1
|
Kapare H, Bhosale M, Bhole R. Navigating the future: Advancements in monoclonal antibody nanoparticle therapy for cancer. J Drug Deliv Sci Technol 2025; 104:106495. [DOI: 10.1016/j.jddst.2024.106495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Ziehr BK, MacDonald JA. Regulation of NLRPs by reactive oxygen species: A story of crosstalk. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119823. [PMID: 39173681 DOI: 10.1016/j.bbamcr.2024.119823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/28/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
The nucleotide oligomerization domain (NOD)-like receptors containing pyrin (NLRP) family of cytosolic pattern-recognition receptors play an integral role in host defense following exposure to a diverse set of pathogenic and sterile threats. The canonical event following ligand recognition is the formation of a heterooligomeric signaling complex termed the inflammasome that produces pro-inflammatory cytokines. Dysregulation of this process is associated with many autoimmune, cardiovascular, metabolic, and neurodegenerative diseases. Despite the range of activating stimuli which affect varied cell types, recent literature makes evident that reactive oxygen species (ROS) are integral to the initiation and propagation of inflammasome signaling. Notably, ROS production and inflammasome activation act in a positive feedback loop to promote this potent immune response. While NLRP3 is by far the most extensively studied NLRP, there is also sufficient literature to make these conclusions for other NLRPs family members. In all cases, a knowledge gap exists regarding the molecular targets and effects of ROS. Future research to define these targets and to parse the order and timing of ROS-mediated NLRP activation will provide meaningful insights into inflammasome biology. This will create novel therapeutic opportunities for the numerous illnesses that are impacted by inflammasome activity.
Collapse
Affiliation(s)
- Bjoern K Ziehr
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Justin A MacDonald
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada.
| |
Collapse
|
3
|
Cerkezi S, Nakova M, Gorgoski I, Ferati K, Bexheti-Ferati A, Palermo A, Inchingolo AD, Ferrante L, Inchingolo AM, Inchingolo F, Dipalma G. The Role of Sulfhydryl (Thiols) Groups in Oral and Periodontal Diseases. Biomedicines 2024; 12:882. [PMID: 38672236 PMCID: PMC11048028 DOI: 10.3390/biomedicines12040882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
AIM The sulfhydryl (thiols) group of glutathione plays an important role in the neutralization of foreign organic compounds and the reduction in peroxides. The purpose of the study is to evaluate the concentration of sulfhydryl groups in the gingival tissue of healthy individuals and those with gingivitis or periodontitis, and to examine the differences between these groups. MATERIAL AND METHODS To assess the concentration of sulfhydryl groups (thiols) in the gingival tissue of healthy individuals and those with gingivitis or periodontitis, we used spectrophotometric analysis using dithionitrobenzoate (DTNB) as a reagent to measure the accessible sulfhydryl groups present in gingival tissue proteins. The sample was divided into three distinct groups: individuals with periodontal health, gingivitis, and periodontitis, and different indices were used to assess the periodontal status of the participants. Next, a statistical analysis was conducted to compare the concentrations of sulfhydryl groups among the different groups of patients. CONCLUSIONS The results of this study showed significantly decreased levels of sulfhydryl (thiols) groups in gingival tissue from patients with gingivitis and periodontitis, compared with healthy people (control group). These results confirm the role of sulfhydryl (thiols) groups in defense against free radicals. They share a significant role in detoxification, signal transduction, apoptosis, and various other functions at the molecular level.
Collapse
Affiliation(s)
- Sabetim Cerkezi
- Orthodontic Department, Dentristy School, Medical Science Faculty, State University of Tetova, 1220 Tetova, North Macedonia;
| | - Marija Nakova
- Periodontology Department, Dentistry School, Medical Science Faculty, State University of Tetova, 1220 Tetova, North Macedonia;
| | - Icko Gorgoski
- Faculty of Natural Sciences and Mathematics, University St. Cyril and Methodius, 1000 Skopje, North Macedonia;
| | - Kenan Ferati
- Faculty of Medicine, State University of Tetova, 1220 Tetovo, North Macedonia; (K.F.); (A.B.-F.)
| | - Arberesha Bexheti-Ferati
- Faculty of Medicine, State University of Tetova, 1220 Tetovo, North Macedonia; (K.F.); (A.B.-F.)
| | - Andrea Palermo
- College of Medicine and Dentistry, Birmingham B4 6BN, UK;
| | - Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (L.F.); (G.D.)
| | - Laura Ferrante
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (L.F.); (G.D.)
