1
|
Pomianek T, Zagórska-Dziok M, Skóra B, Ziemlewska A, Nizioł-Łukaszewska Z, Wójciak M, Sowa I, Szychowski KA. Comparison of the Antioxidant and Cytoprotective Properties of Extracts from Different Cultivars of Cornus mas L. Int J Mol Sci 2024; 25:5495. [PMID: 38791533 PMCID: PMC11122231 DOI: 10.3390/ijms25105495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Cornus mas L. is a rich source of vitamin C and polyphenols. Due to their health-benefit properties, C. mas L. extracts have been used in, e.g., dermatology and cosmetology, and as a food supplement. Peroxisome proliferator-activated receptor gamma (PPARγ) and its co-activator (PGC-1α) are now suspected to be the main target of active substances from C. mass extracts, especially polyphenols. Moreover, the PPARγ pathway is involved in the development of different diseases, such as type 2 diabetes mellitus (DM2), cancers, skin irritation, and inflammation. Therefore, the aim of the present study was to evaluate the PPARγ pathway activation by the most popular water and ethanol extracts from specific C. mas L. cultivars in an in vitro model of the human normal fibroblast (BJ) cell line. We analyzed the content of biologically active compounds in the extracts using the UPLC-DAD-MS technique and revealed the presence of many polyphenols, including gallic, quinic, protocatechuic, chlorogenic, and ellagic acids as well as iridoids, with loganic acid being the predominant component. In addition, the extracts contained cyanidin 3-O-galactoside, pelargonidin 3-O-glucoside, and quercetin 3-glucuronide. The water-ethanol dark red extract (DRE) showed the strongest antioxidant activity. Cytotoxicity was assessed in a normal skin cell line, and positive effects of all the extracts with concentrations ranging from 10 to 1000 µg/mL on the cells were shown. Our data show that the studied extracts activate the PPARγ/PGC-1α molecular pathway in BJ cells and, through this mechanism, initiate antioxidant response. Moreover, the activation of this molecular pathway may increase insulin sensitivity in DM2 and reduce skin irritation.
Collapse
Affiliation(s)
- Tadeusz Pomianek
- Department of Management, Faculty of Administration and Social Sciences, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland;
| | - Martyna Zagórska-Dziok
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (M.Z.-D.); (A.Z.); (Z.N.-Ł.)
| | - Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland;
| | - Aleksandra Ziemlewska
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (M.Z.-D.); (A.Z.); (Z.N.-Ł.)
| | - Zofia Nizioł-Łukaszewska
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (M.Z.-D.); (A.Z.); (Z.N.-Ł.)
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Aleje Raclawickie 1, 20-059 Lublin, Poland; (M.W.); (I.S.)
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Aleje Raclawickie 1, 20-059 Lublin, Poland; (M.W.); (I.S.)
| | - Konrad A. Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland;
| |
Collapse
|
2
|
Acharya A, Nemade H, Papadopoulos S, Hescheler J, Neumaier F, Schneider T, Rajendra Prasad K, Khan K, Hemmersbach R, Gusmao EG, Mizi A, Papantonis A, Sachinidis A. Microgravity-induced stress mechanisms in human stem cell-derived cardiomyocytes. iScience 2022; 25:104577. [PMID: 35789849 PMCID: PMC9249673 DOI: 10.1016/j.isci.2022.104577] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/25/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022] Open
Abstract
Exposure to outer space microgravity poses a risk for the development of various pathologies including cardiovascular disease. To study this, we derived cardiomyocytes (CMs) from human-induced pluripotent stem cells and exposed them to simulated microgravity (SMG). We combined different “omics” and chromosome conformation capture technologies with live-cell imaging of various transgenic lines to discover that SMG impacts on the contractile velocity and function of CMs via the induction of senescence processes. This is linked to SMG-induced changes of reactive oxygen species (ROS) generation and energy metabolism by mitochondria. Taken together, we uncover a microgravity-controlled axis causing contractile dysfunctions to CMs. Our findings can contribute to the design of preventive and therapeutic strategies against senescence-associated disease. Simulated microgravity (SMG) causes ROS production in human cardiomyocytes (CMs) SMG inhibits mitochondria function and energy metabolism and induces senescence of CMs SMG attenuates contractile velocity, beating frequency and Ca2+ influx in CMs SMG induces chromosomal changes and modifies the chromosomal architecture in CMs
Collapse
|
3
|
