1
|
Lee EO, Jin H, Kim S, Joo HK, Lee YR, An SY, Piao S, Lee KH, Jeon BH. Alterations in Adipose Tissue and Adipokines in Heterozygous APE1/Ref-1 Deficient Mice. Endocrinol Metab (Seoul) 2024; 39:932-945. [PMID: 39566547 PMCID: PMC11695485 DOI: 10.3803/enm.2024.2061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/29/2024] [Accepted: 08/19/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGRUOUND The role of apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) in adipose tissue remains poorly understood. This study investigates adipose tissue dysfunction in heterozygous APE1/Ref-1 deficiency (APE1/Ref-1+/-) mice, focusing on changes in adipocyte physiology, oxidative stress, adipokine regulation, and adipose tissue distribution. METHODS APE1/Ref-1 mRNA and protein levels in white adipose tissue (WAT) were measured in APE1/Ref-1+/- mice, compared to their wild-type (APE1/Ref-1+/+) controls. Oxidative stress was assessed by evaluating reactive oxygen species (ROS) levels. Histological and immunohistochemical analyses were conducted to observe adipocyte size and macrophage infiltration of WAT. Adipokine expression was measured, and micro-magnetic resonance imaging (MRI) was used to quantify abdominal fat volumes. RESULTS APE1/Ref-1+/- mice exhibited significant reductions in APE1/Ref-1 mRNA and protein levels in WAT and liver tissue. These mice also showed elevated ROS levels, suggesting a regulatory role for APE1/Ref-1 in oxidative stress in WAT and liver. Histological and immunohistochemical analyses revealed hypertrophic adipocytes and macrophage infiltration in WAT, while Oil Red O staining demonstrated enhanced ectopic fat deposition in the liver of APE1/Ref-1+/- mice. These mice also displayed altered adipokine expression, with decreased adiponectin and increased leptin levels in the WAT, along with corresponding alterations in plasma levels. Despite no significant changes in overall body weight, microMRI assessments demonstrated a significant increase in visceral and subcutaneous abdominal fat volumes in APE1/Ref-1+/- mice. CONCLUSION APE1/Ref-1 is crucial in adipokine regulation and mitigating oxidative stress. These findings suggest its involvement in adipose tissue dysfunction, highlighting its potential impact on abdominal fat distribution and its implications for obesity and oxidative stress-related conditions.
Collapse
Affiliation(s)
- Eun-Ok Lee
- Research Institute of Medical Sciences, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Physiology, Chungnam National University College of Medicine, Daejeon, Korea
| | - Hao Jin
- Department of Physiology, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Sungmin Kim
- Department of Physiology, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Hee Kyoung Joo
- Research Institute of Medical Sciences, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Physiology, Chungnam National University College of Medicine, Daejeon, Korea
| | - Yu Ran Lee
- Research Institute of Medical Sciences, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Physiology, Chungnam National University College of Medicine, Daejeon, Korea
| | - Soo Yeon An
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
- Division of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Shuyu Piao
- Research Institute of Medical Sciences, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Physiology, Chungnam National University College of Medicine, Daejeon, Korea
| | - Kwon Ho Lee
- Department of Physical Therapy, Joongbu University, Geumsan, Korea
| | - Byeong Hwa Jeon
- Research Institute of Medical Sciences, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Physiology, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| |
Collapse
|
2
|
Jalali A, Kabiri M, Hashemi S, Abdi Ardekani A, Zarshenas MM. Medicinal plants or bioactive components with antioxidant/anti-apoptotic effects as a potential therapeutic approach in heart failure prevention and management: a literature review. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024:1-17. [PMID: 39576713 DOI: 10.1080/10286020.2024.2414196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 11/24/2024]
Abstract
Heart failure is described as a complicated syndrome, which is estimated that 56.2 million people were living with HF globally in 2019. Oxidative stress and apoptosis play a major role on HF development via targeting several signaling pathways in cardiac cells. This study investigated medicinal plants or their bioactive components with positive effects on HF management. In this research, keywords "heart failure," "plant," "antioxidant" or "radical scavenging," "herbal" and "apoptosis" were synchronously searched through popular databases from 1990 up to 2023. Finally, the role of oxidative stress and apoptosis in HF development was searched and related signaling pathways were investigated.
Collapse
Affiliation(s)
- Atefeh Jalali
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil 56189-85991, Iran
| | - Maryam Kabiri
- Arnold and Marie Schwarts College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran
| | - Shima Hashemi
- Department of Pharmacognosy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Ramsar Campus, Ramsar 4847193698, Iran
| | - Alireza Abdi Ardekani
- Department of Cardiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Anesthesiology and Critical Care Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Mohammad M Zarshenas
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil 56189-85991, Iran
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran
| |
Collapse
|
3
|
Zheng H, Xu Y, Liehn EA, Rusu M. Vitamin C as Scavenger of Reactive Oxygen Species during Healing after Myocardial Infarction. Int J Mol Sci 2024; 25:3114. [PMID: 38542087 PMCID: PMC10970003 DOI: 10.3390/ijms25063114] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/31/2024] [Accepted: 02/10/2024] [Indexed: 06/26/2024] Open
Abstract
Currently, coronary artery bypass and reperfusion therapies are considered the gold standard in long-term treatments to restore heart function after acute myocardial infarction. As a drawback of these restoring strategies, reperfusion after an ischemic insult and sudden oxygen exposure lead to the exacerbated synthesis of additional reactive oxidative species and the persistence of increased oxidation levels. Attempts based on antioxidant treatment have failed to achieve an effective therapy for cardiovascular disease patients. The controversial use of vitamin C as an antioxidant in clinical practice is comprehensively systematized and discussed in this review. The dose-dependent adsorption and release kinetics mechanism of vitamin C is complex; however, this review may provide a holistic perspective on its potential as a preventive supplement and/or for combined precise and targeted therapeutics in cardiovascular management therapy.
Collapse
Affiliation(s)
- Huabo Zheng
- Department of Cardiology, Angiology and Intensive Care, University Hospital, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany;
- Institute of Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark;
| | - Yichen Xu
- Institute of Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark;
- Department of Histology and Embryology, Medicine and Life Sciences, Hainan Medical University, Haikou 571199, China
| | - Elisa A. Liehn
- Institute of Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark;
- National Institute of Pathology “Victor Babes”, Splaiul Independentei Nr. 99-101, 050096 Bucharest, Romania
| | - Mihaela Rusu
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany
| |
Collapse
|
4
|
Agriesti F, Landini F, Tamma M, Pacelli C, Mazzoccoli C, Calice G, Ruggieri V, Capitanio G, Mori G, Piccoli C, Capitanio N. Bioenergetic profile and redox tone modulate in vitro osteogenesis of human dental pulp stem cells: new perspectives for bone regeneration and repair. Stem Cell Res Ther 2023; 14:215. [PMID: 37608350 PMCID: PMC10463344 DOI: 10.1186/s13287-023-03447-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Redox signaling and energy metabolism are known to be involved in controlling the balance between self-renewal and proliferation/differentiation of stem cells. In this study we investigated metabolic and redox changes occurring during in vitro human dental pulp stem cells (hDPSCs) osteoblastic (OB) differentiation and tested on them the impact of the reactive oxygen species (ROS) signaling. METHODS hDPSCs were isolated from dental pulp and subjected to alkaline phosphatase and alizarin red staining, q-RT-PCR, and western blotting analysis of differentiation markers to assess achievement of osteogenic/odontogenic differentiation. Moreover, a combination of metabolic flux analysis and confocal cyto-imaging was used to profile the metabolic phenotype and to evaluate the redox tone of hDPSCs. RESULTS In differentiating hDPSCs we observed the down-regulation of the mitochondrial respiratory chain complexes expression since the early phase of the process, confirmed by metabolic flux analysis, and a reduction of the basal intracellular peroxide level in its later phase. In addition, dampened glycolysis was observed, thereby indicating a lower energy-generating phenotype in differentiating hDPSCs. Treatment with the ROS scavenger Trolox, applied in the early-middle phases of the process, markedly delayed OB differentiation of hDPSCs assessed as ALP activity, Runx2 expression, mineralization capacity, expression of stemness and osteoblast marker genes (Nanog, Lin28, Dspp, Ocn) and activation of ERK1/2. In addition, the antioxidant partly prevented the inhibitory effect on cell metabolism observed following osteogenic induction. CONCLUSIONS Altogether these results provided evidence that redox signaling, likely mediated by peroxide species, influenced the stepwise osteogenic expansion/differentiation of hDPSCs and contributed to shape its accompanying metabolic phenotype changes thus improving their efficiency in bone regeneration and repair.