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (L.F.); (G.D.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (L.F.); (G.D.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (L.F.); (G.D.)
| |
Collapse
|
4
|
Kumari M, Acharya A, Krishnamurthy PT. Antibody-conjugated nanoparticles for target-specific drug delivery of chemotherapeutics. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:912-926. [PMID: 37701520 PMCID: PMC10494237 DOI: 10.3762/bjnano.14.75] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/22/2023] [Indexed: 09/14/2023]
Abstract
Nanotechnology provides effective methods for precisely delivering chemotherapeutics to cancer cells, thereby improving efficacy and reducing off-target side effects. The targeted delivery of nanoscale chemotherapeutics is accomplished by two different approaches, namely the exploitation of leaky tumor vasculature (EPR effect) and the surface modification of nanoparticles (NPs) with various tumor-homing peptides, aptamers, oligonucleotides, and monoclonal antibodies (mAbs). Because of higher binding affinity and specificity, mAbs have received a lot of attention for the detection of selective cancer biomarkers and also for the treatment of various types of cancer. Antibody-conjugated nanoparticles (ACNPs) are an effective targeted therapy for the efficient delivery of chemotherapeutics specifically to the targeted cancer cells. ACNPs combine the benefits of NPs and mAbs to provide high drug loads at the tumor site with better selectivity and delivery efficiency. The mAbs on the NP surfaces recognize their specific receptors expressed on the target cells and release the chemotherapeutic agent in a controlled manner. Appropriately designed and synthesized ACNPs are essential to fully realize their therapeutic benefits. In blood stream, ACNPs instantly interact with biological molecules, and a protein corona is formed. Protein corona formation triggers an immune response and affects the targeting ability of the nanoformulation. In this review, we provide recent findings to highlight several antibody conjugation methods such as adsorption, covalent conjugation, and biotin-avidin interaction. This review also provides an overview of the many effects of the protein corona and the theranostic applications of ACNPs for the treatment of cancer.
Collapse
Affiliation(s)
- Mamta Kumari
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur (H.P.) 176061, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Praveen Thaggikuppe Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| |
Collapse
|
5
|
Lee J, Roh JL. SLC7A11 as a Gateway of Metabolic Perturbation and Ferroptosis Vulnerability in Cancer. Antioxidants (Basel) 2022; 11:antiox11122444. [PMID: 36552652 PMCID: PMC9774303 DOI: 10.3390/antiox11122444] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
SLC7A11 is a cell transmembrane protein composing the light chain of system xc-, transporting extracellular cystine into cells for cysteine production and GSH biosynthesis. SLC7A11 is a critical gateway for redox homeostasis by maintaining the cellular levels of GSH that counter cellular oxidative stress and suppress ferroptosis. SLC7A11 is overexpressed in various human cancers and regulates tumor development, proliferation, metastasis, microenvironment, and treatment resistance. Upregulation of SLC7A11 in cancers is needed to adapt to high oxidative stress microenvironments and maintain cellular redox homeostasis. High basal ROS levels and SLC7A11 dependences in cancer cells render them vulnerable to further oxidative stress. Therefore, cyst(e)ine depletion may be an effective new strategy for cancer treatment. However, the effectiveness of the SLC7A11 inhibitors or cyst(e)inase has been established in many preclinical studies but has not reached the stage of clinical trials for cancer patients. A better understanding of cysteine and SLC7A11 functions regulating and interacting with redox-active proteins and their substrates could be a promising strategy for cancer treatment. Therefore, this review intends to understand the role of cysteine in antioxidant and redox signaling, the regulators of cysteine bioavailability in cancer, the role of SLC7A11 linking cysteine redox signaling in cancer metabolism and targeting SLC7A11 for novel cancer therapeutics.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam 13496, Republic of Korea
- Department of Biomedical Science, General Graduate School, CHA University, Seongnam 13496, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam 13496, Republic of Korea
- Department of Biomedical Science, General Graduate School, CHA University, Seongnam 13496, Republic of Korea
- Correspondence: ; Tel.: +82-31-780-2988
| |
Collapse
|
6
|
Mora M, Board S, Languin-Cattoën O, Masino L, Stirnemann G, Garcia-Manyes S. A Single-Molecule Strategy to Capture Non-native Intramolecular and Intermolecular Protein Disulfide Bridges. NANO LETTERS 2022; 22:3922-3930. [PMID: 35549281 PMCID: PMC9136921 DOI: 10.1021/acs.nanolett.2c00043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/23/2022] [Indexed: 05/04/2023]
Abstract
Non-native disulfide bonds are dynamic covalent bridges that form post-translationally between two cysteines within the same protein (intramolecular) or with a neighboring protein (intermolecular), frequently due to changes in the cellular redox potential. The reversible formation of non-native disulfides is intimately linked to alterations in protein function; while they can provide a mechanism to protect against cysteine overoxidation, they are also involved in the early stages of protein multimerization, a hallmark of several protein aggregation diseases. Yet their identification using current protein chemistry technology remains challenging, mainly because of their fleeting reactivity. Here, we use single-molecule spectroscopy AFM and molecular dynamics simulations to capture both intra- and intermolecular disulfide bonds in γD-crystallin, a cysteine-rich, structural human lens protein involved in age-related eye cataracts. Our approach showcases the power of mechanical force as a conformational probe in dynamically evolving proteins and presents a platform to detect non-native disulfide bridges with single-molecule resolution.