Lu XH, Zhang J, Xiong Q. Suppressive effect erythropoietin on oxidative stress by targeting AMPK/Nox4/ROS pathway in renal ischemia reperfusion injury. Transpl Immunol 2022; 72:101537. [PMID: 35031454 DOI: 10.1016/j.trim.2022.101537] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/09/2022] [Accepted: 01/09/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To explore the effect of erythropoietin (EPO) on the AMP-activated protein kinase (AMPK)/nicotinamide adenine dinucleotide phosphatase oxidase 4 (NOX4) signaling pathway during renal ischemia reperfusion injury (RIRI) in rats. METHODS A rat model of RIRI was established by clamping the left renal pedicle and removing the right kidney. The rats in the sham group did not have their left renal pedicle clamped. Rats with a model of RIRI were randomly divided into RIRI alone (control), erythropoietin treatment (EPO/RIRI), and Compound C treatment (CPC/RIRI) groups. Hematoxylin-eosin (H&E) staining was used to examine pathological kidney damage. Serum creatinine and urea nitrogen levels were measured to evaluate renal function. Western blotting was performed to detect the expression levels of phosphorylated p-AMPK and total AMPK protein in the kidneys. RT-PCR was used to evaluate the mRNA levels of Nox4 and p22 in the kidneys. Oxidative stress-related indices (ROS, CAT, GSH, SOD, and MDA) were also measured. RESULTS EPO treatment improved kidney function by preventing kidney damage induced by the RIRI model. Preventing ischemia/reperfusion injury in the RIRI model was correlated with an increased p-AMPK/AMPK ratio and elevated activity of CAT, GSH, and SOD, which ameliorated the expression of NOX4, p22, ROS, and MDA. Moreover, treatment with CPC (an AMPK inhibitor) reduced the effects of EPO in the RIRI model. CONCLUSION EPO treatment protected rats against RIRI in the RIRI model by alleviating oxidative stress by triggering the AMPK/NOX4/ROS pathway.
Collapse
Affiliation(s)
- Xiang-Heng Lu
- Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Jiong Zhang
- Department of Nephrology, University of Electronic Science and Technology, Sichuan Academy of Sciences & Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Disease, Chengdu 610072, China
| | - Qin Xiong
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| |
Collapse
|
4
|
Tuncay E, Olgar Y, Durak A, Degirmenci S, Bitirim CV, Turan B. β 3 -adrenergic receptor activation plays an important role in the depressed myocardial contractility via both elevated levels of cellular free Zn 2+ and reactive nitrogen species. J Cell Physiol 2019; 234:13370-13386. [PMID: 30613975 DOI: 10.1002/jcp.28015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/11/2018] [Indexed: 12/27/2022]
Abstract
Role of β3 -AR dysregulation, as either cardio-conserving or cardio-disrupting mediator, remains unknown yet. Therefore, we examined the molecular mechanism of β3 -AR activation in depressed myocardial contractility using a specific agonist CL316243 or using β3 -AR overexpressed cardiomyocytes. Since it has been previously shown a possible correlation between increased cellular free Zn2+ ([Zn2+ ]i ) and depressed cardiac contractility, we first demonstrated a relation between β3 -AR activation and increased [Zn2+ ]i , parallel to the significant depolarization in mitochondrial membrane potential in rat ventricular cardiomyocytes. Furthermore, the increased [Zn2+ ]i induced a significant increase in messenger RNA (mRNA) level of β3 -AR in cardiomyocytes. Either β3 -AR activation or its overexpression could increase cellular reactive oxygen species (ROS) and reactive nitrogen species (RNS) levels, in line with significant changes in nitric oxide (NO)-pathway, including increases in the ratios of pNOS3/NOS3 and pGSK-3β/GSK-3β, and PKG expression level in cardiomyocytes. Although β3 -AR activation induced depression in both Na+ - and Ca2+ -currents, the prolonged action potential (AP) seems to be associated with a marked depression in K+ -currents. The β3 -AR activation caused a negative inotropic effect on the mechanical activity of the heart, through affecting the cellular Ca2+ -handling, including its effect on Ca2+ -leakage from sarcoplasmic reticulum (SR). Our cellular level data with β3 -AR agonism were supported with the data on high [Zn2+ ]i and β3 -AR protein-level in metabolic syndrome (MetS)-rat heart. Overall, our present data can emphasize the important deleterious effect of β3 -AR activation in cardiac remodeling under pathological condition, at least, through a cross-link between β3 -AR activation, NO-signaling, and [Zn2+ ]i pathways. Moreover, it is interesting to note that the recovery in ER-stress markers with β3 -AR agonism in hyperglycemic cardiomyocytes is favored. Therefore, how long and to which level the β3 -AR agonism would be friend or become foe remains to be mystery, yet.
