1
|
Mihelić K, Vrbanac Z, Bojanić K, Kostanjšak T, Ljubić BB, Gotić J, Vnuk D, Bottegaro NB. Changes in Acute Phase Response Biomarkers in Racing Endurance Horses. Animals (Basel) 2022; 12:2993. [PMID: 36359117 PMCID: PMC9657625 DOI: 10.3390/ani12212993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 10/28/2023] Open
Abstract
This study aimed to evaluate if exercise-induced acute phase response (APR) occurs in endurance horses in response to the race. The study included 23 horses competing in an endurance competition with a successfully passed clinical examination before the race. Blood samples were collected before the start and within 30 min after the end of the race. Haematological and biochemical tests were performed and correlated to acute phase biomarkers changes. Values of calprotectin and haptoglobin (Hp) decreased after the races compared to values before, while concentrations of ceruloplasmin and albumin recorded a significant increase. Greater changes in calprotectin values were noted in Arabian horses compared to other breeds. Values of Hp showed a significantly greater decrease after longer races. Based on study results, endurance racing induces APR in horses characterised by significant changes in selected acute phase biomarkers. More pronounced changes were noted at races with higher average speeds, suggesting the need for thorough horse monitoring during exhausting races.
Collapse
Affiliation(s)
- Karla Mihelić
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia
| | - Zoran Vrbanac
- Department of Radiology, Ultrasound Diagnostic and Physical Therapy, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia
| | - Krunoslav Bojanić
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10 000 Zagreb, Croatia
| | - Tara Kostanjšak
- Clinic for Surgery, Orthopaedics and Ophthalmology, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia
| | - Blanka Beer Ljubić
- Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia
| | - Jelena Gotić
- Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia
| | - Dražen Vnuk
- Clinic for Surgery, Orthopaedics and Ophthalmology, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia
| | - Nika Brkljača Bottegaro
- Clinic for Surgery, Orthopaedics and Ophthalmology, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia
| |
Collapse
|
2
|
Abstract
Inflammation represents a fundamental response to diverse diseases ranging from trauma and infection to immune-mediated disease and neoplasia. As such, inflammation can be a nonspecific finding but is valuable as an indicator of pathology that can itself lead to disease if left unchecked. This article focuses on inflammatory biomarkers that are available and clinically useful in avian species. Inflammatory biomarkers are identified via evaluation of whole blood and plasma and can be divided into acute and chronic, with varying degrees of specificity and sensitivity. Evaluation of multiple biomarkers may be necessary to identify subclinical disease.
Collapse
Affiliation(s)
- Raquel M Walton
- IDEXX Laboratories, Inc., 216 Delmar Street, Philadelphia, PA 19128, USA.
| | - Andrea Siegel
- IDEXX Laboratories, Inc., 510 E. 62nd Street, New York, NY 10065, USA
| |
Collapse
|
3
|
Ivanov DG, Yang Y, Pawlowski JW, Carrick IJ, Kaltashov IA. Rapid Evaluation of the Extent of Haptoglobin Glycosylation Using Orthogonal Intact-Mass MS Approaches and Multivariate Analysis. Anal Chem 2022; 94:5140-5148. [PMID: 35285615 PMCID: PMC11232314 DOI: 10.1021/acs.analchem.1c05585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Intact-mass measurements are becoming increasingly popular in mass spectrometry (MS) based protein characterization, as they allow the entire complement of proteoforms to be evaluated within a relatively short time. However, applications of this approach are currently limited to systems exhibiting relatively modest degrees of structural diversity, as the high extent of heterogeneity frequently prevents straightforward MS measurements. Incorporation of limited charge reduction into electrospray ionization (ESI) MS is an elegant way to obtain meaningful information on most heterogeneous systems, yielding not only the average mass of the protein but also the mass range populated by the entire complement of proteoforms. Application of this approach to characterization of two different phenotypes of haptoglobin (1-1 and 2-1) provides evidence of a significant difference in their extent of glycosylation (with the glycan load of phenotype 2-1 being notably lighter) despite a significant overlap of their ionic signals. More detailed characterization of their glycosylation patterns is enabled by the recently introduced technique of cross-path reactive chromatography (XP-RC) with online MS detection, which combines chromatographic separation with in-line reduction of disulfide bonds to generate metastable haptoglobin subunits. Application of XP-RC to both haptoglobin phenotypes confirms that no modifications are present within their light chains and provides a wealth of information on glycosylation patterns of the heavy chains. N-Glycosylation patterns of both haptoglobin phenotypes were found to be consistent with bi- and triantennary structures of complex type that exhibit significant level of fucosylation and sialylation. However, multivariate analysis of haptoglobin 1-1 reveals higher number of the triantennary structures, in comparison to haptoglobin 2-1, as well as a higher extent of fucosylation. The glycosylation patterns deduced from the XP-RC/MS measurements are in agreement with the conclusions of the intact-mass analysis supplemented by limited charge reduction, suggesting that the latter technique can be employed in situations when fast assessment of protein heterogeneity is needed (e.g., process analytical technology applications).
Collapse
Affiliation(s)
- Daniil G Ivanov
- Department of Chemistry, University of Massachusetts─Amherst, 240 Thatcher Road, Amherst, Massachusetts 01003, United States
| | - Yang Yang
- Department of Chemistry, University of Massachusetts─Amherst, 240 Thatcher Road, Amherst, Massachusetts 01003, United States
| | - Jake W Pawlowski
- Department of Chemistry, University of Massachusetts─Amherst, 240 Thatcher Road, Amherst, Massachusetts 01003, United States
| | - Ian J Carrick
- Department of Chemistry, University of Massachusetts─Amherst, 240 Thatcher Road, Amherst, Massachusetts 01003, United States
| | - Igor A Kaltashov
- Department of Chemistry, University of Massachusetts─Amherst, 240 Thatcher Road, Amherst, Massachusetts 01003, United States
| |
Collapse
|
4
|
Yang Y, Niu C, Bobst CE, Kaltashov IA. Charge Manipulation Using Solution and Gas-Phase Chemistry to Facilitate Analysis of Highly Heterogeneous Protein Complexes in Native Mass Spectrometry. Anal Chem 2021; 93:3337-3342. [PMID: 33566581 PMCID: PMC8514162 DOI: 10.1021/acs.analchem.0c05249] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Structural heterogeneity is a significant challenge complicating (and in some cases making impossible) electrospray ionization mass spectrometry (ESI MS) analysis of noncovalent complexes comprising structurally heterogeneous biopolymers. The broad mass distribution exhibited by such species inevitably gives rise to overlapping ionic signals representing different charge states, resulting in a continuum spectrum with no discernible features that can be used to assign ionic charges and calculate their masses. This problem can be circumvented by using limited charge reduction, which utilizes gas-phase chemistry to induce charge-transfer reactions within ionic populations selected within narrow m/z windows, thereby producing well-defined and readily interpretable charge ladders. However, the ionic signal in native MS typically populates high m/z regions of mass spectra, which frequently extend beyond the precursor ion isolation limits of most commercial mass spectrometers. While the ionic signal of single-chain proteins can be shifted to lower m/z regions simply by switching to a denaturing solvent, this approach cannot be applied to noncovalent assemblies due to their inherent instability under denaturing conditions. An alternative approach explored in this work relies on adding supercharging reagents to protein solutions as a means of increasing the extent of multiple charging of noncovalent complexes in ESI MS without compromising their integrity. This shifts the ionic signal down the m/z scale to the region where ion selection and isolation can be readily accomplished with a front-end quadrupole, followed by limited charge reduction of the isolated ionic population. The feasibility of the new approach is demonstrated using noncovalent complexes formed by hemoglobin with structurally heterogeneous haptoglobin.