Collapse
Affiliation(s)
- Marc Mora
- Department
of Physics, Randall Centre for Cell and Molecular Biophysics and London
Centre for Nanotechnology, King’s
College London, Strand, WC2R 2LS London, United Kingdom
- Single
Molecule Mechanobiology Laboratory, The
Francis Crick Institute, 1 Midland Road, London NW1 1AT, London United
Kingdom
| | - Stephanie Board
- Department
of Physics, Randall Centre for Cell and Molecular Biophysics and London
Centre for Nanotechnology, King’s
College London, Strand, WC2R 2LS London, United Kingdom
- Single
Molecule Mechanobiology Laboratory, The
Francis Crick Institute, 1 Midland Road, London NW1 1AT, London United
Kingdom
| | - Olivier Languin-Cattoën
- CNRS
Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Université Paris Diderot,
Sorbonne Paris Cité, PSL Research University, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Laura Masino
- Structural
Biology Science Technology Platform, The
Francis Crick Institute, 1 Midland Road London, NW1 1AT, United Kingdom
| | - Guillaume Stirnemann
- CNRS
Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Université Paris Diderot,
Sorbonne Paris Cité, PSL Research University, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Sergi Garcia-Manyes
- Department
of Physics, Randall Centre for Cell and Molecular Biophysics and London
Centre for Nanotechnology, King’s
College London, Strand, WC2R 2LS London, United Kingdom
- Single
Molecule Mechanobiology Laboratory, The
Francis Crick Institute, 1 Midland Road, London NW1 1AT, London United
Kingdom
| |
Collapse
|
7
|
Liu G, Choi MH, Ma H, Guo X, Lo PC, Kim J, Zhang L. Bioorthogonal Conjugation-Assisted Purification Method for Profiling Cell Surface Proteome. Anal Chem 2022; 94:1901-1909. [PMID: 35019258 DOI: 10.1021/acs.analchem.1c05187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Surface biotinylation has been widely adapted in profiling the cellular proteome associated with the plasma membrane. However, the workflow is subject to interference from the cytoplasmic biotin-associated proteins that compete for streptavidin-binding during purification. Here we established a bioorthogonal conjugation-assisted purification (BCAP) workflow that utilizes the Staudinger chemoselective ligation to label and isolate surface-associated proteins while minimizing the binding of endogenous biotin-associated proteins. Label-free quantitative proteomics demonstrated that BCAP is efficient in isolating cell surface proteins with excellent reproducibility. Subsequently, we applied BCAP to compare the surface proteome of proliferating and senescent mouse embryonic fibroblasts (MEFs). Among the results, EHD2 was identified and validated as a novel protein that is enhanced at the cell surface of senescent MEFs. We expect that BCAP will have broad applications in profiling cell surface proteomes in the future.