Collapse
Affiliation(s)
- Erkan Tuncay
- Department of Biophysics, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Yusuf Olgar
- Department of Biophysics, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Aysegul Durak
- Department of Biophysics, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Sinan Degirmenci
- Department of Biophysics, Ankara University Faculty of Medicine, Ankara, Turkey
| | | | - Belma Turan
- Department of Biophysics, Ankara University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
5
|
Tuncay E, Turan B. Intracellular Zn(2+) Increase in Cardiomyocytes Induces both Electrical and Mechanical Dysfunction in Heart via Endogenous Generation of Reactive Nitrogen Species. Biol Trace Elem Res 2016; 169:294-302. [PMID: 26138011 DOI: 10.1007/s12011-015-0423-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/23/2015] [Indexed: 12/23/2022]
Abstract
Oxidants increase intracellular free Zn(2+) concentration ([Zn(2+)]i) in ventricular myocytes, which contributes to oxidant-induced alterations in excitation-contraction coupling (ECC). However, it is not clear whether increased [Zn(2+)]i in cardiomyocytes via increased reactive nitrogen species (RNS) has a role on heart function under pathological conditions, such as hyperglycemia. In this study, first we aimed to investigate the role of increased [Zn(2+)]i under in vitro condition in the development of both electrical and mechanical dysfunction of isolated papillary muscle strips from rat heart via exposed samples to a Zn(2+)-ionophore (Zn-pyrithione; 1 μM) for 20 min. Under simultaneous measurement of intracellular action potential and contractile activity in these preparations, Zn-pyrithione exposure caused marked prolongation in action potential repolarization phase and slowdown in both contraction and relaxation rates of twitch activity. Second, in order to demonstrate an association between increased [Zn(2+)]i and increased RNS, we monitored intracellular [Zn(2+)]i under an acute exposure of nitric oxide (NO) donor sodium nitroprusside, SNP, in freshly isolated quiescent cardiomyocytes loaded with FluoZin-3. Resting level of free Zn(2+) is significantly higher in cardiomyocytes under hyperglycemic condition compared to those of the controls, which seems to be associated with increased level of RNS production in hyperglycemic cardiomyocytes. Western blot analysis showed that Zn-pyrithione exposure induced a marked decrease in the activity of protein phosphatase 1 and 2A, member of macromolecular protein complex of cardiac ryanodine receptors, RyR2, besides significant increase in the phosphorylation level of extracellular signal-regulated kinase1/2 as a concentration-dependent manner. Overall, the present data demonstrated that there is a cross-relationship between increased RNS production and increased [Zn(2+)]i level in cardiomyocytes under pathological conditions such as hyperglycemia.
Collapse
Affiliation(s)
- Erkan Tuncay
- Department of Biophysics, Ankara University Faculty of Medicine, 06100, Ankara, Turkey
| | - Belma Turan
- Department of Biophysics, Ankara University Faculty of Medicine, 06100, Ankara, Turkey.