Collapse
Affiliation(s)
- Yang Yang
- Department of Chemistry, University of Massachusetts-Amherst, 240 Thatcher Road, Amherst, MA 01003
| | | | - Cedric E. Bobst
- Department of Chemistry, University of Massachusetts-Amherst, 240 Thatcher Road, Amherst, MA 01003
| | - Igor A. Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, 240 Thatcher Road, Amherst, MA 01003
| |
Collapse
|
5
|
Vona R, Sposi NM, Mattia L, Gambardella L, Straface E, Pietraforte D. Sickle Cell Disease: Role of Oxidative Stress and Antioxidant Therapy. Antioxidants (Basel) 2021; 10:antiox10020296. [PMID: 33669171 PMCID: PMC7919654 DOI: 10.3390/antiox10020296] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 12/11/2022] Open
Abstract
Sickle cell disease (SCD) is the most common hereditary disorder of hemoglobin (Hb), which affects approximately a million people worldwide. It is characterized by a single nucleotide substitution in the β-globin gene, leading to the production of abnormal sickle hemoglobin (HbS) with multi-system consequences. HbS polymerization is the primary event in SCD. Repeated polymerization and depolymerization of Hb causes oxidative stress that plays a key role in the pathophysiology of hemolysis, vessel occlusion and the following organ damage in sickle cell patients. For this reason, reactive oxidizing species and the (end)-products of their oxidative reactions have been proposed as markers of both tissue pro-oxidant status and disease severity. Although more studies are needed to clarify their role, antioxidant agents have been shown to be effective in reducing pathological consequences of the disease by preventing oxidative damage in SCD, i.e., by decreasing the oxidant formation or repairing the induced damage. An improved understanding of oxidative stress will lead to targeted antioxidant therapies that should prevent or delay the development of organ complications in this patient population.
Collapse
Affiliation(s)
- Rosa Vona
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.V.); (N.M.S.); (L.G.)
| | - Nadia Maria Sposi
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.V.); (N.M.S.); (L.G.)
| | - Lorenza Mattia
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00161 Rome, Italy;
- Endocrine-Metabolic Unit, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Lucrezia Gambardella
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.V.); (N.M.S.); (L.G.)
| | - Elisabetta Straface
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.V.); (N.M.S.); (L.G.)
- Correspondence: ; Tel.: +39-064-990-2443; Fax: +39-064-990-3690
| | - Donatella Pietraforte
- Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| |
Collapse
|
6
|
Acute phase proteins: a review of their function, behaviour and measurement in chickens. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933914000038] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
7
|
Liu C, Liang MC, Soong TW. Nitric Oxide, Iron and Neurodegeneration. Front Neurosci 2019; 13:114. [PMID: 30833886 PMCID: PMC6388708 DOI: 10.3389/fnins.2019.00114] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/30/2019] [Indexed: 12/25/2022] Open
Abstract
Iron is a crucial cofactor for several physiological functions in the brain including transport of oxygen, DNA synthesis, mitochondrial respiration, synthesis of myelin, and neurotransmitter metabolism. If iron concentration exceeds the capacity of cellular sequestration, excessive labile iron will be harmful by generating oxidative stress that leads to cell death. In patients suffering from Parkinson disease, the total amount of iron in the substantia nigra was reported to increase with disease severity. High concentrations of iron were also found in the amyloid plaques and neurofibrillary tangles of human Alzheimer disease brains. Besides iron, nitric oxide (NO) produced in high concentration has been associated with neurodegeneration. NO is produced as a co-product when the enzyme NO synthase converts L-arginine to citrulline, and NO has a role to support normal physiological functions. When NO is produced in a high concentration under pathological conditions such as inflammation, aberrantly S-nitrosylated proteins can initiate neurodegeneration. Interestingly, NO is closely related with iron homeostasis. Firstly, it regulates iron-related gene expression through a system involving iron regulatory protein and its cognate iron responsive element (IRP-IRE). Secondly, it modified the function of iron-related protein directly via S-nitrosylation. In this review, we examine the recent advances about the potential role of dysregulated iron homeostasis in neurodegeneration, with an emphasis on AD and PD, and we discuss iron chelation as a potential therapy. This review also highlights the changes in iron homeostasis caused by NO. An understanding of these mechanisms will help us formulate strategies to reverse or ameliorate iron-related neurodegeneration in diseases such as AD and PD.
Collapse
Affiliation(s)
- Chao Liu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
- Neurobiology/Ageing Program, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
| | - Mui Cheng Liang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Neurobiology/Ageing Program, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
| | - Tuck Wah Soong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Neurobiology/Ageing Program, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
- National Neuroscience Institute, Singapore, Singapore
| |
Collapse
|
8
|
Roast MJ, Aulsebrook AE, Fan M, Hidalgo Aranzamendi N, Teunissen N, Peters A. Short-Term Climate Variation Drives Baseline Innate Immune Function and Stress in a Tropical Bird: A Reactive Scope Perspective. Physiol Biochem Zool 2019; 92:140-151. [PMID: 30689489 DOI: 10.1086/702310] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Investment in immune function can be costly, and life-history theory predicts trade-offs between immune function and other physiological demands. Environmental heterogeneity may constrain or change the optimal strategy and thereby alter baseline immune function (possibly mediated by stress responses). We tested several hypotheses relating variation in climatic, ecological, and social environments to chronic stress and levels of baseline innate immunity in a wild, cooperatively breeding bird, the purple-crowned fairy-wren (Malurus coronatus coronatus). From samples collected biannually over 5 yr, we quantified three indexes of constitutive innate immune function (haptoglobin/PIT54, natural antibodies, complement activity) and one index of chronic stress (heterophil-lymphocyte ratio; <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>n</mml:mi><mml:mo>=</mml:mo><mml:mn>513</mml:mn><mml:mtext>-</mml:mtext><mml:mn>647</mml:mn></mml:mrow></mml:math> ). Using an information-theoretic and multimodel inference statistical approach, we found that habitat quality and social group size did not affect any immune index, despite hypothesized links to resource abundance and parasite pressure. Rather, short-term variation in temperature and rainfall was related to immune function, while overall differences between seasons were small or absent, despite substantial seasonal variation in climate. Contrary to our expectation, we found no evidence that physiological stress mediated any effects of short-term climatic variables on immune indexes, and alternative mechanisms may be involved. Our results may be interpreted from the perspective of reactive scope models, whereby predictive homeostasis maintains standing immune function relative to long-term demands, while short-term environmental change, being less predictable, has a greater influence on baseline immune function.