Collapse
Affiliation(s)
- Guopan Liu
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong China.,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Ming Ho Choi
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong China
| | - Haiying Ma
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong China
| | - Xuejiao Guo
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong China
| | - Pui-Chi Lo
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong China
| | - Jinyong Kim
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong China
| | - Liang Zhang
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong China.,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
8
|
Zhang Y, Qi P. Determination of free sulfhydryl contents for proteins including monoclonal antibodies by use of SoloVPE. J Pharm Biomed Anal 2021; 201:114092. [PMID: 33984827 DOI: 10.1016/j.jpba.2021.114092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/07/2021] [Accepted: 04/19/2021] [Indexed: 01/01/2023]
Abstract
Free sulfhydryls are important properties of protein products including monoclonal antibodies (mAbs). Here, a new technology, variable pathlength extension (SoloVPE), is employed to quantify the amount of free sulfhydryl in monoclonal antibodies (mAbs) using the well-known Ellman reagent. Briefly, the unbound thiols (free sulfhydryls) of proteins including mAbs react with Ellman reagent to produce a 2-nitro-5-thiobenzoate (TNB2-) which is detected at visible wavelength of 412 nm and quantified. The method does not require dilution of antibody samples, is simple, reproducible and takes less than one hour to complete. Values obtained by the new method are compared to literature values from traditional UV or fluorescence methods with agreements. Qualification and trending data over two years of method utilization in our labs support that assay variability is minimal with an intermediate precision of relative standard deviation (RSD) ≤ 10 % and a limit of quantification (LOQ) of 0.1 mol/mol, which is sufficient to measure free sulfhydryl content in proteins including mAbs.
Collapse
Affiliation(s)
- Yuling Zhang
- Analytical and Formulation Department, Lundbeck Seattle BioPharmaceuticals, Inc, 11804 North Creek Parkway South, Bothell, Washington, 98011, United States.
| | - Pei Qi
- Analytical and Formulation Department, Lundbeck Seattle BioPharmaceuticals, Inc, 11804 North Creek Parkway South, Bothell, Washington, 98011, United States
| |
Collapse
|
9
|
Lin X, O'Reilly Beringhs A, Lu X. Applications of Nanoparticle-Antibody Conjugates in Immunoassays and Tumor Imaging. AAPS J 2021; 23:43. [PMID: 33718979 PMCID: PMC7956929 DOI: 10.1208/s12248-021-00561-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Modern diagnostic technologies rely on both in vitro and in vivo modalities to provide a complete understanding of the clinical state of a patient. Nanoparticle-antibody conjugates have emerged as promising systems to confer increased sensitivity and accuracy for in vitro diagnostics (e.g., immunoassays). Meanwhile, in vivo applications have benefited from the targeting ability of nanoparticle-antibody conjugates, as well as payload flexibility and tailored biodistribution. This review provides an encompassing overview of nanoparticle-antibody conjugates, from chemistry to applications in medical immunoassays and tumor imaging, highlighting the underlying principles and unique features of relevant preclinical applications employing commonly used imaging modalities (e.g., optical/photoacoustics, positron-emission tomography, magnetic resonance imaging, X-ray computed tomography).
Collapse
Affiliation(s)
- Xinhao Lin
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| | | | - Xiuling Lu
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA.
| |
Collapse
|
10
|
Nagy P, Dóka É, Ida T, Akaike T. Measuring Reactive Sulfur Species and Thiol Oxidation States: Challenges and Cautions in Relation to Alkylation-Based Protocols. Antioxid Redox Signal 2020; 33:1174-1189. [PMID: 32631072 DOI: 10.1089/ars.2020.8077] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Significance: Redox biology is gaining ground in research related to human physiology (metabolism, signaling), pathophysiology (cancer, cardiovascular disease, neurodegeneration), and toxicology (radiation- or xenobiotic-induced damage). A major hurdle in advancing redox medicine is the current lack of understanding the mechanisms underpinning the observed detrimental or beneficial in vivo effects. To gain deeper insights into the underlying molecular pathways of redox regulation, we need to appreciate the strengths and limitations of the currently available methods. Recent Advances: Reactive sulfur species (RSS), including cysteine derivatives of peptides and proteins along with small molecules such as hydrogen sulfide or inorganic polysulfides, are major players in redox biology. RSS-mediated regulation of protein functions is a widely studied mechanism in the field, and considerable efforts have been devoted to the development of selective detection methods. Critical Issues: A large number of available methods rely on an alkylation step to freeze the dynamism of consecutive oxidation and reduction events among RSS at a particular time point inside the cell. This process uses the assumption that alkylation blocks all redox events instantaneously. We argue that unfortunately this is often not the case, which could have serious impacts on detected sulfur species speciation and confound experimental results. Future Directions: Novel technologies and prudent optimization of existing methods to accurately characterize the dynamic redox status of the thiol proteome as well as detailed understanding of regulatory and signaling capacities of protein polysulfidation are crucial to open new routes toward therapeutic interventions.
