass Spectrometry Center, UI-QOPNA, Chemistry Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | | | | |
Collapse
|
12
|
Reis A, Spickett CM. Chemistry of phospholipid oxidation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2374-87. [PMID: 22342938 DOI: 10.1016/j.bbamem.2012.02.002] [Citation(s) in RCA: 436] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 01/14/2012] [Accepted: 02/03/2012] [Indexed: 11/25/2022]
Abstract
The oxidation of lipids has long been a topic of interest in biological and food sciences, and the fundamental principles of non-enzymatic free radical attack on phospholipids are well established, although questions about detail of the mechanisms remain. The number of end products that are formed following the initiation of phospholipid peroxidation is large, and is continually growing as new structures of oxidized phospholipids are elucidated. Common products are phospholipids with esterified isoprostane-like structures and chain-shortened products containing hydroxy, carbonyl or carboxylic acid groups; the carbonyl-containing compounds are reactive and readily form adducts with proteins and other biomolecules. Phospholipids can also be attacked by reactive nitrogen and chlorine species, further expanding the range of products to nitrated and chlorinated phospholipids. Key to understanding the mechanisms of oxidation is the development of advanced and sensitive technologies that enable structural elucidation. Tandem mass spectrometry has proved invaluable in this respect and is generally the method of choice for structural work. A number of studies have investigated whether individual oxidized phospholipid products occur in vivo, and mass spectrometry techniques have been instrumental in detecting a variety of oxidation products in biological samples such as atherosclerotic plaque material, brain tissue, intestinal tissue and plasma, although relatively few have achieved an absolute quantitative analysis. The levels of oxidized phospholipids in vivo is a critical question, as there is now substantial evidence that many of these compounds are bioactive and could contribute to pathology. The challenges for the future will be to adopt lipidomic approaches to map the profile of oxidized phospholipid formation in different biological conditions, and relate this to their effects in vivo. This article is part of a Special Issue entitled: Oxidized phospholipids-their properties and interactions with proteins.
Collapse
|
13
|
O'Donnell VB. Mass spectrometry analysis of oxidized phosphatidylcholine and phosphatidylethanolamine. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:818-26. [PMID: 21835265 DOI: 10.1016/j.bbalip.2011.07.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 06/30/2011] [Accepted: 07/26/2011] [Indexed: 10/17/2022]
Abstract
Oxidized phospholipids (OxPLs) are rapidly becoming recognized as important mediators of cellular and immune signaling. They are generated either enzymatically or non-enzymatically and 100s of structures exist of which only a small fraction have been analyzed to date. Pleiotropic activities, including regulation of adhesion molecule expression, pro-coagulant activity and inhibition of Toll-like receptor signaling have been observed and some are detected in models of human and animal disease, including atherosclerosis and infection. More recently, the acute generation of specific oxidized phospholipids by cellular enzymes in immune cells was reported. Assays for analysis and quantification of OxPLs were first developed approx 15years ago, primarily for hydro(pero)xy-species. Many were based on monitoring a single precursor ion with/without LC separation, based on the PL headgroup. Others combined LC with monitoring precursor to product transitions, but were unable to provide information regarding position of oxidation on unsaturated sn-2 fatty acid due to sensitivity issues. More recently, LC/MS/MS methods for specific OxPLs have been reported that enable high sensitivity quantitation in biological samples. In this review, widely used methods for detecting and quantifying various classes of OxPL will be summarized, along with practical advice for their use. In particular, the focus will be on LC/MS/MS, which today is almost universally the method of choice.
Collapse
|
14
|
Broniec A, Klosinski R, Pawlak A, Wrona-Krol M, Thompson D, Sarna T. Interactions of plasmalogens and their diacyl analogs with singlet oxygen in selected model systems. Free Radic Biol Med 2011; 50:892-8. [PMID: 21236336 PMCID: PMC3073128 DOI: 10.1016/j.freeradbiomed.2011.01.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 12/29/2010] [Accepted: 01/03/2011] [Indexed: 11/20/2022]
Abstract
Plasmalogens are phospholipids containing a vinyl-ether linkage at the sn-1 position of the glycerophospholipid backbone. Despite being quite abundant in humans, the biological role of plasmalogens remains speculative. It has been postulated that plasmalogens are physiological antioxidants with the vinyl-ether functionality serving as a sacrificial trap for free radicals and singlet oxygen. However, no quantitative data on the efficiency of plasmalogens at scavenging these reactive species are available. In this study, rate constants of quenching of singlet oxygen, generated by photosensitized energy transfer, by several plasmalogens and, for comparison, by their diacyl analogs were determined by time-resolved detection of phosphorescence at 1270nm. Relative rates of the interactions of singlet oxygen with plasmalogens and other lipids, in solution and in liposomal membranes, were measured by electron paramagnetic resonance oximetry and product analysis using HPLC-EC detection of cholesterol hydroperoxides and iodometric assay of lipid hydroperoxides. The results show that singlet oxygen interacts with plasmalogens significantly faster than with the other lipids, with the corresponding rate constants being 1 to 2 orders of magnitude greater. The quenching of singlet oxygen by plasmalogens is mostly reactive in nature and results from its preferential interaction with the vinyl-ether bond. The data suggest that plasmalogens could protect unsaturated membrane lipids against oxidation induced by singlet oxygen, providing that the oxidation products are not excessively cytotoxic.