Collapse
Affiliation(s)
- Francesca Agriesti
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
| | - Francesca Landini
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Mirko Tamma
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Consiglia Pacelli
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Carmela Mazzoccoli
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
| | - Giovanni Calice
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
| | - Vitalba Ruggieri
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
- Clinical Pathology Unit, “Madonna delle Grazie’’ Hospital, Matera, Italy
| | - Giuseppe Capitanio
- Department of Translational Biomedicine and Neuroscience “DiBraiN”, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Claudia Piccoli
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Nazzareno Capitanio
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
5
|
Lee EO, Joo HK, Lee YR, Kim S, Lee KH, Lee SD, Jeon BH. APE1/Ref-1 Inhibits Adipogenic Transcription Factors during Adipocyte Differentiation in 3T3-L1 Cells. Int J Mol Sci 2023; 24:ijms24043251. [PMID: 36834665 PMCID: PMC9961804 DOI: 10.3390/ijms24043251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/26/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is a multifunctional protein involved in DNA repair and redox regulation. The redox activity of APE1/Ref-1 is involved in inflammatory responses and regulation of DNA binding of transcription factors related to cell survival pathways. However, the effect of APE1/Ref-1 on adipogenic transcription factor regulation remains unknown. In this study, we investigated the effect of APE1/Ref-1 on the regulation of adipocyte differentiation in 3T3-L1 cells. During adipocyte differentiation, APE1/Ref-1 expression significantly decreased with the increased expression of adipogenic transcription factors such as CCAAT/enhancer binding protein (C/EBP)-α and peroxisome proliferator-activated receptor (PPAR)-γ, and the adipocyte differentiation marker adipocyte protein 2 (aP2) in a time-dependent manner. However, APE1/Ref-1 overexpression inhibited C/EBP-α, PPAR-γ, and aP2 expression, which was upregulated during adipocyte differentiation. In contrast, silencing APE1/Ref-1 or redox inhibition of APE1/Ref-1 using E3330 increased the mRNA and protein levels of C/EBP-α, PPAR-γ, and aP2 during adipocyte differentiation. These results suggest that APE1/Ref-1 inhibits adipocyte differentiation by regulating adipogenic transcription factors, suggesting that APE1/Ref-1 is a potential therapeutic target for regulating adipocyte differentiation.
Collapse
Affiliation(s)
- Eun-Ok Lee
- Research Institute of Medical Sciences, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon 35015, Jung-gu, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon 35015, Jung-gu, Republic of Korea
| | - Hee-Kyoung Joo
- Research Institute of Medical Sciences, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon 35015, Jung-gu, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon 35015, Jung-gu, Republic of Korea
| | - Yu-Ran Lee
- Research Institute of Medical Sciences, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon 35015, Jung-gu, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon 35015, Jung-gu, Republic of Korea
| | - Sungmin Kim
- Research Institute of Medical Sciences, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon 35015, Jung-gu, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon 35015, Jung-gu, Republic of Korea
| | - Kwon-Ho Lee
- Department of Physical Therapy, Joongbu University, 201 Daehak-ro, Geumsan-gun 32713, Chungcheongnam-do, Republic of Korea
| | - Sang-Do Lee
- Research Institute of Medical Sciences, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon 35015, Jung-gu, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon 35015, Jung-gu, Republic of Korea
| | - Byeong-Hwa Jeon
- Research Institute of Medical Sciences, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon 35015, Jung-gu, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon 35015, Jung-gu, Republic of Korea
- Correspondence: ; Tel.: +82-42-580-8214
| |
Collapse
|
6
|
Kirova DG, Judasova K, Vorhauser J, Zerjatke T, Leung JK, Glauche I, Mansfeld J. A ROS-dependent mechanism promotes CDK2 phosphorylation to drive progression through S phase. Dev Cell 2022; 57:1712-1727.e9. [PMID: 35809563 PMCID: PMC9616724 DOI: 10.1016/j.devcel.2022.06.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/13/2022] [Accepted: 06/14/2022] [Indexed: 02/08/2023]
Abstract
Reactive oxygen species (ROS) at the right concentration promote cell proliferation in cell culture, stem cells, and model organisms. However, the mystery of how ROS signaling is coordinated with cell cycle progression and integrated into the cell cycle control machinery on the molecular level remains unsolved. Here, we report increasing levels of mitochondrial ROS during the cell cycle in human cell lines that target cyclin-dependent kinase 2 (CDK2). Chemical and metabolic interferences with ROS production decrease T-loop phosphorylation on CDK2 and so impede its full activation and thus its efficient DNA replication. ROS regulate CDK2 activity through the oxidation of a conserved cysteine residue near the T-loop, which prevents the binding of the T-loop phosphatase KAP. Together, our data reveal how mitochondrial metabolism is coupled with DNA replication and cell cycle progression via ROS, thereby demonstrating how KAP activity toward CDKs can be cell cycle regulated. Mitochondrial ROS drive cell cycle progression and proliferation Cyclin-dependent kinase 2 (CDK2) is increasingly oxidized during the cell cycle The oxidation state of a conserved cysteine on CDK2 regulates KAP binding CDK2 oxidation promotes T-loop phosphorylation and DNA replication
Collapse
Affiliation(s)
| | - Kristyna Judasova
- Cell Cycle, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | - Julia Vorhauser
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK; Cell Cycle, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | - Thomas Zerjatke
- Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Jacky Kieran Leung
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Ingmar Glauche
- Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Jörg Mansfeld
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK; Cell Cycle, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany.
| |
Collapse
|
7
|
Chen Y, An N, Zhou X, Mei L, Sui Y, Chen G, Chen H, He S, Jin C, Hu Z, Li W, Wang Y, Lin Z, Chen P, Jin L, Guan X, Wang X. Fibroblast growth factor 20 attenuates pathological cardiac hypertrophy by activating the SIRT1 signaling pathway. Cell Death Dis 2022; 13:276. [PMID: 35351862 PMCID: PMC8964679 DOI: 10.1038/s41419-022-04724-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/17/2022] [Accepted: 03/11/2022] [Indexed: 11/08/2022]
Abstract
Cardiac hypertrophy occurs initially in response to an increased cardiac load as a compensatory mechanism to maintain cardiac output. However, sustained pathological hypertrophy can develop into heart failure and cause sudden death. Fibroblast growth factor 20 (FGF20) is a member of the fibroblast growth factor family, which involved in apoptosis, aging, inflammation, and autophagy. The precise function of FGF20 in pathological cardiac hypertrophy is unclear. In this study, we demonstrated that FGF20 was significantly decreased in response to hypertrophic stimulation. In contrast, overexpression of FGF20 protected against pressure overload-induced cardiac hypertrophy. Mechanistically, we found that FGF20 upregulates SIRT1 expression, causing deacetylation of FOXO1; this effect promotes the transcription of downstream antioxidant genes, thus inhibits oxidative stress. In content, the anti-hypertrophic effect of FGF20 was largely counteracted in SIRT1-knockout mice, accompanied by an increase in oxidative stress. In summary, our findings reveal a previously unknown protective effect of FGF20 on pathological cardiac hypertrophy by reducing oxidative stress through activation of the SIRT1 signaling pathway. FGF20 is a potential novel molecular target for preventing and treating pressure overload-induced myocardial injury.