Collapse
Affiliation(s)
- Péter Nagy
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, Budapest, Hungary
| | - Éva Dóka
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, Budapest, Hungary
| | - Tomoaki Ida
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
11
|
Liu Y, Ribeiro ODC, Robinson J, Goldman A. Expression and purification of the extracellular domain of wild-type humanRET and the dimeric oncogenic mutant C634R. Int J Biol Macromol 2020; 164:1621-1630. [PMID: 32777409 DOI: 10.1016/j.ijbiomac.2020.07.290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/15/2020] [Accepted: 07/24/2020] [Indexed: 12/01/2022]
Abstract
The receptor tyrosine kinase RET is essential in a variety of cellular processes. RET gain-of-function is strongly associated with several cancers, notably multiple endocrine neoplasia type 2A (MEN 2A), while RET loss-of-function causes Hirschsprung's disease and Parkinson's disease. To investigate the activation mechanism of RET as well as to enable drug development, over-expressed recombinant protein is needed for in vitro functional and structural studies. By comparing insect and mammalian cells expression of the RET extracellular domain (RETECD), we showed that the expression yields of RETECD using both systems were comparable, but mammalian cells produced monomeric functional RETECD, whereas RETECD expressed in insect cells was non-functional and multimeric. This was most likely due to incorrect disulfide formation. By fusing an Fc tag to the C-terminus of RETECD, we were able to produce, in HEK293T cells, dimeric oncogenic RETECD (C634R) for the first time. The protein remained dimeric even after cleavage of the tag via the cysteine disulfide, as in full-length RET in the context of MEN 2A and related pathologies. Our work thus provides valuable tools for functional and structural studies of the RET signaling system and its oncogenic activation mechanisms.
Collapse
Affiliation(s)
- Yixin Liu
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland
| | - Orquidea De Castro Ribeiro
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland
| | - James Robinson
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Adrian Goldman
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland; Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
12
|
Marques AC, Costa PJ, Velho S, Amaral MH. Functionalizing nanoparticles with cancer-targeting antibodies: A comparison of strategies. J Control Release 2020; 320:180-200. [PMID: 31978444 DOI: 10.1016/j.jconrel.2020.01.035] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 01/07/2023]
Abstract
Standard cancer therapies sometimes fail to deliver chemotherapeutic drugs to tumor cells in a safe and effective manner. Nanotechnology takes the lead in providing new therapeutic options for cancer due to major potential for selective targeting and controlled drug release. Antibodies and antibody fragments are attracting much attention as a source of targeting ligands to bind specific receptors that are overexpressed on cancer cells. Therefore, researchers are devoting time and effort to develop targeting strategies based on nanoparticles functionalized with antibodies, which hold great promise to enhance therapeutic efficacy and circumvent severe side effects. Several methods have been described to immobilize antibodies on the surface of nanoparticles. However, selecting the most appropriate for each application is challenging but also imperative to preserve antigen binding ability and yield stable antibody-conjugated nanoparticles. From this perspective, we aim to provide considerable knowledge on the most widely used methods of functionalization that can be helpful for decision-making and design of conjugation protocols as well. This review summarizes adsorption, covalent conjugation (carbodiimide, maleimide and "click" chemistries) and biotin-avidin interaction, while discussing the advantages, limitations and relevant therapeutic approaches currently under investigation.