Collapse
|
9
|
Bilyk KT, Zhuang X, Murphy KR, Cheng CHC. A tale of two genes: divergent evolutionary fate of haptoglobin and hemopexin in hemoglobinless antarctic icefishes. J Exp Biol 2019; 222:jeb.188573. [DOI: 10.1242/jeb.188573] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 02/06/2019] [Indexed: 12/31/2022]
Abstract
Evolution of Antarctic notothenioid fishes in the isolated freezing Southern Ocean have led to remarkable trait gains and losses. One of the most extraordinary was the loss of the major oxygen carrier hemoglobin (Hb) in the icefishes (family Channichthyidae). While the mechanisms of this loss and the resulting compensatory changes have been well studied, the impact of Hb loss on the network of genes that once supported its recycling and disposal has remained unexplored. Here we report the functional fate and underlying molecular changes of two such key Hb-supporting proteins across the icefish family - haptoglobin (Hp) and hemopexin (Hx), crucial in removing cytotoxic free Hb and heme respectively. Hp plays a critical role in binding free Hb for intracellular recycling and absent its primary client, icefish Hp transcription is now vanishingly little and translation into a functional protein is nearly silenced. Hp genotype degeneration has manifested in separate lineages of the icefish phylogeny with three distinct nonsense mutations and a deletion-frameshift, as well as mutated polyadenylation signal sequences. Thus, Hb loss appears to have diminished selective constraint on Hp maintenance, resulting in its stochastic, co-evolutionary drift towards extinction. Hx binds free heme for iron recycling in hepatocytes. In contrast to Hp, Hx genotype integrity is preserved in the icefishes and transcription occurs at comparable levels to the red-blooded notothenioids. The persistence of Hx likely owes to continued selective pressure for its function from mitochondrial and non-Hb cellular hemoproteins.
Collapse
Affiliation(s)
- Kevin T. Bilyk
- Department of Biology, Western Kentucky University, USA
- Department of Animal Biology, University of Illinois, Urbana Champaign, USA
| | - Xuan Zhuang
- Department of Ecology & Evolution, University of Chicago, USA
| | - Katherine R. Murphy
- Department of Animal Biology, University of Illinois, Urbana Champaign, USA
- Laboratories of Analytical Biology, National Museum of Natural History, Smithsonian Institution, USA
| | | |
Collapse
|
10
|
Redmond AK, Ohta Y, Criscitiello MF, Macqueen DJ, Flajnik MF, Dooley H. Haptoglobin Is a Divergent MASP Family Member That Neofunctionalized To Recycle Hemoglobin via CD163 in Mammals. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:2483-2491. [PMID: 30194112 PMCID: PMC6179929 DOI: 10.4049/jimmunol.1800508] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/14/2018] [Indexed: 11/19/2022]
Abstract
In mammals, haptoglobin (Hp) is an acute-phase plasma protein that binds with high affinity to hemoglobin (Hb) released by intravascular hemolysis. The resultant Hp-Hb complexes are bound and cleared by the scavenger receptor CD163, limiting Hb-induced oxidative damage. In this study, we show that Hp is a divergent member of the complement-initiating MASP family of proteins, which emerged in the ancestor of jawed vertebrates. We demonstrate that Hp has been independently lost from multiple vertebrate lineages, that characterized Hb-interacting residues of mammals are poorly conserved in nonmammalian species maintaining Hp, and that the extended loop 3 region of Hp, which mediates CD163 binding, is present only in mammals. We show that the Hb-binding ability of cartilaginous fish (nurse shark, Ginglymostoma cirratum; small-spotted catshark, Scyliorhinus canicula; and thornback ray, Raja clavata) and teleost fish (rainbow trout, Oncorhynchus mykiss) Hp is species specific, and where binding does occur it is likely mediated through a different structural mechanism to mammalian Hp. The continued, high-level expression of Hp in cartilaginous fishes in which Hb binding is not evident signals that Hp has (an)other, yet unstudied, role(s) in these species. Previous work indicates that mammalian Hp also has secondary, immunomodulatory functions that are independent of Hb binding; our work suggests these may be remnants of evolutionary more ancient functions, retained after Hb removal became the primary role of Hp in mammals.
Collapse
Affiliation(s)
- Anthony K Redmond
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
- Centre for Genome-Enabled Biology and Medicine, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Michael F Criscitiello
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843; and
| | - Daniel J Macqueen
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Helen Dooley
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom;
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
- Institute of Marine and Environmental Technology, Baltimore, MD 21202
| |
Collapse
|
11
|
Movahed M, Roudkenar MH, Bahadori M, Mohammadipour M, Jalili MA, Amiri F. Establishment of Stable CHO Cell Line Expressing Recombinant Human Haptoglobin: Toward New Haptoglobin-Based Therapeutics. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE 2017. [DOI: 10.1007/s40995-017-0381-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Alayash AI. Oxidative pathways in the sickle cell and beyond. Blood Cells Mol Dis 2017; 70:78-86. [PMID: 28554826 DOI: 10.1016/j.bcmd.2017.05.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/19/2017] [Accepted: 05/19/2017] [Indexed: 02/07/2023]
Abstract
Polymerization of deoxy sickle cell hemoglobin (HbS) is well recognized as the primary event that triggers the classic cycles of sickling/unsickling of patients red blood cells (RBCs). RBCs are also subjected to continuous endogenous and exogenous oxidative onslaughts resulting in hemolytic rate increases which contribute to the evolution of vasculopathies associated with this disease. Compared to steady-state conditions, the occurrences of vaso-occlusive crises increase the levels of both RBC-derived microparticles as well as extracellular Hb in circulation. Common byproduct resulting from free Hb oxidation and from Hb-laden microparticles is heme (now recognized as damage associated molecular pattern (DAMP) molecule) which has been shown to initiate inflammatory responses. This review provides new insights into the interplay between microparticles, free Hb and heme focusing on Hb's pseudoperoxidative activity that drives RBC's cytosolic, membrane changes as well as oxidative toxicity towards the vascular system. Emerging antioxidative strategies that include the use of protein and heme scavengers in controlling Hb oxidative pathways are discussed.