Collapse
Affiliation(s)
- Yunjie Chen
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, PR China
- Department of Pharmacy, Ningbo first Hospital, 315010, Ningbo, PR China
| | - Ning An
- Department of Pharmacy, Ningbo Medical Center Lihuili Hospital, 315041, Ningbo, PR China
| | - Xuan Zhou
- Department of Pharmacy, Ningbo first Hospital, 315010, Ningbo, PR China
| | - Lin Mei
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, PR China
| | - Yanru Sui
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, PR China
| | - Gen Chen
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, PR China
| | - Huinan Chen
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, PR China
| | - Shengqu He
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, PR China
| | - Cheng Jin
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, PR China
| | - Zhicheng Hu
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, PR China
| | - Wanqian Li
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, PR China
| | - Yang Wang
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, PR China
| | - Zhu Lin
- Department of Pharmacy, Ningbo first Hospital, 315010, Ningbo, PR China
| | - Peng Chen
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325000, Wenzhou, PR China
| | - Litai Jin
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, PR China.
| | - Xueqiang Guan
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325000, Wenzhou, PR China.
| | - Xu Wang
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, PR China.
| |
Collapse
|
8
|
Adusumilli VS, Walker TL, Overall RW, Klatt GM, Zeidan SA, Zocher S, Kirova DG, Ntitsias K, Fischer TJ, Sykes AM, Reinhardt S, Dahl A, Mansfeld J, Rünker AE, Kempermann G. ROS Dynamics Delineate Functional States of Hippocampal Neural Stem Cells and Link to Their Activity-Dependent Exit from Quiescence. Cell Stem Cell 2020; 28:300-314.e6. [PMID: 33275875 PMCID: PMC7875116 DOI: 10.1016/j.stem.2020.10.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/14/2020] [Accepted: 10/29/2020] [Indexed: 12/22/2022]
Abstract
Cellular redox states regulate the balance between stem cell maintenance and activation. Increased levels of intracellular reactive oxygen species (ROS) are linked to proliferation and lineage specification. In contrast to this general principle, we here show that in the hippocampus of adult mice, quiescent neural precursor cells (NPCs) maintain the highest ROS levels (hiROS). Classifying NPCs on the basis of cellular ROS content identified distinct functional states. Shifts in ROS content primed cells for a subsequent state transition, with lower ROS content marking proliferative activity and differentiation. Physical activity, a physiological activator of adult hippocampal neurogenesis, recruited hiROS NPCs into proliferation via a transient Nox2-dependent ROS surge. In the absence of Nox2, baseline neurogenesis was unaffected, but the activity-induced increase in proliferation disappeared. These results provide a metabolic classification of NPC functional states and describe a mechanism linking the modulation of cellular ROS by behavioral cues to the activation of adult NPCs. A ROS gradient delineates cell types in the course of adult hippocampal neurogenesis Quiescent hippocampal stem cells have unusually high intracellular ROS Physical activity recruits quiescent stem cells in a ROS-dependent manner NOX2 dependency distinguishes this recruitment from baseline proliferation
Collapse
Affiliation(s)
- Vijay S Adusumilli
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany; Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Tara L Walker
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany; Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Rupert W Overall
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany; Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Gesa M Klatt
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany; Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Salma A Zeidan
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany; Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany; Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Sara Zocher
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany; Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Dilyana G Kirova
- Cell Cycle, Biotechnology Center (Biotec), Technische Universität Dresden, Dresden, Germany
| | - Konstantinos Ntitsias
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany; Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Tim J Fischer
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany; Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Alex M Sykes
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Susanne Reinhardt
- DRESDEN-concept Genome Center, DFG NGS Competence Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Andreas Dahl
- DRESDEN-concept Genome Center, DFG NGS Competence Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Jörg Mansfeld
- Cell Cycle, Biotechnology Center (Biotec), Technische Universität Dresden, Dresden, Germany; Institute of Cancer Research, London, UK
| | - Annette E Rünker
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany; Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany; Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
9
|
Stem Cell Metabolism: Powering Cell-Based Therapeutics. Cells 2020; 9:cells9112490. [PMID: 33207756 PMCID: PMC7696341 DOI: 10.3390/cells9112490] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Cell-based therapeutics for cardiac repair have been extensively used during the last decade. Preclinical studies have demonstrated the effectiveness of adoptively transferred stem cells for enhancement of cardiac function. Nevertheless, several cell-based clinical trials have provided largely underwhelming outcomes. A major limitation is the lack of survival in the harsh cardiac milieu as only less than 1% donated cells survive. Recent efforts have focused on enhancing cell-based therapeutics and understanding the biology of stem cells and their response to environmental changes. Stem cell metabolism has recently emerged as a critical determinant of cellular processes and is uniquely adapted to support proliferation, stemness, and commitment. Metabolic signaling pathways are remarkably sensitive to different environmental signals with a profound effect on cell survival after adoptive transfer. Stem cells mainly generate energy through glycolysis while maintaining low oxidative phosphorylation (OxPhos), providing metabolites for biosynthesis of macromolecules. During commitment, there is a shift in cellular metabolism, which alters cell function. Reprogramming stem cell metabolism may represent an attractive strategy to enhance stem cell therapy for cardiac repair. This review summarizes the current literature on how metabolism drives stem cell function and how this knowledge can be applied to improve cell-based therapeutics for cardiac repair.
Collapse
|
10
|
The Role of Oxidative Stress in Cardiac Disease: From Physiological Response to Injury Factor. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5732956. [PMID: 32509147 PMCID: PMC7244977 DOI: 10.1155/2020/5732956] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/11/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) are highly reactive chemical species containing oxygen, controlled by both enzymatic and nonenzymatic antioxidant defense systems. In the heart, ROS play an important role in cell homeostasis, by modulating cell proliferation, differentiation, and excitation-contraction coupling. Oxidative stress occurs when ROS production exceeds the buffering capacity of the antioxidant defense systems, leading to cellular and molecular abnormalities, ultimately resulting in cardiac dysfunction. In this review, we will discuss the physiological sources of ROS in the heart, the mechanisms of oxidative stress-related myocardial injury, and the implications of experimental studies and clinical trials with antioxidant therapies in cardiovascular diseases.
Collapse
|
11
|
Adult Cardiac Stem Cell Aging: A Reversible Stochastic Phenomenon? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5813147. [PMID: 30881594 PMCID: PMC6383393 DOI: 10.1155/2019/5813147] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 11/08/2018] [Indexed: 12/17/2022]
Abstract
Aging is by far the dominant risk factor for the development of cardiovascular diseases, whose prevalence dramatically increases with increasing age reaching epidemic proportions. In the elderly, pathologic cellular and molecular changes in cardiac tissue homeostasis and response to injury result in progressive deteriorations in the structure and function of the heart. Although the phenotypes of cardiac aging have been the subject of intense study, the recent discovery that cardiac homeostasis during mammalian lifespan is maintained and regulated by regenerative events associated with endogenous cardiac stem cell (CSC) activation has produced a crucial reconsideration of the biology of the adult and aged mammalian myocardium. The classical notion of the adult heart as a static organ, in terms of cell turnover and renewal, has now been replaced by a dynamic model in which cardiac cells continuously die and are then replaced by CSC progeny differentiation. However, CSCs are not immortal. They undergo cellular senescence characterized by increased ROS production and oxidative stress and loss of telomere/telomerase integrity in response to a variety of physiological and pathological demands with aging. Nevertheless, the old myocardium preserves an endogenous functionally competent CSC cohort which appears to be resistant to the senescent phenotype occurring with aging. The latter envisions the phenomenon of CSC ageing as a result of a stochastic and therefore reversible cell autonomous process. However, CSC aging could be a programmed cell cycle-dependent process, which affects all or most of the endogenous CSC population. The latter would infer that the loss of CSC regenerative capacity with aging is an inevitable phenomenon that cannot be rescued by stimulating their growth, which would only speed their progressive exhaustion. The resolution of these two biological views will be crucial to design and develop effective CSC-based interventions to counteract cardiac aging not only improving health span of the elderly but also extending lifespan by delaying cardiovascular disease-related deaths.