Collapse
Affiliation(s)
- A C Marques
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - P J Costa
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - S Velho
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, R. Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - M H Amaral
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
13
|
Hou Q, Cheng Y, Kang D, Zhang W, Zhou G. Quality changes of pork during frozen storage: comparison of immersion solution freezing and air blast freezing. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14257] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qin Hou
- Key Lab of Meat Processing and Quality Control Ministry of Education Jiangsu Collaborative Innovation Center of Meat Processing and Quality Control College of Food Science and Technology Nanjing Agricultural University Nanjing Jiangsu210095China
| | - Yu‐ping Cheng
- Key Lab of Meat Processing and Quality Control Ministry of Education Jiangsu Collaborative Innovation Center of Meat Processing and Quality Control College of Food Science and Technology Nanjing Agricultural University Nanjing Jiangsu210095China
| | - Da‐cheng Kang
- Key Lab of Meat Processing and Quality Control Ministry of Education Jiangsu Collaborative Innovation Center of Meat Processing and Quality Control College of Food Science and Technology Nanjing Agricultural University Nanjing Jiangsu210095China
| | - Wan‐gang Zhang
- Key Lab of Meat Processing and Quality Control Ministry of Education Jiangsu Collaborative Innovation Center of Meat Processing and Quality Control College of Food Science and Technology Nanjing Agricultural University Nanjing Jiangsu210095China
| | - Guang‐hong Zhou
- Key Lab of Meat Processing and Quality Control Ministry of Education Jiangsu Collaborative Innovation Center of Meat Processing and Quality Control College of Food Science and Technology Nanjing Agricultural University Nanjing Jiangsu210095China
| |
Collapse
|
14
|
Patinen T, Adinolfi S, Cortés CC, Härkönen J, Jawahar Deen A, Levonen AL. Regulation of stress signaling pathways by protein lipoxidation. Redox Biol 2019; 23:101114. [PMID: 30709792 PMCID: PMC6859545 DOI: 10.1016/j.redox.2019.101114] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/12/2019] [Accepted: 01/15/2019] [Indexed: 12/30/2022] Open
Abstract
Enzymatic and non-enzymatic oxidation of unsaturated fatty acids gives rise to reactive species that covalently modify nucleophilic residues within redox sensitive protein sensors in a process called lipoxidation. This triggers adaptive signaling pathways that ultimately lead to increased resistance to stress. In this graphical review, we will provide an overview of pathways affected by protein lipoxidation and the key signaling proteins being altered, focusing on the KEAP1-NRF2 and heat shock response pathways. We review the mechanisms by which lipid peroxidation products can serve as second messengers and evoke cellular responses via covalent modification of key sensors of altered cellular environment, ultimately leading to adaptation to stress.
Collapse
Affiliation(s)
- Tommi Patinen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, Kuopio FIN-70211, Finland
| | - Simone Adinolfi
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, Kuopio FIN-70211, Finland
| | - Carlos Cruz Cortés
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, Kuopio FIN-70211, Finland; Department of Biochemistry, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV-IPN, Mexico City MX-07360, Mexico
| | - Jouni Härkönen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, Kuopio FIN-70211, Finland
| | - Ashik Jawahar Deen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, Kuopio FIN-70211, Finland
| | - Anna-Liisa Levonen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, Kuopio FIN-70211, Finland.
| |
Collapse
|
15
|
Szekely O, Armony G, Olsen GL, Bigman LS, Levy Y, Fass D, Frydman L. Identification and Rationalization of Kinetic Folding Intermediates for a Low-Density Lipoprotein Receptor Ligand-Binding Module. Biochemistry 2018; 57:4776-4787. [PMID: 29979586 DOI: 10.1021/acs.biochem.8b00466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many mutations that cause familial hypercholesterolemia localize to ligand-binding domain 5 (LA5) of the low-density lipoprotein receptor, motivating investigation of the folding and misfolding of this small, disulfide-rich, calcium-binding domain. LA5 folding is known to involve non-native disulfide isomers, yet these folding intermediates have not been structurally characterized. To provide insight into these intermediates, we used nuclear magnetic resonance (NMR) to follow LA5 folding in real time. We demonstrate that misfolded or partially folded disulfide intermediates are indistinguishable from the unfolded state when focusing on the backbone NMR signals, which provide information on the formation of only the final, native state. However, 13C labeling of cysteine side chains differentiated transient intermediates from the unfolded and native states and reported on disulfide bond formation in real time. The cysteine pairings in a dominant intermediate were identified using 13C-edited three-dimensional NMR, and coarse-grained molecular dynamics simulations were used to investigate the preference of this disulfide set over other non-native arrangements. The transient population of LA5 species with particular non-native cysteine connectitivies during folding supports the conclusion that cysteine pairing is not random and that there is a bias toward certain structural ensembles during the folding process, even prior to the binding of calcium.