Collapse
Affiliation(s)
- Abdu I Alayash
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD, USA.
| |
Collapse
|
13
|
Schaer CA, Deuel JW, Schildknecht D, Mahmoudi L, Garcia-Rubio I, Owczarek C, Schauer S, Kissner R, Banerjee U, Palmer AF, Spahn DR, Irwin DC, Vallelian F, Buehler PW, Schaer DJ. Haptoglobin Preserves Vascular Nitric Oxide Signaling during Hemolysis. Am J Respir Crit Care Med 2017; 193:1111-22. [PMID: 26694989 DOI: 10.1164/rccm.201510-2058oc] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
RATIONALE Hemolysis occurs not only in conditions such as sickle cell disease and malaria but also during transfusion of stored blood, extracorporeal circulation, and sepsis. Cell-free Hb depletes nitric oxide (NO) in the vasculature, causing vasoconstriction and eventually cardiovascular complications. We hypothesize that Hb-binding proteins may preserve vascular NO signaling during hemolysis. OBJECTIVES Characterization of an archetypical function by which Hb scavenger proteins could preserve NO signaling during hemolysis. METHODS We investigated NO reaction kinetics, effects on arterial NO signaling, and tissue distribution of cell-free Hb and its scavenger protein complexes. MEASUREMENTS AND MAIN RESULTS Extravascular translocation of cell-free Hb into interstitial spaces, including the vascular smooth muscle cell layer of rat and pig coronary arteries, promotes vascular NO resistance. This critical disease process is blocked by haptoglobin. Haptoglobin does not change NO dioxygenation rates of Hb; rather, the large size of the Hb:haptoglobin complex prevents Hb extravasation, which uncouples NO/Hb interaction and vasoconstriction. Size-selective compartmentalization of Hb functions as a substitute for red blood cells after hemolysis and preserves NO signaling in the vasculature. We found that evolutionarily and structurally unrelated Hb-binding proteins, such as PIT54 found in avian species, functionally converged with haptoglobin to protect NO signaling by sequestering cell-free Hb in large protein complexes. CONCLUSIONS Sequential compartmentalization of Hb by erythrocytes and scavenger protein complexes is an archetypical mechanism, which may have supported coevolution of hemolysis and normal vascular function. Therapeutic supplementation of Hb scavengers may restore vascular NO signaling and attenuate disease complications in patients with hemolysis.
Collapse
Affiliation(s)
| | | | | | | | - Ines Garcia-Rubio
- 3 Laboratory of Physical Chemistry and.,4 Centro Universitario de la Defensa, Carretera de Huesca, Zaragoza, Spain
| | | | | | - Reinhard Kissner
- 7 Institute of Inorganic Chemistry, ETH Zurich, Zurich, Switzerland
| | - Uddyalok Banerjee
- 8 William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Andre F Palmer
- 8 William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | | | - David C Irwin
- 9 School of Medicine, University of Colorado Denver, Aurora, Colorado; and
| | | | - Paul W Buehler
- 9 School of Medicine, University of Colorado Denver, Aurora, Colorado; and.,10 Center of Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Dominik J Schaer
- 1 Division of Internal Medicine.,11 Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Garton T, Keep RF, Hua Y, Xi G. Brain iron overload following intracranial haemorrhage. Stroke Vasc Neurol 2016; 1:172-184. [PMID: 28959481 PMCID: PMC5435218 DOI: 10.1136/svn-2016-000042] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 12/15/2022] Open
Abstract
Intracranial haemorrhages, including intracerebral haemorrhage (ICH), intraventricular haemorrhage (IVH) and subarachnoid haemorrhage (SAH), are leading causes of morbidity and mortality worldwide. In addition, haemorrhage contributes to tissue damage in traumatic brain injury (TBI). To date, efforts to treat the long-term consequences of cerebral haemorrhage have been unsatisfactory. Incident rates and mortality have not showed significant improvement in recent years. In terms of secondary damage following haemorrhage, it is becoming increasingly apparent that blood components are of integral importance, with haemoglobin-derived iron playing a major role. However, the damage caused by iron is complex and varied, and therefore, increased investigation into the mechanisms by which iron causes brain injury is required. As ICH, IVH, SAH and TBI are related, this review will discuss the role of iron in each, so that similarities in injury pathologies can be more easily identified. It summarises important components of normal brain iron homeostasis and analyses the existing evidence on iron-related brain injury mechanisms. It further discusses treatment options of particular promise.
Collapse
Affiliation(s)
- Thomas Garton
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
15
|
Bundgaard L, Jacobsen S, Dyrlund TF, Sørensen MA, Harman VM, Beynon RJ, Brownridge PJ, Petersen LJ, Bendixen E. Development of a Method for Absolute Quantification of Equine Acute Phase Proteins Using Concatenated Peptide Standards and Selected Reaction Monitoring. J Proteome Res 2014; 13:5635-47. [DOI: 10.1021/pr500607s] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Louise Bundgaard
- Department
of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Højbakkegaard Allé 5, Taastrup 2630, Denmark
- Department
of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, Gustav Wieds Vej 10c, Aarhus 8000, Denmark
| | - Stine Jacobsen
- Department
of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Højbakkegaard Allé 5, Taastrup 2630, Denmark
| | - Thomas F. Dyrlund
- Department
of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, Gustav Wieds Vej 10c, Aarhus 8000, Denmark
| | - Mette Aa. Sørensen
- Department
of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Højbakkegaard Allé 5, Taastrup 2630, Denmark
| | - Victoria M. Harman
- Protein
Function Group, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Robert J. Beynon
- Protein
Function Group, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Philip J. Brownridge
- Protein
Function Group, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Lars J. Petersen
- Department
of Nuclear Medicine, Clinical Cancer Research Center, Aalborg University Hospital, Hobrovej 18-22, Aalborg 9000, Denmark
- Department
of Clinical Medicine, Aalborg University Hospital, Sdr. Skovvej 11, Aalborg 9000, Denmark
| | - Emøke Bendixen
- Department
of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, Gustav Wieds Vej 10c, Aarhus 8000, Denmark
| |
Collapse
|
16
|
Ghisaura S, Anedda R, Pagnozzi D, Biosa G, Spada S, Bonaglini E, Cappuccinelli R, Roggio T, Uzzau S, Addis MF. Impact of three commercial feed formulations on farmed gilthead sea bream (Sparus aurata, L.) metabolism as inferred from liver and blood serum proteomics. Proteome Sci 2014; 12:44. [PMID: 25342931 PMCID: PMC4200174 DOI: 10.1186/s12953-014-0044-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 07/31/2014] [Indexed: 11/10/2022] Open
Abstract
Background The zootechnical performance of three different commercial feeds and their impact on liver and serum proteins of gilthead sea bream (Sparus aurata, L.) were assessed in a 12 week feeding trial. The three feeds, named A, B, and C, were subjected to lipid and protein characterization by gas chromatography (GC) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), respectively. Results Feed B was higher in fish-derived lipids and proteins, while feeds C and A were higher in vegetable components, although the largest proportion of feed C proteins was represented by pig hemoglobin. According to biometric measurements, the feeds had significantly different impacts on fish growth, producing a higher average weight gain and a lower liver somatic index in feed B over feeds A and C, respectively. 2D DIGE/MS analysis of liver tissue and Ingenuity pathways analysis (IPA) highlighted differential changes in proteins involved in key metabolic pathways of liver, spanning carbohydrate, lipid, protein, and oxidative metabolism. In addition, serum proteomics revealed interesting changes in apolipoproteins, transferrin, warm temperature acclimation-related 65 kDa protein (Wap65), fibrinogen, F-type lectin, and alpha-1-antitrypsin. Conclusions This study highlights the contribution of proteomics for understanding and improving the metabolic compatibility of feeds for marine aquaculture, and opens new perspectives for its monitoring with serological tests. Electronic supplementary material The online version of this article (doi:10.1186/s12953-014-0044-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stefania Ghisaura
- Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio, 07041 Alghero, Italy
| | - Roberto Anedda
- Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio, 07041 Alghero, Italy
| | - Daniela Pagnozzi
- Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio, 07041 Alghero, Italy
| | - Grazia Biosa
- Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio, 07041 Alghero, Italy
| | - Simona Spada
- Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio, 07041 Alghero, Italy
| | - Elia Bonaglini
- Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio, 07041 Alghero, Italy
| | - Roberto Cappuccinelli
- Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio, 07041 Alghero, Italy
| | - Tonina Roggio
- Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio, 07041 Alghero, Italy
| | - Sergio Uzzau
- Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio, 07041 Alghero, Italy
| | - Maria Filippa Addis
- Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio, 07041 Alghero, Italy
| |
Collapse
|
17
|
Kuypers FA. Hemoglobin S Polymerization and Red Cell Membrane Changes. Hematol Oncol Clin North Am 2014; 28:155-79. [DOI: 10.1016/j.hoc.2013.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
18
|
Bundgaard L, Jacobsen S, Sørensen MA, Sun Z, Deutsch EW, Moritz RL, Bendixen E. The Equine PeptideAtlas: a resource for developing proteomics-based veterinary research. Proteomics 2014; 14:763-73. [PMID: 24436130 DOI: 10.1002/pmic.201300398] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 12/13/2013] [Accepted: 12/15/2013] [Indexed: 11/11/2022]
Abstract
Progress in MS-based methods for veterinary research and diagnostics is lagging behind compared to the human research, and proteome data of domestic animals is still not well represented in open source data repositories. This is particularly true for the equine species. Here we present a first Equine PeptideAtlas encompassing high-resolution tandem MS analyses of 51 samples representing a selection of equine tissues and body fluids from healthy and diseased animals. The raw data were processed through the Trans-Proteomic Pipeline to yield high quality identification of proteins and peptides. The current release comprises 24 131 distinct peptides representing 2636 canonical proteins observed at false discovery rates of 0.2% at the peptide level and 1.4% at the protein level. Data from the Equine PeptideAtlas are available for experimental planning, validation of new datasets, and as a proteomic data mining resource. The advantages of the Equine PeptideAtlas are demonstrated by examples of mining the contents for information on potential and well-known equine acute phase proteins, which have extensive general interest in the veterinary clinic. The extracted information will support further analyses, and emphasizes the value of the Equine PeptideAtlas as a resource for the design of targeted quantitative proteomic studies.
Collapse
Affiliation(s)
- Louise Bundgaard
- Department of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, Aarhus, Denmark
| | | | | | | | | | | | | |
Collapse
|
19
|
Wester-Rosenlöf L, Casslén V, Axelsson J, Edström-Hägerwall A, Gram M, Holmqvist M, Johansson ME, Larsson I, Ley D, Marsal K, Mörgelin M, Rippe B, Rutardottir S, Shohani B, Åkerström B, Hansson SR. A1M/α1-microglobulin protects from heme-induced placental and renal damage in a pregnant sheep model of preeclampsia. PLoS One 2014; 9:e86353. [PMID: 24489717 PMCID: PMC3904882 DOI: 10.1371/journal.pone.0086353] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 12/06/2013] [Indexed: 02/03/2023] Open
Abstract
Preeclampsia (PE) is a serious pregnancy complication that manifests as hypertension and proteinuria after the 20(th) gestation week. Previously, fetal hemoglobin (HbF) has been identified as a plausible causative factor. Cell-free Hb and its degradation products are known to cause oxidative stress and tissue damage, typical of the PE placenta. A1M (α1-microglobulin) is an endogenous scavenger of radicals and heme. Here, the usefulness of A1M as a treatment for PE is investigated in the pregnant ewe PE model, in which starvation induces PE symptoms via hemolysis. Eleven ewes, in late pregnancy, were starved for 36 hours and then treated with A1M (n = 5) or placebo (n = 6) injections. After injections, the ewes were re-fed and observed for additional 72 hours. They were monitored for blood pressure, proteinuria, blood cell distribution and clinical and inflammation markers in plasma. Before termination, the utero-placental circulation was analyzed with Doppler velocimetry and the kidney glomerular function was analyzed by Ficoll sieving. At termination, blood, kidney and placenta samples were collected and analyzed for changes in gene expression and tissue structure. The starvation resulted in increased amounts of the hemolysis marker bilirubin in the blood, structural damages to the placenta and kidneys and an increased glomerular sieving coefficient indicating a defect filtration barrier. Treatment with A1M ameliorated these changes without signs of side-effects. In conclusion, A1M displayed positive therapeutic effects in the ewe starvation PE model, and was well tolerated. Therefore, we suggest A1M as a plausible treatment for PE in humans.
Collapse
Affiliation(s)
| | - Vera Casslén
- Department of Obstetrics and Gynecology, Lund University, Lund, Sweden
| | | | | | - Magnus Gram
- Department of Infection Medicine, Lund University, Lund, Sweden
| | - Madlene Holmqvist
- Department of Obstetrics and Gynecology, Lund University, Lund, Sweden
| | | | - Iréne Larsson
- Department of Obstetrics and Gynecology, Lund University, Lund, Sweden
| | - David Ley
- Department of Pediatrics, Lund University, Lund, Sweden
| | - Karel Marsal
- Department of Obstetrics and Gynecology, Lund University, Lund, Sweden
| | | | - Bengt Rippe
- Department of Nephrology, Lund University, Lund, Sweden
| | | | - Behnaz Shohani
- Department of Obstetrics and Gynecology, Lund University, Lund, Sweden
| | - Bo Åkerström
- Department of Infection Medicine, Lund University, Lund, Sweden
- * E-mail: (BÅ); (SRH)
| | - Stefan R. Hansson
- Department of Obstetrics and Gynecology, Lund University, Lund, Sweden
- * E-mail: (BÅ); (SRH)
| |
Collapse
|
20
|
Braceland M, Bickerdike R, Tinsley J, Cockerill D, Mcloughlin M, Graham D, Burchmore R, Weir W, Wallace C, Eckersall P. The serum proteome of Atlantic salmon, Salmo salar, during pancreas disease (PD) following infection with salmonid alphavirus subtype 3 (SAV3). J Proteomics 2013; 94:423-36. [PMID: 24145143 PMCID: PMC3878379 DOI: 10.1016/j.jprot.2013.10.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 09/27/2013] [Accepted: 10/11/2013] [Indexed: 02/07/2023]
Abstract
Salmonid alphavirus is the aetological agent of pancreas disease (PD) in marine Atlantic salmon, Salmo salar, and rainbow trout, Oncorhynchus mykiss, with most outbreaks in Norway caused by SAV subtype 3 (SAV3). This atypical alphavirus is transmitted horizontally causing a significant economic impact on the aquaculture industry. This histopathological and proteomic study, using an established cohabitational experimental model, investigated the correlation between tissue damage during PD and a number of serum proteins associated with these pathologies in Atlantic salmon. The proteins were identified by two-dimensional electrophoresis, trypsin digest and peptide MS/MS fingerprinting. A number of humoral components of immunity which may act as biomarkers of the disease were also identified. For example, creatine kinase, enolase and malate dehydrogenase serum concentrations were shown to correlate with pathology during PD. In contrast, hemopexin, transferrin, and apolipoprotein, amongst others, altered during later stages of the disease and did not correlate with tissue pathologies. This approach has given new insight into not only PD but also fish disease as a whole, by characterisation of the protein response to infection, through pathological processes to tissue recovery. BIOLOGICAL SIGNIFICANCE Salmonid alphavirus causes pancreas disease (PD) in Atlantic salmon, Salmo salar, and has a major economic impact on the aquaculture industry. A proteomic investigation of the change to the serum proteome during PD has been made with an established experimental model of the disease. Serum proteins were identified by two-dimensional electrophoresis, trypsin digest and peptide MS/MS fingerprinting with 72 protein spots being shown to alter significantly over the 12week period of the infection. The concentrations of certain proteins in serum such as creatine kinase, enolase and malate dehydrogenase were shown to correlate with tissue pathology while other proteins such as hemopexin, transferrin, and apolipoprotein, altered in concentration during later stages of the disease and did not correlate with tissue pathologies. The protein response to infection may be used to monitor disease progression and enhance understanding of the pathology of PD.