Collapse
|
12
|
Steinbichler TB, Dudás J, Skvortsov S, Ganswindt U, Riechelmann H, Skvortsova II. Therapy resistance mediated by cancer stem cells. Semin Cancer Biol 2018; 53:156-167. [PMID: 30471331 DOI: 10.1016/j.semcancer.2018.11.006] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022]
Abstract
Cancer stem cells (CSC) possess abilities generally associated with embryonic or adult stem cells, especially self-renewal and differentiation. The CSC model assumes that this subpopulation of cells sustains malignant growth, which suggests a hierarchical organization of tumors in which CSCs are on top and responsible for the generation of intratumoral heterogeneity. Effective tumor therapy requires the eradication of CSC as they can support regrowth of the tumor resulting in recurrence. However, eradication of CSC is difficult because they frequently are therapy resistant. Therapy resistance is mediated by the acquisition of dormancy, increased DNA repair and drug efflux capacity, decreased apoptosis as well as the interaction between CSC and their supporting microenvironment, the CSC niche. This review highlights the role of CSC in chemo- and radiotherapy resistance as well as possible ways to overcome CSC mediated therapy resistance.
Collapse
Affiliation(s)
| | - József Dudás
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Sergej Skvortsov
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria; EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Ute Ganswindt
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Riechelmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Ira-Ida Skvortsova
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria; EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria.
| |
Collapse
|
13
|
Feng D, Zhang L, Ding F, Yang F, Ma W, Han Z, Hua B, Wang X, Yu Y, Huang Q, Lei L, Pan Z, Cai B. Blocking Nox2 improves mesenchymal stem cells therapy in myocardial infarction via antagonizing oxidant and promoting survival. J Cell Physiol 2018; 233:7004-7015. [PMID: 29744879 DOI: 10.1002/jcp.26623] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/28/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Dan Feng
- Department of Pharmacy The Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang Province China
- Shanxian Central Hospital Heze Shandong Province China
| | - Lai Zhang
- Department of Pharmacy The Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang Province China
- Department of Pharmacology (Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy Harbin Medical University Harbin Heilongjiang Province China
| | - Fengzhi Ding
- Department of Pharmacy The Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang Province China
- Department of Pharmacology (Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy Harbin Medical University Harbin Heilongjiang Province China
| | - Fan Yang
- Department of Pharmacy The Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang Province China
- Department of Pharmacology (Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy Harbin Medical University Harbin Heilongjiang Province China
| | - Wenya Ma
- Department of Pharmacy The Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang Province China
- Department of Pharmacology (Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy Harbin Medical University Harbin Heilongjiang Province China
| | - Zhenbo Han
- Department of Pharmacy The Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang Province China
- Department of Pharmacology (Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy Harbin Medical University Harbin Heilongjiang Province China
| | - Bingjie Hua
- Department of Pharmacy The Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang Province China
- Department of Pharmacology (Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy Harbin Medical University Harbin Heilongjiang Province China
| | - Xiuxiu Wang
- Department of Pharmacy The Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang Province China
- Department of Pharmacology (Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy Harbin Medical University Harbin Heilongjiang Province China
| | - Ying Yu
- Department of Pharmacy The Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang Province China
- Department of Pharmacology (Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy Harbin Medical University Harbin Heilongjiang Province China
| | - Qi Huang
- Department of Pharmacy The Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang Province China
- Department of Pharmacology (Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy Harbin Medical University Harbin Heilongjiang Province China
| | - Lei Lei
- Department of Histology and Embryology Harbin Medical University Harbin Heilongjiang Province China
| | - Zhenwei Pan
- Department of Pharmacology (Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy Harbin Medical University Harbin Heilongjiang Province China
| | - Benzhi Cai
- Department of Pharmacy The Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang Province China
- Department of Pharmacology (Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy Harbin Medical University Harbin Heilongjiang Province China
- Institute of Clinical Pharmacy, the Heilongjiang Province Key Laboratory of Drug Research Harbin Medical University Harbin Heilongjiang Province China
| |
Collapse
|
14
|
Cesselli D, Aleksova A, Sponga S, Cervellin C, Di Loreto C, Tell G, Beltrami AP. Cardiac Cell Senescence and Redox Signaling. Front Cardiovasc Med 2017; 4:38. [PMID: 28612009 PMCID: PMC5447053 DOI: 10.3389/fcvm.2017.00038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/10/2017] [Indexed: 12/12/2022] Open
Abstract
Aging is characterized by a progressive loss of the ability of the organism to cope with stressors and to repair tissue damage. As a result, chronic diseases, including cardiovascular disease, increase their prevalence with aging, underlining the existence of common mechanisms that lead to frailty and age-related diseases. In this frame, the progressive decline of the homeostatic and reparative function of primitive cells has been hypothesized to play a major role in the evolution of cardiac pathology to heart failure. Although initially it was believed that reactive oxygen species (ROS) were produced in an unregulated manner as a byproduct of cellular metabolism, causing macromolecular damage and aging, accumulating evidence indicate the major role played by redox signaling in physiology. Aim of this review is to critically revise evidence linking ROS to cell senescence and aging and to provide evidence of the primary role played by redox signaling, with a particular emphasis on the multifunctional protein APE1/Ref in stem cell biology. Finally, we will discuss evidence supporting the role of redox signaling in cardiovascular cells.
Collapse
Affiliation(s)
| | - Aneta Aleksova
- Cardiovascular Department, Azienda Sanitaria Universitaria Integrata di Trieste, University of Trieste, Trieste, Italy
| | - Sandro Sponga
- Cardiothoracic Surgery, Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | | | | | - Gianluca Tell
- Department of Medicine, University of Udine, Udine, Italy
| | | |
Collapse
|
15
|
Aonuma T, Takehara N, Maruyama K, Kabara M, Matsuki M, Yamauchi A, Kawabe JI, Hasebe N. Apoptosis-Resistant Cardiac Progenitor Cells Modified With Apurinic/Apyrimidinic Endonuclease/Redox Factor 1 Gene Overexpression Regulate Cardiac Repair After Myocardial Infarction. Stem Cells Transl Med 2016; 5:1067-78. [PMID: 27334489 DOI: 10.5966/sctm.2015-0281] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 03/14/2016] [Indexed: 01/16/2023] Open
Abstract
UNLABELLED : Overcoming the insufficient survival of cell grafts is an essential objective in cell-based therapy. Apurinic/apyrimidinic endonuclease/redox factor 1 (APE1) promotes cell survival and may enhance the therapeutic effect of engrafted cells. The aim of this study is to determine whether APE1 overexpression in cardiac progenitor cells (CPCs) could ameliorate the efficiency of cell-based therapy. CPCs isolated from 8- to 10-week-old C57BL/6 mouse hearts were infected with retrovirus harboring APE1-DsRed (APE1-CPC) or a DsRed control (control-CPC). Oxidative stress-induced apoptosis was then assessed in APE1-CPCs, control-CPCs, and neonatal rat ventricular myocytes (NRVMs) cocultured with these CPCs. This analysis revealed that APE1 overexpression inhibited CPC apoptosis with activation of transforming growth factor β-activated kinase 1 (TAK1) and nuclear factor (NF)-κB. In the coculture model, NRVM apoptosis was inhibited to a greater extent in the presence of APE1-CPCs compared with control-CPCs. Moreover, the number of surviving DsRed-positive CPC grafts was significantly higher 7 days after the transplant of APE1-CPCs into a mouse myocardial infarction model, and the left ventricular ejection fraction showed greater improvement with attenuation of fibrosis 28 days after the transplant of APE1-CPCs compared with control-CPCs. Additionally, fewer inflammatory macrophages and a higher percentage of cardiac α-sarcomeric actinin-positive CPC-grafts were observed in mice injected with APE1-CPCs compared with control-CPCs after 7 days. In conclusion, antiapoptotic APE1-CPC graft, which increased TAK1-NF-κB pathway activation, survived effectively in the ischemic heart, restored cardiac function, and reduced cardiac inflammation and fibrosis. APE1 overexpression in CPCs may serve as a novel strategy to improve cardiac cell therapy. SIGNIFICANCE Improving the survival of cell grafts is essential to maximize the efficacy of cell therapy. The authors investigated the role of APE1 in CPCs under ischemic conditions and evaluated the therapeutic efficacy of transplanted APE1-overexpressing CPCs in a mouse model of myocardial infarction. APE1 hindered apoptosis in CPC grafts subjected to oxidative stress caused in part by increased TAK1-NF-κB pathway activation. Furthermore, APE1-CPC grafts that effectively survived in the ischemic heart restored cardiac function and attenuated fibrosis through pleiotropic mechanisms that remain to be characterized. These findings suggest that APE1 overexpression in CPCs may be a novel strategy to reinforce cardiac cell therapy.