Collapse
Affiliation(s)
- Or Szekely
- Department of Chemical and Biological Physics , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Gad Armony
- Department of Structural Biology , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Gregory Lars Olsen
- Department of Chemical and Biological Physics , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Lavi S Bigman
- Department of Structural Biology , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Yaakov Levy
- Department of Structural Biology , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Deborah Fass
- Department of Structural Biology , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Lucio Frydman
- Department of Chemical and Biological Physics , Weizmann Institute of Science , Rehovot 7610001 , Israel
| |
Collapse
|
16
|
Keng CL, Lin YC, Tseng WL, Lu CY. Design of Peptide-Based Probes for the Microscale Detection of Reactive Oxygen Species. Anal Chem 2017; 89:10883-10888. [PMID: 28976728 DOI: 10.1021/acs.analchem.7b02544] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Reactive oxygen species (ROS) can induce oxidative stress and are associated with cell death and chronic diseases in organisms. In the treatment of disease, drugs that induce ROS are associated with many side effects and unpleasant symptoms. Therefore, during the assessment of new drugs and candidate compounds, ROS generation is an issue of concern, because ROS can modify proteins, lipids, and nucleic acids within organisms and alter their biological functions. In this work, we designed a peptide-based probe for the rapid (<10 min) high-throughput survey of oxidative stress induced by clinical drugs at the microliter level. Using menadione and H2O2 as positive controls, just 100 μg/mL of the test compound and 100 μg/mL of the probe were sufficient to effectively monitor the generation of ROS, which is important as many active compounds are rare and difficult to isolate or purify. This in vitro evaluation could be used to effectively generate preliminary data before pharmacologically active candidate compounds are processed in cell-line or animal tests. Furthermore, we demonstrated that this peptide probe successfully detects ROS in biological samples.
Collapse
Affiliation(s)
- Chun-Lan Keng
- Research Center for Environmental Medicine, Kaohsiung Medical University , Kaohsiung 80708, Taiwan
| | - Ying-Chi Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University , Kaohsiung 80708, Taiwan
| | - Wei-Lung Tseng
- Department of Chemistry, College of Science, National Sun Yat-sen University , Kaohsiung 80424, Taiwan
| | - Chi-Yu Lu
- Research Center for Environmental Medicine, Kaohsiung Medical University , Kaohsiung 80708, Taiwan.,Department of Biochemistry, College of Medicine, Kaohsiung Medical University , Kaohsiung 80708, Taiwan.,Institute of Medical Science and Technology, National Sun Yat-sen University , Kaohsiung 80424, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital , Kaohsiung 80708, Taiwan
| |
Collapse
|
17
|
Chaffey PK, Guan X, Wang X, Ruan Y, Li Y, Miller SG, Tran AH, Koelsch TN, Pass LF, Tan Z. Quantitative Effects of O-Linked Glycans on Protein Folding. Biochemistry 2017; 56:4539-4548. [DOI: 10.1021/acs.biochem.7b00483] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Patrick K. Chaffey
- Department of Chemistry and
Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Xiaoyang Guan
- Department of Chemistry and
Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Xinfeng Wang
- Department of Chemistry and
Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Yuan Ruan
- Department of Chemistry and
Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Yaohao Li
- Department of Chemistry and
Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Suzannah G. Miller
- Department of Chemistry and
Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Amy H. Tran
- Department of Chemistry and
Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Theo N. Koelsch
- Department of Chemistry and
Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Lomax F. Pass
- Department of Chemistry and
Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Zhongping Tan
- Department of Chemistry and
Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| |
Collapse
|
18
|
Jin L, Fang M, Chen M, Zhou C, Ombati R, Hakim MA, Mo G, Lai R, Yan X, Wang Y, Yang S. An insecticidal toxin from Nephila clavata spider venom. Amino Acids 2017; 49:1237-1245. [PMID: 28497266 DOI: 10.1007/s00726-017-2425-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 04/17/2017] [Indexed: 12/12/2022]
Abstract
Spiders are the most successful insect predators given that they use their venom containing insecticidal peptides as biochemical weapons for preying. Due to the high specificity and potency of peptidic toxins, discoveries of insecticidal toxins from spider venom have provided an opportunity to obtain natural compounds for agricultural applications without affecting human health. In this study, a novel insecticidal toxin (μ-NPTX-Nc1a) was identified and characterized from the venom of Nephila clavata. Its primary sequence is GCNPDCTGIQCGWPRCPGGQNPVMDKCVSCCPFCPPKSAQG which was determined by automated Edman degradation, cDNA cloning, and MS/MS analysis. BLAST search indicated that Nc1a shows no similarity with known peptides or proteins, indicating that Nc1a belongs to a novel family of insecticidal peptide. Nc1a displayed inhibitory effects on NaV and KV channels in cockroach dorsal unpaired median neurons. The median lethal dose (LD50) of Nc1a on cockroach was 573 ng/g. Herein, a study that identifies a novel insecticidal toxin, which can be a potential candidate and/or template for the development of bioinsecticides, is presented.