Collapse
Affiliation(s)
- M. Braceland
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Bearsden Rd, Glasgow, G61 1QH, Scotland, UK
| | - R. Bickerdike
- BioMar Ltd., North Shore Road, Grangemouth Docks, Grangemouth, FK3 8UL, Scotland, UK
| | - J. Tinsley
- BioMar Ltd., North Shore Road, Grangemouth Docks, Grangemouth, FK3 8UL, Scotland, UK
| | - D. Cockerill
- Marine Harvest Scotland, Farms Office Blar Mhor Industrial Estate, Fort William, PH33 7PT, Scotland, UK
| | - M.F. Mcloughlin
- Aquatic Vet Services, 35 Cherryvalley Pk, Belfast, BT5 6PN, Northern Ireland, UK
| | - D.A. Graham
- Fish Diseases Unit, Agri-food and Biosciences Institute, Stoney Rd, Stormont, Belfast, BT4 3SD, Northern Ireland, UK
| | - R.J. Burchmore
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Bearsden Rd Glasgow, G61 1QH, Scotland, UK
| | - W. Weir
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Bearsden Rd, Glasgow, G61 1QH, Scotland, UK
| | - C. Wallace
- VESO Vikan, Aquamedical Contract Research, Vikan, N-7800 Namsos, Norway
| | - P.D. Eckersall
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Bearsden Rd, Glasgow, G61 1QH, Scotland, UK
| |
Collapse
|
21
|
Lipiski M, Deuel JW, Baek JH, Engelsberger WR, Buehler PW, Schaer DJ. Human Hp1-1 and Hp2-2 phenotype-specific haptoglobin therapeutics are both effective in vitro and in guinea pigs to attenuate hemoglobin toxicity. Antioxid Redox Signal 2013; 19:1619-33. [PMID: 23418677 PMCID: PMC3809386 DOI: 10.1089/ars.2012.5089] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS Infusion of purified haptoglobin (Hp) functions as an effective hemoglobin (Hb) scavenging therapeutic in animal models of hemolysis to prevent cardiovascular and renal injury. Epidemiologic studies demonstrate the phenotype heterogeneity of human Hp proteins and suggest differing vascular protective potential imparted by the dimeric Hp1-1 and the polymeric Hp2-2. RESULTS In vitro experiments and in vivo studies in guinea pigs were performed to evaluate phenotype-specific differences in Hp therapeutics. We found no differences between the two phenotypes in Hb binding and intravascular compartmentalization of Hb in vivo. Both Hp1-1 and Hp2-2 attenuate Hb-induced blood pressure response and renal iron deposition. These findings were consistent with equal prevention of Hb endothelial translocation. The modulation of oxidative Hb reactions by the two Hp phenotypes was not found to be different. Both phenotypes stabilize the ferryl (Fe(4+)) Hb transition state, provide heme retention within the complex, and prevent Hb-driven low-density lipoprotein (LDL) peroxidation. Hb-mediated peroxidation of LDL resulted in endothelial toxicity, which was equally blocked by the addition of Hp1-1 and Hp2-2. INNOVATION AND CONCLUSION The present data do not provide support for the concept that phenotype-specific Hp therapeutics offer differential efficacy in mitigating acute Hb toxicity.
Collapse
Affiliation(s)
- Miriam Lipiski
- 1 Division of Internal Medicine, University of Zurich , Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
22
|
Ratanasopa K, Chakane S, Ilyas M, Nantasenamat C, Bulow L. Trapping of human hemoglobin by haptoglobin: molecular mechanisms and clinical applications. Antioxid Redox Signal 2013; 18:2364-74. [PMID: 22900934 DOI: 10.1089/ars.2012.4878] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
SIGNIFICANCE Haptoglobin (Hp) is an abundant plasma protein controlling the fate of hemoglobin (Hb) released from red blood cells after intravascular hemolysis. The complex formed between Hp and Hb is extraordinary strong, and once formed, this protein-protein association can be considered irreversible. RECENT ADVANCES A model of the Hp-Hb complex has been generated and the first steps toward understanding the mechanism behind the shielding effects of Hp have been taken. The clinical potential of the complex for modulating inflammatory reactions and for functioning as an Hb-based oxygen carrier have been described. CRITICAL ISSUES The three-dimensional structure of the Hp-Hb complex is unknown. Moreover, Hp is not a homogeneous protein. There are two common alleles at the Hp genetic locus denoted Hp1 and Hp2, which when analyzed on the protein levels result in differences between their physiological behavior, particularly in their shielding against Hb-driven oxidative stress. Additional cysteine residues on the α-subunit allow Hp2 to form a variety of native multimers, which influence the biophysical and biological properties of Hp. The multimeric conformations, in turn, also modulate the glycosylation patterns of Hp by steric hindrance. FUTURE DIRECTIONS A detailed analysis of the influence of Hp glycosylation will be instrumental to generate a deeper understanding of its biological function. Several pathological conditions also modify the glycan compositions allowing Hp to be potentially used as a marker protein for these disorders.