Collapse
Affiliation(s)
- Tatsuya Aonuma
- Department of Internal Medicine, Division of Cardiology, Nephrology, Pulmonology, and Neurology, Asahikawa Medical University, Asahikawa, Japan
| | - Naofumi Takehara
- Department of Internal Medicine, Division of Cardiology, Nephrology, Pulmonology, and Neurology, Asahikawa Medical University, Asahikawa, Japan Department of Cardiovascular Regeneration and Innovation, Asahikawa Medical University, Asahikawa, Japan
| | - Keisuke Maruyama
- Department of Internal Medicine, Division of Cardiology, Nephrology, Pulmonology, and Neurology, Asahikawa Medical University, Asahikawa, Japan
| | - Maki Kabara
- Department of Internal Medicine, Division of Cardiology, Nephrology, Pulmonology, and Neurology, Asahikawa Medical University, Asahikawa, Japan Department of Cardiovascular Regeneration and Innovation, Asahikawa Medical University, Asahikawa, Japan
| | - Motoki Matsuki
- Department of Internal Medicine, Division of Cardiology, Nephrology, Pulmonology, and Neurology, Asahikawa Medical University, Asahikawa, Japan
| | - Atsushi Yamauchi
- Department of Internal Medicine, Division of Cardiology, Nephrology, Pulmonology, and Neurology, Asahikawa Medical University, Asahikawa, Japan
| | - Jun-Ichi Kawabe
- Department of Internal Medicine, Division of Cardiology, Nephrology, Pulmonology, and Neurology, Asahikawa Medical University, Asahikawa, Japan Department of Cardiovascular Regeneration and Innovation, Asahikawa Medical University, Asahikawa, Japan
| | - Naoyuki Hasebe
- Department of Internal Medicine, Division of Cardiology, Nephrology, Pulmonology, and Neurology, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
16
|
Inhibition of Ape1 Redox Activity Promotes Odonto/osteogenic Differentiation of Dental Papilla Cells. Sci Rep 2015; 5:17483. [PMID: 26639148 PMCID: PMC4671010 DOI: 10.1038/srep17483] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/29/2015] [Indexed: 02/05/2023] Open
Abstract
Dentinogenesis is the formation of dentin, a substance that forms the majority of teeth, and this process is performed by odontoblasts. Dental papilla cells (DPCs), as the progenitor cells of odontoblasts, undergo the odontogenic differentiation regulated by multiple cytokines and paracrine signal molecules. Ape1 is a perfect paradigm of the function complexity of a biological macromolecule with two major functional regions for DNA repair and redox regulation, respectively. To date, it remains unclear whether Ape1 can regulate the dentinogenesis in DPCs. In the present study, we firstly examed the spatio-temporal expression of Ape1 during tooth germ developmental process, and found the Ape1 expression was initially high and then gradually reduced along with the tooth development. Secondly, the osteo/odontogenic differentiation capacity of DPCs was up-regulated when treated with either Ape1-shRNA or E3330 (a specific inhibitor of the Ape1 redox function), respectively. Moreover, we found that the canonical Wnt signaling pathway was activated in this process, and E3330 reinforced-osteo/odontogenic differentiation capacity was suppressed by Dickkopf1 (DKK1), a potent antagonist of canonical Wnt signaling pathway. Taken together, we for the first time showed that inhibition of Ape1 redox regulation could promote the osteo/odontogenic differentiation capacity of DPCs via canonical Wnt signaling pathway.
Collapse
|
17
|
Chepeleva EV, Pavlova SV, Malakhova AA, Milevskaya EA, Rusakova YL, Podkhvatilina NA, Sergeevichev DS, Pokushalov EA, Karaskov AM, Sukhikh GT, Zakiyan SM. Therapy of Chronic Cardiosclerosis in WAG Rats Using Cultures of Cardiovascular Cells Enriched with Cardiac Stem Cell. Bull Exp Biol Med 2015; 160:165-73. [DOI: 10.1007/s10517-015-3119-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Indexed: 01/23/2023]
|
18
|
Skvortsova I, Debbage P, Kumar V, Skvortsov S. Radiation resistance: Cancer stem cells (CSCs) and their enigmatic pro-survival signaling. Semin Cancer Biol 2015; 35:39-44. [PMID: 26392376 DOI: 10.1016/j.semcancer.2015.09.009] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/16/2015] [Indexed: 02/07/2023]
Abstract
Despite the fact that radiation therapy is a highly effective therapeutic approach, a small intratumoral cell subpopulation known as "cancer stem cells" (CSCs) is radiation-resistant and possesses specific molecular properties protecting it against radiation-induced damage. The exact mechanisms of this radioresistance are still not fully elucidated, but they relate to these cells' enhanced DNA repair capacities and their low intracellular ROS concentrations, resulting from their up-regulation of ROS scavengers. The low ROS content is accompanied by disturbances in cell cycle regulation, so it can be assumed that either CSCs are quiescent or dormant themselves, or that this cell population consists of at least two cell subpopulations: the normally and the slowly proliferating cells (quiescent or dormant cells). Slowly dividing CSCs show concomitant dysregulation of the signaling molecules mediating both cell cycle progression and maintenance of cell stemness. Despite a massive accumulation of data concerning the mechanisms underlying DNA damage response in CSCs, it represents a challenge to researchers in the era of personalized medicine to elucidate the role of intracellular ROS and of signaling pathways associated with the radiation resistance of these cells; there is a clear need to understand the molecular mechanisms helping CSCs to survive radiation exposure.
Collapse
Affiliation(s)
- Ira Skvortsova
- Department of Therapeutic Radiology and Oncology, Innsbruck Medical University, Innsbruck, Austria.
| | - Paul Debbage
- Department of Anatomy, Histology and Embryology, Innsbruck Medical University, Innsbruck, Austria
| | - Vinod Kumar
- Centre for Chemical and Pharmaceutical Sciences, Central University of Punjab, Bathinda, India
| | - Sergej Skvortsov
- Department of Therapeutic Radiology and Oncology, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
19
|
Ren F, Wang K, Zhang T, Jiang J, Nice EC, Huang C. New insights into redox regulation of stem cell self-renewal and differentiation. Biochim Biophys Acta Gen Subj 2015; 1850:1518-26. [DOI: 10.1016/j.bbagen.2015.02.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 01/14/2015] [Accepted: 02/27/2015] [Indexed: 01/03/2023]
|
20
|
Demasi M, Simões V, Bonatto D. Cross-talk between redox regulation and the ubiquitin-proteasome system in mammalian cell differentiation. Biochim Biophys Acta Gen Subj 2014; 1850:1594-606. [PMID: 25450485 DOI: 10.1016/j.bbagen.2014.10.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/24/2014] [Accepted: 10/28/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND Embryogenesis and stem cell differentiation are complex and orchestrated signaling processes. Reactive oxygen species (ROS) act as essential signal transducers in cellular differentiation, as has been shown through recent discoveries. On the other hand, the ubiquitin-proteasome system (UPS) has long been known to play an important role in all cellular regulated processes, including differentiation. SCOPE OF REVIEW In the present review, we focus on findings that highlight the interplay between redox signaling and the UPS regarding cell differentiation. Through systems biology analyses, we highlight major routes during cardiomyocyte differentiation based on redox signaling and UPS modulation. MAJOR CONCLUSION Oxygen availability and redox signaling are fundamental regulators of cell fate upon differentiation. The UPS plays an important role in the maintenance of pluripotency and the triggering of differentiation. GENERAL SIGNIFICANCE Cellular differentiation has been a matter of intense investigation mainly because of its potential therapeutic applications. Understanding regulatory mechanisms underlying cell differentiation is an important issue. Correspondingly, the role of UPS and regulation of redox processes have been emerged as essential factors to control the fate of cells upon differentiation. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.