| |
Collapse
|
6
|
Deletioglu V, Tuncay E, Toy A, Atalay M, Turan B. Immuno-spin trapping detection of antioxidant/pro-oxidant properties of zinc or selenium on DNA and protein radical formation via hydrogen peroxide. Mol Cell Biochem 2015; 409:23-31. [DOI: 10.1007/s11010-015-2508-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/04/2015] [Indexed: 11/29/2022]
|
7
|
ROS and RNS signaling in skeletal muscle: critical signals and therapeutic targets. ANNUAL REVIEW OF NURSING RESEARCH 2014; 31:367-87. [PMID: 24894146 DOI: 10.1891/0739-6686.31.367] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The health of skeletal muscle is promoted by optimal nutrition and activity/exercise through the activation of molecular signaling pathways. Reactive oxygen species (ROS) or reactive nitrogen species (RNS) have been shown to modulate numerous biochemical processes including glucose uptake, gene expression, calcium signaling, and contractility. In pathological conditions, ROS/RNS signaling excess or dysfunction contributes to contractile dysfunction and myopathy in skeletal muscle. Here we provide a brief review of ROS/RNS chemistry and discuss concepts of ROS/RNS signaling and its role in physiological and pathophysiological processes within striated muscle.
Collapse
|
8
|
Ward CW, Prosser BL, Lederer WJ. Mechanical stretch-induced activation of ROS/RNS signaling in striated muscle. Antioxid Redox Signal 2014; 20:929-36. [PMID: 23971496 PMCID: PMC3924793 DOI: 10.1089/ars.2013.5517] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
SIGNIFICANCE Mechanical activation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) occurs in striated muscle and affects Ca(2+) signaling and contractile function. ROS/RNS signaling is tightly controlled, spatially compartmentalized, and source specific. RECENT ADVANCES Here, we review the evidence that within the contracting myocyte, the trans-membrane protein NADPH oxidase 2 (Nox2) is the primary source of ROS generated during contraction. We also review a newly characterized signaling cascade in cardiac and skeletal muscle in which the microtubule network acts as a mechanotransduction element that activates Nox2-dependent ROS generation during mechanical stretch, a pathway termed X-ROS signaling. CRITICAL ISSUES In the heart, X-ROS acts locally and affects the sarcoplasmic reticulum (SR) Ca(2+) release channels (ryanodine receptors) and tunes Ca(2+) signaling during physiological behavior, but excessive X-ROS can promote Ca(2+)-dependent arrhythmias in pathology. In skeletal muscle, X-ROS sensitizes Ca(2+)-permeable sarcolemmal "transient receptor potential" channels, a pathway that is critical for sustaining SR load during repetitive contractions, but when in excess, it is maladaptive in diseases such as Duchenne Musclar dystrophy. FUTURE DIRECTIONS New advances in ROS/RNS detection as well as molecular manipulation of signaling pathways will provide critical new mechanistic insights into the details of X-ROS signaling. These efforts will undoubtedly reveal new avenues for therapeutic intervention in the numerous diseases of striated muscle in which altered mechanoactivation of ROS/RNS production has been identified.
Collapse
|
9
|
Morales CR, Pedrozo Z, Lavandero S, Hill JA. Oxidative stress and autophagy in cardiovascular homeostasis. Antioxid Redox Signal 2014; 20:507-18. [PMID: 23641894 PMCID: PMC3894700 DOI: 10.1089/ars.2013.5359] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
SIGNIFICANCE Autophagy is an evolutionarily ancient process of intracellular protein and organelle recycling required to maintain cellular homeostasis in the face of a wide variety of stresses. Dysregulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) leads to oxidative damage. Both autophagy and ROS/RNS serve pathological or adaptive roles within cardiomyocytes, depending on the context. RECENT ADVANCES ROS/RNS and autophagy communicate with each other via both transcriptional and post-translational events. This cross talk, in turn, regulates the structural integrity of cardiomyocytes, promotes proteostasis, and reduces inflammation, events critical to disease pathogenesis. CRITICAL ISSUES Dysregulation of either autophagy or redox state has been implicated in many cardiovascular diseases. Cardiomyocytes are rich in mitochondria, which make them particularly sensitive to oxidative damage. Maintenance of mitochondrial homeostasis and elimination of defective mitochondria are each critical to the maintenance of redox homeostasis. FUTURE DIRECTIONS The complex interplay between autophagy and oxidative stress underlies a wide range of physiological and pathological events and its elucidation holds promise of potential clinical applicability.