Collapse
|
23
|
Schaer DJ, Buehler PW. Cell-free hemoglobin and its scavenger proteins: new disease models leading the way to targeted therapies. Cold Spring Harb Perspect Med 2013; 3:cshperspect.a013433. [PMID: 23645855 DOI: 10.1101/cshperspect.a013433] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Hemoglobin (Hb) has multiple pathophysiologic effects when released into the intravascular space during hemolysis. The extracellular effects of Hb have resulted in novel models of toxicity, which help to explain endothelial dysfunction and cardiovascular complications that accompany genetic hemolytic anemias, malaria, blood transfusion, and atherosclerosis. The majority of models focus on nitric oxide (NO) depletion; however, in local tissue environments, Hb can also act as a pro-oxidant and inflammatory agent. This can alter cellular differentiation with the potential to deviate immune responses. The understanding of these mechanisms set in the context of natural scavenger and detoxification systems may accelerate the development of novel treatment strategies.
Collapse
Affiliation(s)
- Dominik J Schaer
- Division of Internal Medicine, University Hospital, Zurich CH-8091, Switzerland.
| | | |
Collapse
|
24
|
The haptoglobin-CD163-heme oxygenase-1 pathway for hemoglobin scavenging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:523652. [PMID: 23781295 PMCID: PMC3678498 DOI: 10.1155/2013/523652] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/09/2013] [Accepted: 05/13/2013] [Indexed: 12/30/2022]
Abstract
The haptoglobin- (Hp-) CD163-heme oxygenase-1 (HO-1) pathway is an efficient captor-receptor-enzyme system to circumvent the hemoglobin (Hb)/heme-induced toxicity during physiological and pathological hemolyses. In this pathway, Hb tightly binds to Hp leading to CD163-mediated uptake of the complex in macrophages followed by lysosomal Hp-Hb breakdown and HO-1-catalyzed conversion of heme into the metabolites carbon monoxide (CO), biliverdin, and iron. The plasma concentration of Hp is a limiting factor as evident during accelerated hemolysis, where the Hp depletion may cause serious Hb-induced toxicity and put pressure on backup protecting systems such as the hemopexin-CD91-HO pathway. The Hp-CD163-HO-1 pathway proteins are regulated by the acute phase mediator interleukin-6 (IL-6), but other regulatory factors indicate that this upregulation is a counteracting anti-inflammatory response during inflammation. The heme metabolites including bilirubin converted from biliverdin have overall an anti-inflammatory effect and thus reinforce the anti-inflammatory efficacy of the Hp-CD163-HO-1 pathway. Future studies of animal models of inflammation should further define the importance of the pathway in the anti-inflammatory response.
Collapse
|
25
|
Sathler PC, Lourenço AL, Miceli LA, Rodrigues CR, Albuquerque MG, Cabral LM, Castro HC. Structural model of haptoglobin and its complex with the anticoagulant ecotin variants: structure-activity relationship study and analysis of interactions. J Enzyme Inhib Med Chem 2013; 29:256-62. [PMID: 23477410 DOI: 10.3109/14756366.2013.774389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recently the literature described the binding of Haptoglobin (HP) with ecotin, a fold-specific serine-proteases inhibitor with an anticoagulant profile and produced by Escherichia coli. In this work, we used some in silico and in vitro techniques to evaluate HP 3D-fold and its interaction with wild-type ecotin and two variants. Our data showed HP models conserved trypsin fold, in agreement to the in vitro immunological recognition of HP by trypsin antibodies. The analysis of the three ecotin-HP complexes using the mutants RR and TSRR/R besides the wild type revealed several hydrogen bonds between HP and ecotin secondary site. These data are in agreement with the in vitro PAGE assays that showed the HP-RR complex in native gel conditions. Interestingly, the ternary complex interactions varied depending on the inhibitor structure and site-directed mutation. The interaction of HP with TSRR/R involved new residues compared to wild type, which infers a binding energy increase caused by the mutation.
Collapse
|
26
|
Neal MD, Raval JS, Triulzi DJ, Simmons RL. Innate immune activation after transfusion of stored red blood cells. Transfus Med Rev 2013; 27:113-8. [PMID: 23434246 DOI: 10.1016/j.tmrv.2013.01.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 11/26/2012] [Accepted: 01/02/2013] [Indexed: 01/28/2023]
Abstract
The transfusion of red blood cells (RBCs), although necessary for treatment of anemia and blood loss, has also been linked to increased morbidity and mortality. RBCs stored for longer durations and transfused in larger volumes are often cited as contributory to adverse outcomes. The potential mechanisms underlying deleterious effects of RBC transfusion are just beginning to be elucidated. In this narrative review, we explore the hypothesis that prolonged RBC storage results in elaboration of substances which may function as danger associated molecular pattern molecules that activate the innate immune system with consequences unfavorable to healthy homeostasis. The nature of these chemical mediators and the biological responses to them offers insight into the mechanisms of these pathological responses. Three major areas of activation of the innate immune apparatus by stored RBCs have been tentatively identified: RBC hemolysis, recipient neutrophil priming, and reactive oxygen species production. The possible mechanisms by which each might perturb the innate immune response are reviewed in a search for potential novel pathways through which transfusion can lead to an altered inflammatory response.
Collapse
Affiliation(s)
- Matthew D Neal
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
27
|
Banerjee S, Jia Y, Siburt CJP, Abraham B, Wood F, Bonaventura C, Henkens R, Crumbliss AL, Alayash AI. Haptoglobin alters oxygenation and oxidation of hemoglobin and decreases propagation of peroxide-induced oxidative reactions. Free Radic Biol Med 2012; 53:1317-26. [PMID: 22841869 DOI: 10.1016/j.freeradbiomed.2012.07.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 07/17/2012] [Accepted: 07/19/2012] [Indexed: 01/18/2023]
Abstract
We compared oxygenation and anaerobic oxidation reactions of a purified complex of human hemoglobin (Hb) and haptoglobin (Hb-Hp) to those of uncomplexed Hb. Under equilibrium conditions, Hb-Hp exhibited active-site heterogeneity and noncooperative, high-affinity O(2) binding (n(1/2)=0.88, P(1/2)=0.33 mm Hg in inorganic phosphate buffer at pH 7 and 25 °C). Rapid-reaction kinetics also exhibited active-site heterogeneity, with a slower process of O(2) dissociation and a faster process of CO binding relative to uncomplexed Hb. Deoxygenated Hb-Hp had significantly reduced absorption at the λ(max) of 430 nm relative to uncomplexed Hb, as occurs for isolated Hb subunits that lack T-state stabilization. Under comparable experimental conditions, the redox potential (E(1/2)) of Hb-Hp was found to be +54 mV, showing that it is much more easily oxidized than uncomplexed Hb (E(1/2)=+125 mV). The Nernst plots for Hb-Hp oxidation showed no cooperativity and slopes less than unity indicated active-site heterogeneity. The redox potential of Hb-Hp was unchanged by pH over the range of 6.4-8.3. Exposure of Hb-Hp to excess hydrogen peroxide (H(2)O(2)) produced ferryl heme, which was found to be more kinetically inert in the Hb-Hp complex than in uncomplexed Hb. The negative shift in the redox potential of Hb-Hp and its stabilized ferryl state may be central elements in the protection against Hb-induced oxidative damage afforded by formation of the Hb-Hp complex.