Collapse
Affiliation(s)
- Agnieszka Broniec
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Radoslaw Klosinski
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Anna Pawlak
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Marta Wrona-Krol
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - David Thompson
- Department of Chemistry, Purdue University, W. Lafayette, IN, USA
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
15
|
Axelsen PH, Murphy RC. Quantitative analysis of phospholipids containing arachidonate and docosahexaenoate chains in microdissected regions of mouse brain. J Lipid Res 2009; 51:660-71. [PMID: 19767534 DOI: 10.1194/jlr.d001750] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Phospholipids containing polyunsaturated fatty acyl chains are prevalent among brain lipids, and regional differences in acyl chain distribution appear to have both functional and pathological significance. A method is described in which the combined application of GC and multiple reaction monitoring (MRM) MS yielded precise relative quantitation and approximate absolute quantitation of lipid species containing a particular fatty acyl chain in milligram-sized tissue samples. The method uses targeted MRM to identify specific molecular species of glycerophosphocholine lipids, glycerophospho-ethanolamine lipids, glycerophosphoinositol lipids, glycerophosphoserine lipids, glycero-phosphoglycerol lipids, and phosphatidic acids that contain esterified arachidonate (AA) and docosahexaenoate (DHA) separated during normal phase LC/MS/MS analysis. Quantitative analysis of the AA and DHA in the LC fractions is carried out using negative ion chemical ionization GC/MS and stable isotope dilution strategies. The method has been applied to assess the glycerophospholipid molecular species containing AA and DHA in microdissected samples of murine cerebral cortex and hippocampus. Results demonstrate the potential of this approach to identify regional differences in phospholipid concentration and reveal differences in specific phospholipid species between cortex and hippocampus. These differences may be related to the differential susceptibility of different brain regions to neurodegenerative disorders.
Collapse
Affiliation(s)
- Paul H Axelsen
- Department of Pharmacology, Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6084, USA.
| | | |
Collapse
|
16
|
Domingues MRM, Simões C, da Costa JP, Reis A, Domingues P. Identification of 1-palmitoyl-2-linoleoyl-phosphatidylethanolamine modifications under oxidative stress conditions by LC-MS/MS. Biomed Chromatogr 2009; 23:588-601. [PMID: 19277956 DOI: 10.1002/bmc.1157] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phosphatidylethanolamines are a major class of phospholipids found in cellular membranes. Identification of the alterations in these phospholipids, induced by free radicals, could provide new tools for in vivo diagnosis of oxidative stress. In this study, 1-palmitoyl-2-linoleoyl-phosphatidylethanolamine oxidation products, induced by the hydroxyl radical, were studied using LC-MS and LC-MS/MS. Data obtained allowed the identification and separation of isomeric oxidative products with modifications in the sn-2 acyl chain, attributed to long- and short-chain products. Among long-chain products keto, keto-hydroxy, hydroxy, poly-hydroxy, peroxy and hydroxy-peroxy derivatives were identified. Product ions formed by loss of two H2O molecules vs loss of HOOH, allowed the identification of, respectively, di- (or poli-) hydroxy vs peroxy derivatives. Location of functional groups was determined by the product ions formed by cleavage of C-C bonds, in the vicinity of the oxidation positions, allowing the identification of C9, C12 and C13 as the predominant substituted positions. Short-chain products identified comprised aldehydes, hydroxy-aldehydes and carboxylic derivatives, with modified sn-2 acyl lengths of C7-C9 and C11, C12. Among the short-chain products identified, C9 products showed higher relative abundance.