Collapse
Affiliation(s)
- Cyndi R Morales
- 1 Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center , Dallas, Texas
| | | | | | | |
Collapse
|
10
|
Mugoni V, Postel R, Catanzaro V, De Luca E, Turco E, Digilio G, Silengo L, Murphy M, Medana C, Stainier D, Bakkers J, Santoro M. Ubiad1 is an antioxidant enzyme that regulates eNOS activity by CoQ10 synthesis. Cell 2013; 152:504-18. [PMID: 23374346 PMCID: PMC3574195 DOI: 10.1016/j.cell.2013.01.013] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 05/23/2012] [Accepted: 01/07/2013] [Indexed: 11/18/2022]
Abstract
Protection against oxidative damage caused by excessive reactive oxygen species (ROS) by an antioxidant network is essential for the health of tissues, especially in the cardiovascular system. Here, we identified a gene with important antioxidant features by analyzing a null allele of zebrafish ubiad1, called barolo (bar). bar mutants show specific cardiovascular failure due to oxidative stress and ROS-mediated cellular damage. Human UBIAD1 is a nonmitochondrial prenyltransferase that synthesizes CoQ10 in the Golgi membrane compartment. Loss of UBIAD1 reduces the cytosolic pool of the antioxidant CoQ10 and leads to ROS-mediated lipid peroxidation in vascular cells. Surprisingly, inhibition of eNOS prevents Ubiad1-dependent cardiovascular oxidative damage, suggesting a crucial role for this enzyme and nonmitochondrial CoQ10 in NO signaling. These findings identify UBIAD1 as a nonmitochondrial CoQ10-forming enzyme with specific cardiovascular protective function via the modulation of eNOS activity.
Collapse
Affiliation(s)
- Vera Mugoni
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy
| | - Ruben Postel
- Hubrecht Institute-KNAW and University Medical Center Utrecht and Netherlands Heart Institute, 3584 CT Utrecht, The Netherlands
| | - Valeria Catanzaro
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy
| | - Elisa De Luca
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy
| | - Emilia Turco
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy
| | - Giuseppe Digilio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy
| | - Lorenzo Silengo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy
| | - Michael P. Murphy
- Medical Research Council Mitochondrial Biology Unit, Hills Road, Cambridge CB2 0XY, UK
| | - Claudio Medana
- Department of Chemistry, University of Torino, 10126 Torino, Italy
| | - Didier Y.R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW and University Medical Center Utrecht and Netherlands Heart Institute, 3584 CT Utrecht, The Netherlands
| | - Massimo M. Santoro
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy
- Corresponding author
| |
Collapse
|
11
|
Fortini P, Ferretti C, Pascucci B, Narciso L, Pajalunga D, Puggioni EMR, Castino R, Isidoro C, Crescenzi M, Dogliotti E. DNA damage response by single-strand breaks in terminally differentiated muscle cells and the control of muscle integrity. Cell Death Differ 2012; 19:1741-9. [PMID: 22705848 DOI: 10.1038/cdd.2012.53] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
DNA single-strand breaks (SSB) formation coordinates the myogenic program, and defects in SSB repair in post-mitotic cells have been associated with human diseases. However, the DNA damage response by SSB in terminally differentiated cells has not been explored yet. Here we show that mouse post-mitotic muscle cells accumulate SSB after alkylation damage, but they are extraordinarily resistant to the killing effects of a variety of SSB-inducers. We demonstrate that, upon SSB induction, phosphorylation of H2AX occurs in myotubes and is largely ataxia telangiectasia mutated (ATM)-dependent. However, the DNA damage signaling cascade downstream of ATM is defective as shown by lack of p53 increase and phosphorylation at serine 18 (human serine 15). The stabilization of p53 by nutlin-3 was ineffective in activating the cell death pathway, indicating that the resistance to SSB inducers is due to defective p53 downstream signaling. The induction of specific types of damage is required to activate the cell death program in myotubes. Besides the topoisomerase inhibitor doxorubicin known for its cardiotoxicity, we show that the mitochondria-specific inhibitor menadione is able to activate p53 and to kill effectively myotubes. Cell killing is p53-dependent as demonstrated by full protection of myotubes lacking p53, but there is a restriction of p53-activated genes. This new information may have important therapeutic implications in the prevention of muscle cell toxicity.
Collapse
Affiliation(s)
- P Fortini
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|