Collapse
Affiliation(s)
- Marilene Demasi
- Laboratory of Biochemistry and Biophysics, Instituto Butantan, São Paulo, SP, Brazil.
| | - Vanessa Simões
- Department of Genetics and Evolutive Biology, IB, Universidade de São Paulo, São Paulo, Brazil
| | - Diego Bonatto
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul., Porto Alegre, RS, Brazil.
| |
Collapse
|
21
|
Kimura W, Muralidhar S, Canseco DC, Puente B, Zhang CC, Xiao F, Abderrahman YH, Sadek HA. Redox signaling in cardiac renewal. Antioxid Redox Signal 2014; 21:1660-73. [PMID: 25000143 PMCID: PMC4175032 DOI: 10.1089/ars.2014.6029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE Utilizing oxygen (O2) through mitochondrial oxidative phosphorylation enables organisms to generate adenosine triphosphate (ATP) with a higher efficiency than glycolysis, but it results in increased reactive oxygen species production from mitochondria, which can result in stem cell dysfunction and senescence. RECENT ADVANCES In the postnatal organism, the hematopoietic system represents a classic example of the role of stem cells in cellular turnover and regeneration. However, in other organs such as the heart, both the degree and source of cellular turnover have been heavily contested. CRITICAL ISSUES Although recent evidence suggests that the major source of the limited cardiomyocyte turnover in the adult heart is cardiomyocyte proliferation, the identity and potential role of undifferentiated cardiac progenitor cells remain controversial. Several types of cardiac progenitor cells have been identified, and several studies have identified an important role of redox and metabolic regulation in survival and differentiation of cardiac progenitor cells. Perhaps a simple way to approach these controversies is to focus on the multipotentiality characteristics of a certain progenitor population, and not necessarily its ability to give rise to all cell types within the heart. In addition, it is important to note that cycling cells in the heart may express markers of differentiation or may be truly undifferentiated, and for the purpose of this review, we will refer to these cycling cells as progenitors. FUTURE DIRECTIONS We propose that hypoxia, redox signaling, and metabolic phenotypes are major regulators of cardiac renewal, and may prove to be important therapeutic targets for heart regeneration.
Collapse
Affiliation(s)
- Wataru Kimura
- 1 Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center , Dallas, Texas
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Skvortsov S, Debbage P, Lukas P, Skvortsova I. Crosstalk between DNA repair and cancer stem cell (CSC) associated intracellular pathways. Semin Cancer Biol 2014; 31:36-42. [PMID: 24954010 DOI: 10.1016/j.semcancer.2014.06.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/09/2014] [Indexed: 01/08/2023]
Abstract
DNA damaging agents (ionizing radiation and chemotherapeutics) are considered as most effective in cancer treatment. However, there is a subpopulation of carcinoma cells within the tumour demonstrating resistance to DNA damaging treatment approaches. It is suggested that limited tumour response to this kind of therapy can be associated with specific molecular properties of carcinoma stem cells (CSCs) representing the most refractory cell subpopulation. This review article presents novel data about molecular features of CSCs underlying DNA damage response and related intracellular signalling.
Collapse
Affiliation(s)
- Sergej Skvortsov
- Department of Therapeutic Radiology and Oncology, Innsbruck Medical University, Innsbruck, Austria.
| | - Paul Debbage
- Department of Anatomy, Histology and Embryology, Innsbruck Medical University, Innsbruck, Austria
| | - Peter Lukas
- Department of Therapeutic Radiology and Oncology, Innsbruck Medical University, Innsbruck, Austria
| | - Ira Skvortsova
- Department of Therapeutic Radiology and Oncology, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
23
|
Nadworny AS, Guruju MR, Poor D, Doran RM, Sharma RV, Kotlikoff MI, Davisson RL. Nox2 and Nox4 influence neonatal c-kit(+) cardiac precursor cell status and differentiation. Am J Physiol Heart Circ Physiol 2013; 305:H829-42. [PMID: 23832701 DOI: 10.1152/ajpheart.00761.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Redox status has emerged as critical in modulating stemness and lineage commitment in several precursor cell types. However, a role for redox genes, specifically NADPH oxidases (Nox), in cardiac precursor cells (CPCs) has not been established. We tested whether CPCs marked by type III receptor tyrosine kinase c-kit (c-kit(+)) exhibit a unique NADPH oxidase signature that confers precursor status and whether alterations in this profile are functionally linked to changes in lineage specification. Dihydroethidium (DHE) microfluorography indicated reduced basal reactive oxygen species (ROS) formation within early postnatal c-kit(+) CPCs. Real-time quantitative PCR revealed downregulation of ROS generator Nox2 and its subunit p67(phox) in c-kit(+) CPCs under basal conditions but upregulation of Nox2 and Nox4 over the course of differentiation. Adenoviral silencing of Nox2 and Nox4 increased expression of CPC markers c-kit and Flk-1 and blunted smooth and cardiac muscle differentiation, respectively, while overexpression of Nox2 and Nox4 significantly reduced c-kit expression. These changes were accompanied by altered expression of transcription factors regulating cardiac lineage commitment, Gata6 and Gata4, and cytokine transforming growth factor (TGF)-β1. Similar to other precursor cell types, RT(2)Profiler PCR Arrays revealed that c-kit(+) CPCs also exhibit enhanced antioxidant capacity at the mRNA level. In conclusion, we report that c-kit(+) CPCs demonstrate reduced Nox2 expression and ROS levels and that increases in Nox2 and Nox4 influence their differentiation into mature cells. We speculate that ROS generators Nox2 and Nox4, along with the antioxidant genes identified by PCR Arrays, may be novel targets in CPCs that could prove useful in cell-based therapy of the heart.
Collapse
Affiliation(s)
- Alyson S Nadworny
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, New York; and
| | | | | | | | | | | | | |
Collapse
|
24
|
Wang K, Zhang T, Dong Q, Nice EC, Huang C, Wei Y. Redox homeostasis: the linchpin in stem cell self-renewal and differentiation. Cell Death Dis 2013; 4:e537. [PMID: 23492768 PMCID: PMC3613828 DOI: 10.1038/cddis.2013.50] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Stem cells are characterized by their unique ability of self-renewal to maintain the so-called stem cell pool. Over the past decades, reactive oxygen species (ROS) have been recognized as toxic aerobic metabolism byproducts that are harmful to stem cells, leading to DNA damage, senescence or cell death. Recently, a growing body of literature has shown that stem cells reside in redox niches with low ROS levels. The balance of Redox homeostasis facilitates stem cell self-renewal by an intricate network. Thus, to fully decipher the underlying molecular mechanisms involved in the maintenance of stem cell self-renewal, it is critical to address the important role of redox homeostasis in the regulation of self-renewal and differentiation of stem cells. In this regard, we will discuss the regulatory mechanisms involved in the subtly orchestrated balance of redox status in stem cells by scavenger antioxidant enzyme systems that are well monitored by the hypoxia niches and crucial redox regulators including forkhead homeobox type O family (FoxOs), apurinic/apyrimidinic (AP) endonuclease1/redox factor-1 (APE1/Ref-1), nuclear factor erythroid-2-related factor 2 (Nrf2) and ataxia telangiectasia mutated (ATM). We will also introduce several pivotal ROS-sensitive molecules, such as hypoxia-inducible factors, p38 mitogen-activated protein kinase (p38) and p53, involved in the redox-regulated stem cell self-renewal. Specifically, all the aforementioned molecules can act as ‘redox sensors' by virtue of redox modifications of their cysteine residues, which are critically important in the control of protein function. Given the importance of redox homeostasis in the regulation of stem cell self-renewal, understanding the underlying molecular mechanisms involved will provide important new insights into stem cell biology.