Collapse
Affiliation(s)
- M Rosário M Domingues
- Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | | | | | | | | |
Collapse
|
17
|
Reis A, Domingues P, Ferrer-Correia AJV, Domingues MRM. Identification of free radicals of glycerophosphatidylcholines containing ω-6 fatty acids using spin trapping coupled with tandem mass spectrometry. Free Radic Res 2009; 41:432-43. [PMID: 17454125 DOI: 10.1080/10715760601118353] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metal-catalysed radical oxidation of diacyl-glycerophosphatidylcholines (GPC) with omega-6 acyl polyunsaturated fatty acids (PAPC, palmitoyl-arachidonoyl-glycerophosphatidylcholine and PLPC, palmitoyl-lineloyl-glycerophosphatidylcholine) was studied. Free radical oxidation products were trapped by spin trapping with 5,5-dimethyl-1-pyrrolidine-N-oxide (DMPO) and identified by electrospray mass spectrometry (ES-MS). The spin adducts of oxidised GPC containing one and two oxygen atoms and one and two DMPO molecules were observed as doubly charged ions. Structural characterisation by tandem mass spectrometry (MS/MS) of these ions revealed product ions corresponding to loss of the acyl chains (sn-1-palmitoyl and sn-2-oxidised spin adduct of lineloyl or arachidonoyl), loss of the spin trap (DMPO) and product ions attributed to oxidised sn-2 fatty acid spin adduct (lineloyl and arachidonoyl). Product ions formed by homolytic cleavages near the spin trap and also from 1,4 hydrogen elimination cleavages involving the hydroxy group in the sn-2 fatty acid spin adduct allowed to infer the nature of the radical. Altogether, the presence of GPC hydroxy-alkyl/DMPO and hydroxy-alkoxyl/DMPO spin adducts was proposed.
Collapse
Affiliation(s)
- A Reis
- Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | | | | | | |
Collapse
|
18
|
Labadaridis I, Moraitou M, Theodoraki M, Triantafyllidis G, Sarafidou J, Michelakakis H. Plasmalogen levels in full-term neonates. Acta Paediatr 2009; 98:640-2. [PMID: 19290965 DOI: 10.1111/j.1651-2227.2008.01205.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIM Plasmalogens are phospholipids characterized by the presence of a vinyl ether bond at the sn-1 position of the glycerol backbone. They are particularly abundant in the nervous system, the heart and striated muscle. Peroxisomes are essential for their biosynthesis and red blood cell (RBC) plasmalogen levels are a reliable test in the investigation of patients suspect for a peroxisomal defect. The functions attributed to them include protection against oxidative stress, myelin formation and signal transduction. The aim of the present study was the investigation of RBC plasmalogen levels in neonates. METHODS A total of 25 healthy full-term, appropriate for gestational age neonates were studied. RBC plasmalogens were estimated using gas chromatography within the first five days of life. Fifteen healthy children 1-8-year olds served as controls. RESULTS Statistically significant lower plasmalogen levels were found in neonates compared to older children. CONCLUSION Our results indicate that a different range of normal values for plasmalogen levels should be used in the investigation of peroxisomal diseases in neonates. The lower levels of plasmalogens in neonates found in our study could render them more vulnerable to oxidative stress.
Collapse
Affiliation(s)
- I Labadaridis
- NICU, General Hospital Nikea, Piraeus, Athens, Greece
| | | | | | | | | | | |
Collapse
|
19
|
Frasch SC, Berry KZ, Fernandez-Boyanapalli R, Jin HS, Leslie C, Henson PM, Murphy RC, Bratton DL. NADPH oxidase-dependent generation of lysophosphatidylserine enhances clearance of activated and dying neutrophils via G2A. J Biol Chem 2008; 283:33736-49. [PMID: 18824544 DOI: 10.1074/jbc.m807047200] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Exofacial phosphatidylserine (PS) is an important ligand mediating apoptotic cell clearance by phagocytes. Oxidation of PS fatty acyl groups (oxPS) during apoptosis reportedly mediates recognition through scavenger receptors. Given the oxidative capacity of the neutrophil NADPH oxidase, we sought to identify oxPS signaling species in stimulated neutrophils. Using mass spectrometry analysis, only trace amounts of previously characterized oxPS species were found. Conversely, 18:1 and 18:0 lysophosphatidylserine (lyso-PS), known bioactive signaling phospholipids, were identified as abundant modified PS species following activation of the neutrophil oxidase. NADPH oxidase inhibitors blocked the production of lyso-PS in vitro, and accordingly, its generation in vivo by activated, murine neutrophils during zymosan-induced peritonitis was absent in mice lacking a functional NADPH oxidase (gp91phox-/-). Treatment of macrophages with lyso-PS enhanced the uptake of apoptotic cells in vitro, an effect that was dependent on signaling via the macrophage G2A receptor. Similarly, endogenously produced lyso-PS also enhanced the G2A-mediated uptake of activated PS-exposing (but non-apoptotic) neutrophils, raising the possibility of non-apoptotic mechanisms for removal of inflammatory cells during resolution. Finally, antibody blockade of G2A signaling in vivo prolonged zymosan-induced neutrophilia in wild-type mice, whereas having no effect in gp91phox-/- mice where lyso-PS are not generated. Taken together, we show that lyso-PS are modified PS species generated following activation of the NADPH oxidase and lyso-PS signaling through the macrophage G2A functions to enhance existing receptor/ligand systems for optimal resolution of neutrophilic inflammation.