Collapse
Affiliation(s)
- Sambuddha Banerjee
- Chemistry Department, French Family Science Center, Box 90346, Duke University, Durham, NC 27708-0346, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Olsson MG, Allhorn M, Bülow L, Hansson SR, Ley D, Olsson ML, Schmidtchen A, Akerström B. Pathological conditions involving extracellular hemoglobin: molecular mechanisms, clinical significance, and novel therapeutic opportunities for α(1)-microglobulin. Antioxid Redox Signal 2012; 17:813-46. [PMID: 22324321 DOI: 10.1089/ars.2011.4282] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hemoglobin (Hb) is the major oxygen (O(2))-carrying system of the blood but has many potentially dangerous side effects due to oxidation and reduction reactions of the heme-bound iron and O(2). Extracellular Hb, resulting from hemolysis or exogenous infusion, is shown to be an important pathogenic factor in a growing number of diseases. This review briefly outlines the oxidative/reductive toxic reactions of Hb and its metabolites. It also describes physiological protection mechanisms that have evolved against extracellular Hb, with a focus on the most recently discovered: the heme- and radical-binding protein α(1)-microglobulin (A1M). This protein is found in all vertebrates, including man, and operates by rapidly clearing cytosols and extravascular fluids of heme groups and free radicals released from Hb. Five groups of pathological conditions with high concentrations of extracellular Hb are described: hemolytic anemias and transfusion reactions, the pregnancy complication pre-eclampsia, cerebral intraventricular hemorrhage of premature infants, chronic inflammatory leg ulcers, and infusion of Hb-based O(2) carriers as blood substitutes. Finally, possible treatments of these conditions are discussed, giving a special attention to the described protective effects of A1M.
Collapse
|
29
|
Roche CJ, Dantsker D, Alayash AI, Friedman JM. Enhanced nitrite reductase activity associated with the haptoglobin complexed hemoglobin dimer: functional and antioxidative implications. Nitric Oxide 2012; 27:32-9. [PMID: 22521791 DOI: 10.1016/j.niox.2012.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 03/29/2012] [Accepted: 04/11/2012] [Indexed: 10/28/2022]
Abstract
The presence of acellular hemoglobin (Hb) within the circulation is generally viewed as a pathological state that can result in toxic consequences. Haptoglobin (Hp), a globular protein found in the plasma, binds with high avidity the αβ dimers derived from the dissociation of Hb tetramer and thus helps clear free Hb. More recently there have been compelling indications that the redox properties of the Hp bound dimer (Hb-Hp) may play a more active role in controlling toxicity by limiting the potential tissue damage caused by propagation of the free-radicals generated within the heme containing globin chains. The present study further examines the potential protective effect of Hp through its impact on the production of nitric oxide (NO) from nitrite through nitrite reductase activity of the Hp bound αβ Hb dimer. The presented results show that the Hb dimer in the Hb-Hp complex has oxygen binding, CO recombination and spectroscopic properties consistent with an Hb species having properties similar to but not exactly the same as the R quaternary state of the Hb tetramer. Consistent with these observations is the finding that the initial nitrite reductase rate for Hb-Hp is approximately ten times that of HbA under the same conditions. These results in conjunction with the earlier redox properties of the Hb-Hp are discussed in terms of limiting the pathophysiological consequences of acellular Hb in the circulation.
Collapse
Affiliation(s)
- Camille J Roche
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
30
|
Peters A, Raidal SR, Blake AH, Atkinson MM, Atkinson PR, Eggins GP. Haemochromatosis in a Brazilian tapir (Tapirus terrestris) in an Australian zoo. Aust Vet J 2012; 90:29-33. [DOI: 10.1111/j.1751-0813.2011.00867.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Alayash AI. Haptoglobin: old protein with new functions. Clin Chim Acta 2010; 412:493-8. [PMID: 21159311 DOI: 10.1016/j.cca.2010.12.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 12/06/2010] [Accepted: 12/07/2010] [Indexed: 11/25/2022]
Abstract
When released from red blood cells (RBCs), hemoglobin (Hb) is extremely toxic due in large part to the redox activity of its heme center. Nature however, has provided a multitude of protective mechanisms that can detoxify free Hb effectively under physiological conditions. Chief amongst them is haptoglobin (Hp) which chaperones Hb subunits to the macrophages for safe degradation. Recent research on the interactions between Hb and Hp under oxidative conditions revealed that Hp specifically shields key amino acids on the Hb molecule, allowing the heme to consume oxidants and short-circuits the emerging and damaging radicals. Moreover, animal studies showed that the infusion of Hb complexed with Hp prevents Hb-induced systemic hypertension and tissue injury. It may prove necessary to explore these protective clearing mechanisms to counter the toxicity associated with free Hb when used as oxygen therapeutics in hemolytic anemias and in RBC storage lesions.
Collapse
Affiliation(s)
- Abdu I Alayash
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology, Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, MD 20892, USA.
| |
Collapse
|
32
|
Buehler PW, D’Agnillo F, Schaer DJ. Hemoglobin-based oxygen carriers: from mechanisms of toxicity and clearance to rational drug design. Trends Mol Med 2010; 16:447-57. [DOI: 10.1016/j.molmed.2010.07.006] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 07/14/2010] [Accepted: 07/16/2010] [Indexed: 12/19/2022]
|
33
|
Dooley H, Buckingham EB, Criscitiello MF, Flajnik MF. Emergence of the acute-phase protein hemopexin in jawed vertebrates. Mol Immunol 2010; 48:147-52. [PMID: 20884052 DOI: 10.1016/j.molimm.2010.08.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Revised: 08/13/2010] [Accepted: 08/24/2010] [Indexed: 12/22/2022]
Abstract
When released from damaged erythrocytes free heme not only provides a source of iron for invading bacteria but also highly toxic due to its ability to catalyze free radical formation. Hemopexin (Hx) binds free heme with very high-affinity and thus protects against heme toxicity, sequesters heme from pathogens, and helps conserve valuable iron. Hx is also an acute-phase serum protein (APP), whose expression is induced by inflammation. To date Hx has been identified as far back in phylogeny as bony fish where it is called warm-temperature acclimation-related 65 kDa protein (WAP65), as serum protein levels are increased at elevated environmental temperatures as well as by infection. During analysis of nurse shark (Ginglymostoma cirratum) plasma we isolated a Ni(2+)-binding serum glycoprotein and characterized it as the APP Hx. We subsequently cloned Hx from nurse shark and another cartilaginous fish species, the little skate Leucoraja erinacea. Functional analysis showed shark Hx, like that of mammals, binds heme but is found at unusually high levels in normal shark serum. As an Hx orthologue could not be found in the genomes of jawless vertebrates or lower deuterostomes it appears to have arisen just prior to the emergence of jawed vertebrates, coincident with the second round of genome-wide duplication and the appearance of tetrameric hemoglobin (Hb).
Collapse
Affiliation(s)
- Helen Dooley
- Department of Microbiology & Immunology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA.
| | | | | | | |
Collapse
|