Collapse
Affiliation(s)
- Kui Wang
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | | | | | | | | | | |
Collapse
|
25
|
Gorbunov N, Petrovski G, Gurusamy N, Ray D, Kim DH, Das DK. Regeneration of infarcted myocardium with resveratrol-modified cardiac stem cells. J Cell Mol Med 2012; 16:174-84. [PMID: 21352470 PMCID: PMC3823103 DOI: 10.1111/j.1582-4934.2011.01281.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The major problem in stem cell therapy includes viability and engraftment efficacy of stem cells after transplantation. Indeed, the vast majority of host-transfused cells do not survive beyond 24–72 hrs. To increase the survival and engraftment of implanted cardiac stem cells in the host, we developed a technique of treating these cells with resveratrol, and tested it in a rat model of left anterior descending (LAD) occlusion. Multi-potent clonogenic cardiac stem cells isolated from rat heart and stably transfected with EGFP were pre-treated with 2.5 μM resveratrol for 60 min. Rats were anaesthetized, hearts opened and the LAD occluded to induce heart attack. One week later, the cardiac reduced environment was confirmed in resveratrol treated rat hearts by the enhanced expression of nuclear factor-E2-related factor-2 (Nrf2) and redox effector factor-1 (Ref-1). M-mode echocardiography after stem cell therapy, showed improvement in cardiac function (left ventricular ejection fraction, fractional shortening and cardiac output) in both, the treated and control group after 7 days, but only resveratrol-modified stem cell group revealed improvement in cardiac function at the end of 1, 2 and 4 months time. The improvement of cardiac function was accompanied by enhanced stem cell survival and engraftment as demonstrated by the expression of cell proliferation marker Ki67 and differentiation of stem cells towards the regeneration of the myocardium as demonstrated by the expression of EGFP up to 4 months after LAD occlusion in the resveratrol-treated stem cell group. Expression of stromal cell-derived factor and myosin conclusively demonstrated homing of stem cells in the infarcted myocardium, its regeneration leading to improvement of cardiac function.
Collapse
Affiliation(s)
- Nikolai Gorbunov
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
26
|
Sardina JL, López-Ruano G, Sánchez-Sánchez B, Llanillo M, Hernández-Hernández A. Reactive oxygen species: are they important for haematopoiesis? Crit Rev Oncol Hematol 2011; 81:257-74. [PMID: 21507675 DOI: 10.1016/j.critrevonc.2011.03.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 03/15/2011] [Accepted: 03/22/2011] [Indexed: 02/07/2023] Open
Abstract
The production of reactive oxygen species (ROS) has traditionally been related to deleterious effects for cells. However, it is now widely accepted that ROS can play an important role in regulating cellular signalling and gene expression. NADPH oxidase ROS production seems to be especially important in this regard. Some lines of evidence suggest that ROS may be important modulators of cell differentiation, including haematopoietic differentiation, in both physiologic and pathologic conditions. Here we shall review how ROS can regulate cell signalling and gene expression. We shall also focus on the importance of ROS for haematopoietic stem cell (HSC) biology and for haematopoietic differentiation. We shall review the involvement of ROS and NADPH oxidases in cancer, and in particular what is known about the relationship between ROS and haematological malignancies. Finally, we shall discuss the use of ROS as cancer therapeutic targets.
Collapse
Affiliation(s)
- José L Sardina
- Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca, Spain
| | | | | | | | | |
Collapse
|
27
|
Santos CX, Anilkumar N, Zhang M, Brewer AC, Shah AM. Redox signaling in cardiac myocytes. Free Radic Biol Med 2011; 50:777-93. [PMID: 21236334 PMCID: PMC3049876 DOI: 10.1016/j.freeradbiomed.2011.01.003] [Citation(s) in RCA: 237] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 01/05/2011] [Accepted: 01/05/2011] [Indexed: 02/07/2023]
Abstract
The heart has complex mechanisms that facilitate the maintenance of an oxygen supply-demand balance necessary for its contractile function in response to physiological fluctuations in workload as well as in response to chronic stresses such as hypoxia, ischemia, and overload. Redox-sensitive signaling pathways are centrally involved in many of these homeostatic and stress-response mechanisms. Here, we review the main redox-regulated pathways that are involved in cardiac myocyte excitation-contraction coupling, differentiation, hypertrophy, and stress responses. We discuss specific sources of endogenously generated reactive oxygen species (e.g., mitochondria and NADPH oxidases of the Nox family), the particular pathways and processes that they affect, the role of modulators such as thioredoxin, and the specific molecular mechanisms that are involved-where this knowledge is available. A better understanding of this complex regulatory system may allow the development of more specific therapeutic strategies for heart diseases.
Collapse
Key Words
- aif, apoptosis-inducing factor
- arc, apoptosis repressor with caspase recruitment domain
- camkii, calmodulin kinase ii
- ctgf, connective tissue growth factor
- eb, embryoid body
- ecc, excitation–contraction coupling
- er, endoplasmic reticulum
- es, embryonic stem
- etc, electron transport chain
- g6pdh, glucose-6-phosphate dehydrogenase
- gpcr, g-protein-coupled receptor
- hdac, histone deacetylase
- hif, hypoxia-inducible factor
- mao-a, monoamine oxidase-a
- mi, myocardial infarction
- mmp, matrix metalloproteinase
- mptp, mitochondrial permeability transition pore
- mtdna, mitochondrial dna
- ncx, na/ca exchanger
- nos, nitric oxide synthase
- phd, prolyl hydroxylase dioxygenase
- pka, protein kinase a
- pkc, protein kinase c
- pkg, protein kinase g
- ros, reactive oxygen species
- ryr, ryanodine receptor
- serca, sarcoplasmic reticulum calcium atpase
- sr, sarcoplasmic reticulum
- trx1, thioredoxin1
- tnfα, tumor necrosis factor-α
- vegf, vascular endothelial growth factor
- cardiac myocyte
- reactive oxygen species
- redox signaling
- hypertrophy
- heart failure
- nadph oxidase
- mitochondria
- free radicals
Collapse
|
28
|
Abstract
Cellular senescence is a specialized form of growth arrest, confined to mitotic cells, induced by various stressful stimuli and characterized by a permanent growth arrest, resistance to apoptosis, an altered pattern of gene expression and the expression of some markers that are characteristic, although not exclusive, to the senescent state. Senescent cells profoundly modify neighboring and remote cells through the production of an altered secretome, eventually leading to inflammation, fibrosis and possibly growth of neoplastic cells. Mammalian aging has been defined as a reduction in the capacity to adequately maintain tissue homeostasis or to repair tissues after injury. Tissue homeostasis and regenerative capacity are nowadays considered to be related to the stem cell pool present in every tissue. For this reason, pathological and patho-physiological conditions characterized by altered tissue homeostasis and impaired regenerative capacity can be viewed as a consequence of the reduction in stem cell number and/or function. Last, cellular senescence is a double-edged sword, since it may inhibit the growth of transformed cells, preventing the occurrence of cancer, while it may facilitate growth of preneoplastic lesions in a paracrine fashion; therefore, interventions targeting this cell response to stress may have a profound impact on many age-related pathologies, ranging from cardiovascular disease to oncology. Aim of this review is to discuss both molecular mechanisms associated with stem cell senescence and interventions that may attenuate or reverse this process.