Collapse
Affiliation(s)
- S Courtney Frasch
- Department of Pediatrics, National Jewish Health, Denver, Colorado 80206, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Domingues MRM, Reis A, Domingues P. Mass spectrometry analysis of oxidized phospholipids. Chem Phys Lipids 2008; 156:1-12. [PMID: 18671956 DOI: 10.1016/j.chemphyslip.2008.07.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 06/24/2008] [Accepted: 07/02/2008] [Indexed: 10/21/2022]
Abstract
The evidence that oxidized phospholipids play a role in signaling, apoptotic events and in age-related diseases is responsible for the increasing interest for the study of this subject. Phospholipid changes induced by oxidative reactions yield a huge number of structurally different oxidation products which difficult their isolation and characterization. Mass spectrometry (MS), and tandem mass spectrometry (MS/MS) using the soft ionization methods (electrospray and matrix-assisted laser desorption ionization) is one of the finest approaches for the study of oxidized phospholipids. Product ions in tandem mass spectra of oxidized phospholipids, allow identifying changes in the fatty acyl chain and specific features such as presence of new functional groups in the molecule and their location along the fatty acyl chain. This review describes the work published on the use of mass spectrometry in identifying oxidized phospholipids from the different classes.
Collapse
Affiliation(s)
- M Rosário M Domingues
- Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, Campus Santiago, Aveiro, Portugal.
| | | | | |
Collapse
|
21
|
Fuchs B, Müller K, Göritz F, Blottner S, Schiller J. Characteristic Oxidation Products of Choline Plasmalogens are Detectable in Cattle and Roe Deer Spermatozoa by MALDI-TOF Mass Spectrometry. Lipids 2007; 42:991-8. [PMID: 17717713 DOI: 10.1007/s11745-007-3108-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2007] [Accepted: 07/25/2007] [Indexed: 11/29/2022]
Abstract
Plasmalogens (1-O-alk-1'-enyl-2-acyl-sn-glycero-3-phosphocholines and -phosphoethanolamines) are important constituents of spermatozoa membranes and possess significant antioxidative properties. This particularly holds as plasmalogens from spermatozoa also possess a very high content of highly unsaturated fatty acyl residues (especially 22:6). The organic spermatozoa extracts of two different ruminants (cattle and roe deer) were analyzed for their contents of characteristic choline plasmalogen oxidation products by matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectrometry. It will be shown that 1-hydroxy-2-docosahexaenoyl-sn-glycero-3-phosphocholine (LPC 22:6) and formyl-LPC 22:6 are reliable measures of lipid oxidation of spermatozoa and allow, accordingly, conclusions about the storage conditions. All data on spermatozoa were also confirmed by the investigation of the oxidation behavior of selected reference compounds. It will be shown that, equally if plasmalogens or diacyl PC species are used, oxidation takes place primarily at the double bond next to the glycerol backbone. These data were additionally confirmed by recording the corresponding post source decay (PSD) fragment ion spectra.