Collapse
|
29
|
Caretti A, Bianciardi P, Sala G, Terruzzi C, Lucchina F, Samaja M. Supplementation of Creatine and Ribose Prevents Apoptosis in Ischemic Cardiomyocytes. Cell Physiol Biochem 2010; 26:831-8. [DOI: 10.1159/000323992] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2010] [Indexed: 11/19/2022] Open
|
30
|
Lekli I, Gurusamy N, Ray D, Tosaki A, Das DK. Redox regulation of stem cell mobilizationThis article is one of a selection of papers published in a special issue on Advances in Cardiovascular Research. Can J Physiol Pharmacol 2009; 87:989-95. [DOI: 10.1139/y09-102] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A growing body of evidence supports the role of redox signaling in the mechanisms of hematopoietic stem cell mobilization and homing. Cytokines and adhesion molecules control stem cell mobilization through a redox-regulated process. The FoxO–SirT network appears to be intimately involved in redox-regulated stem cell homeostasis, whereas the process of stem cell differentiation is regulated by redox effector factor-1 (Ref-1) protein. Lack of oxygen (hypoxia), specifically controlled hypoxia, can stimulate the growth of the stem cells in their niche, and hypoxia-inducible factor (HIF)-1α appears to play a significant role in their maintenance and homing mechanism.
Collapse
Affiliation(s)
- Istvan Lekli
- Cardiovascular Research Center, University of Connecticut School of Medicine, Farmington, CT 06030-1110, USA
- School of Pharmacy, Department of Pharmacology, University of Debrecen, Debrecen, Hungary
| | - Narasimman Gurusamy
- Cardiovascular Research Center, University of Connecticut School of Medicine, Farmington, CT 06030-1110, USA
- School of Pharmacy, Department of Pharmacology, University of Debrecen, Debrecen, Hungary
| | - Diptarka Ray
- Cardiovascular Research Center, University of Connecticut School of Medicine, Farmington, CT 06030-1110, USA
- School of Pharmacy, Department of Pharmacology, University of Debrecen, Debrecen, Hungary
| | - Arpad Tosaki
- Cardiovascular Research Center, University of Connecticut School of Medicine, Farmington, CT 06030-1110, USA
- School of Pharmacy, Department of Pharmacology, University of Debrecen, Debrecen, Hungary
| | - Dipak K. Das
- Cardiovascular Research Center, University of Connecticut School of Medicine, Farmington, CT 06030-1110, USA
- School of Pharmacy, Department of Pharmacology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
31
|
Stamm C, Choi YH, Nasseri B, Hetzer R. A heart full of stem cells: the spectrum of myocardial progenitor cells in the postnatal heart. Ther Adv Cardiovasc Dis 2009; 3:215-29. [DOI: 10.1177/1753944709336190] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Influencing cellular regeneration processes in the heart has been a long-standing goal in cardiovascular medicine. To some extent, this has been successful in terms of vascular regeneration as well as intercellular connective tissue remodeling processes. Several components of today's routine heart failure medication influence endothelial progenitor cell behavior and support collateral vessel growth in the heart, or have been shown to prevent or reverse fibrosis processes. Cardiomyocyte regeneration, however, has so far escaped therapeutic manipulation strategies. Delivery of exogenous cells of bone marrow origin to the human myocardium may improve heart function, but is not associated with relevant neomyogenesis. However, accumulating evidence indicates that the myocardium contains resident cardiac progenitor cells (CPC) that may be therapeutically useful. This notion indeed represents a paradigm shift but is still controversial. The purpose of this review is to summarize the rapidly expanding current knowledge on CPC, and to assess whether it may be translated into solid therapeutic concepts.
Collapse
Affiliation(s)
- Christof Stamm
- BCRT Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany; and Deutsches Herzzentrum Berlin, Cardiothoracic Surgery, Berlin, Germany,
| | - Yeong-Hoon Choi
- Deutsches Herzzentrum Berlin, Cardiothoracic Surgery, Berlin, Germany
| | - Boris Nasseri
- Deutsches Herzzentrum Berlin, Cardiothoracic Surgery, Berlin, Germany
| | - Roland Hetzer
- BCRT Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany; and Deutsches Herzzentrum Berlin, Cardiothoracic Surgery, Berlin, Germany
| |
Collapse
|
32
|
Abstract
Apurinic/apyrimidinic endonuclease1/redox factor-1 (APE1/Ref-1) is a multifunctional protein involved in base excision DNA repair and in transcriptional regulation of gene expression. Over the past decade and a half, knowledge of the biological functions, interactions, mechanisms of action, and regulation of the protein APE1/Ref-1 has grown exponentially. The multifunctional nature of APE1/Ref-1 is uncovering and has been extensively studied in the cellular response against oxidative stress. Recent evidence shows a biological role of APE1/Ref-1 can be modulated by the different post-translational modification. Because of APE1/Ref-1 importance to genomic stability and cell survival, APE1/Ref-1 is focused as the leading therapeutic target molecule for the oxidative stress condition or pathologic conditions such as cancer. This forum, dedicated to APE1/Ref-1, provides ample testimony that even though we have learned a great deal about APE1/Ref-1 over the past 15-plus years, our knowledge still constitutes the tip of the iceberg when it comes to understanding this versatile protein.
Collapse
Affiliation(s)
- Byeong Hwa Jeon
- Infection Signaling Network Research Center, Department of Physiology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Kaikobad Irani
- Cardiovascular Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
33
|
Milovanova TN, Bhopale VM, Sorokina EM, Moore JS, Hunt TK, Hauer-Jensen M, Velazquez OC, Thom SR. Hyperbaric oxygen stimulates vasculogenic stem cell growth and differentiation in vivo. J Appl Physiol (1985) 2008; 106:711-28. [PMID: 19023021 DOI: 10.1152/japplphysiol.91054.2008] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We hypothesized that oxidative stress from hyperbaric oxygen (HBO(2), 2.8 ATA for 90 min daily) exerts a trophic effect on vasculogenic stem cells. In a mouse model, circulating stem/progenitor cell (SPC) recruitment and differentiation in subcutaneous Matrigel were stimulated by HBO(2) and by a physiological oxidative stressor, lactate. In combination, HBO(2) and lactate had additive effects. Vascular channels lined by CD34(+) SPCs were identified. HBO(2) and lactate accelerated channel development, cell differentiation based on surface marker expression, and cell cycle entry. CD34(+) SPCs exhibited increases in thioredoxin-1 (Trx1), Trx reductase, hypoxia-inducible factors (HIF)-1, -2, and -3, phosphorylated mitogen-activated protein kinases, vascular endothelial growth factor, and stromal cell-derived factor-1. Cell recruitment to Matrigel and protein synthesis responses were abrogated by N-acetyl cysteine, dithioerythritol, oxamate, apocynin, U-0126, neutralizing anti-vascular endothelial growth factor, or anti-stromal cell-derived factor-1 antibodies, and small inhibitory RNA to Trx reductase, lactate dehydrogenase, gp91(phox), HIF-1 or -2, and in mice conditionally null for HIF-1 in myeloid cells. By causing an oxidative stress, HBO(2) activates a physiological redox-active autocrine loop in SPCs that stimulates vasculogenesis. Thioredoxin system activation leads to elevations in HIF-1 and -2, followed by synthesis of HIF-dependent growth factors. HIF-3 has a negative impact on SPCs.
Collapse
Affiliation(s)
- Tatyana N Milovanova
- Institute for Environmental Medicine, University of Pennsylvania, Philadelphia, PA 19104-6068, USA
| | | | | | | | | | | | | | | |
Collapse
|