Collapse
Affiliation(s)
- Beate Fuchs
- Faculty of Medicine, Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, 04107, Leipzig, Germany
| | | | | | | | | |
Collapse
|
22
|
Lessig J, Schiller J, Arnhold J, Fuchs B. Hypochlorous acid-mediated generation of glycerophosphocholine from unsaturated plasmalogen glycerophosphocholine lipids. J Lipid Res 2007; 48:1316-24. [PMID: 17395985 DOI: 10.1194/jlr.m600478-jlr200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The myeloperoxidase-derived metabolite hypochlorous acid (HOCl) promotes the selective cleavage of plasmalogens into chloro fatty aldehydes and 1-lysophosphatidylcholine (LPC). The subsequent conversion of the initially generated LPC was investigated in plasmalogen samples in dependence on the fatty acid residue in the sn-2 position by matrix-assisted laser desorption and ionization time-of-flight mass spectrometry and (31)P NMR spectroscopy. Plasmalogens containing an oleic acid residue in the sn-2 position are converted by moderate amounts of HOCl primarily to 1-lyso-2-oleoyl-sn-glycero-3-phosphocholine and at increased HOCl concentrations to the corresponding chlorohydrin species. In contrast, plasmalogens containing highly unsaturated docosahexaenoic acid yield upon HOCl treatment 1-lyso-2-docosahexaenoyl-glycerophosphocholine and glycerophosphocholine. The formation of the latter product denotes a novel pathway for the action of HOCl on plasmalogens.
Collapse
Affiliation(s)
- Jacqueline Lessig
- University of Leipzig, Medical Faculty, Institute of Medical Physics and Biophysics, Leipzig, Germany
| | | | | | | |
Collapse
|
23
|
Kopáni M, Celec P, Danisovic L, Michalka P, Biró C. Oxidative stress and electron spin resonance. Clin Chim Acta 2005; 364:61-6. [PMID: 16125687 DOI: 10.1016/j.cca.2005.05.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 05/06/2005] [Accepted: 05/06/2005] [Indexed: 12/16/2022]
Abstract
The body constantly reacts with oxygen as part of the energy producing processes of cells. Oxidative stress is a dysbalance between the production of free radicals as products of these reactions and antioxidant properties of cells. The factors influencing the production of free radicals are physical agents, chemical agents and biological agents. Free radicals are paramagnetic molecules with short time-period for their detection by electron spin resonance (ESR) spectroscopy. The free radical stabilization can be gained by freezing a solution of an organic radical or bonding to spin trapping agents. The spin trapping agents are diamagnetic compounds which rapidly scavenge transient radicals to form stable paramagnetic spin adducts radicals. Because this secondary radical retains an unpaired electron, it can often be detected by electron spin resonance. From ESR spectra can be obtained structural information and kinetic information, information about the formation and decay of the radicals. To study the process of free radical generation is an important step towards reducing the deteriorating effects of oxidative stress.
Collapse
Affiliation(s)
- Martin Kopáni
- Comenius University, School of Medicine, Institute of Pathology, Sasinkova 4, 811 08 Bratislava, Slovakia.
| | | | | | | | | |
Collapse
|
24
|
Berry KAZ, Murphy RC. Analysis of cell membrane aminophospholipids as isotope-tagged derivatives. J Lipid Res 2005; 46:1038-46. [PMID: 15716579 DOI: 10.1194/jlr.m500014-jlr200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycerophosphoethanolamine (GPEtn) and glycerophosphoserine (GPSer) lipids were reacted with a multiplexed set of differentially isotopically enriched N-methylpiperazine acetic acid N-hydroxysuccinimide ester reagents, which place isobaric mass labels at a primary amino group. The resulting derivatized aminophospholipids were isobaric and chromatographically indistinguishable but yielded positive reporter ions (m/z 114 or 117) after collisional activation that could be used to identify and quantify individual members of the multiplex set. The chromatographic and mass spectrometric response of N-methylpiperazine amide-tagged aminophospholipids was probed using glycerophosphoethanolamine and glycerophosphoserine lipid standards. The [M+H]+ of each tagged aminophospholipid shifted 144 Da, and during collision-induced dissociation the major fragmentation ion was either m/z 114 or 117. This mode of detecting aminophospholipids was useful for an unbiased analysis of plasmalogen GPEtn lipids. Molecular species information on the esterified fatty acyl substituents was obtained by collisional activation of the [M-H]- ions. The isotope-tagged reagents were used to assess changes in the distribution of GPEtn lipids after exposure of liposomes made from phospholipids extracted from RAW 264.7 cells to Cu2+/H2O2 to illustrate the ability of these reagents to aid in the mass spectrometric identification of aminophospholipid changes that occur during biological stimuli.
Collapse
Affiliation(s)
- Karin A Zemski Berry
- Department of Pharmacology, University of Colorado Health Sciences Center, Aurora, CO 80045, USA
| | | |
Collapse
|
25
|
|