Collapse
Affiliation(s)
- Lin Jin
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Mingqian Fang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Mengrou Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Chunling Zhou
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Rose Ombati
- Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, 650223, Yunnan, China
- Sino-African Joint Research Center, CAS, Kunming Institute of Zoology, Kunming, 650223, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100009, China
| | - Md Abdul Hakim
- Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, 650223, Yunnan, China
| | - Guoxiang Mo
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Ren Lai
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, 650223, Yunnan, China
- Sino-African Joint Research Center, CAS, Kunming Institute of Zoology, Kunming, 650223, Yunnan, China
| | - Xiuwen Yan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| | - Yumin Wang
- Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China.
| | - Shilong Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, 650223, Yunnan, China.
| |
Collapse
|
19
|
Boyatzis AE, Bringans SD, Piggott MJ, Duong MN, Lipscombe RJ, Arthur PG. Limiting the Hydrolysis and Oxidation of Maleimide–Peptide Adducts Improves Detection of Protein Thiol Oxidation. J Proteome Res 2017; 16:2004-2015. [DOI: 10.1021/acs.jproteome.6b01060] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Amber E. Boyatzis
- School
of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia 6009, Australia
| | | | - Matthew J. Piggott
- School
of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Marisa N. Duong
- School
of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia 6009, Australia
| | | | - Peter G. Arthur
- School
of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
20
|
Wang B, Hom G, Zhou S, Guo M, Li B, Yang J, Monnier VM, Fan X. The oxidized thiol proteome in aging and cataractous mouse and human lens revealed by ICAT labeling. Aging Cell 2017; 16:244-261. [PMID: 28177569 PMCID: PMC5334568 DOI: 10.1111/acel.12548] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2016] [Indexed: 01/12/2023] Open
Abstract
Age‐related cataractogenesis is associated with disulfide‐linked high molecular weight (HMW) crystallin aggregates. We recently found that the lens crystallin disulfidome was evolutionarily conserved in human and glutathione‐depleted mouse (LEGSKO) cataracts and that it could be mimicked by oxidation in vitro (Mol. Cell Proteomics, 14, 3211‐23 (2015)). To obtain a comprehensive blueprint of the oxidized key regulatory and cytoskeletal proteins underlying cataractogenesis, we have now used the same approach to determine, in the same specimens, all the disulfide‐forming noncrystallin proteins identified by ICAT proteomics. Seventy‐four, 50, and 54 disulfide‐forming proteins were identified in the human and mouse cataracts and the in vitro oxidation model, respectively, of which 17 were common to all three groups. Enzymes with oxidized cysteine at critical sites include GAPDH (hGAPDH, Cys247), glutathione synthase (hGSS, Cys294), aldehyde dehydrogenase (hALDH1A1, Cys126 and Cys186), sorbitol dehydrogenase (hSORD, Cys140, Cys165, and Cys179), and PARK7 (hPARK7, Cys46 and Cys53). Extensive oxidation was also present in lens‐specific intermediate filament proteins, such as BFSP1 and BFSP12 (hBFSP1 and hBFSP12, Cys167, Cys65, and Cys326), vimentin (mVim, Cys328), and cytokeratins, as well as microfilament and microtubule filament proteins, such as tubulin and actins. While the biological impact of these modifications for lens physiology remains to be determined, many of these oxidation sites have already been associated with either impaired metabolism or cytoskeletal architecture, strongly suggesting that they have a pathogenic role in cataractogenesis. By extrapolation, these findings may be of broader significance for age‐ and disease‐related dysfunctions associated with oxidant stress.
Collapse
Affiliation(s)
- Benlian Wang
- Center for Proteomics; Case Western Reserve University; Cleveland OH 44120 USA
| | - Grant Hom
- Department of Pathology; Case Western Reserve University; Cleveland OH 44120 USA
| | - Sheng Zhou
- State Key Laboratory of Ophthalmology; Zhongshan Ophthalmic Center; Sun Yat-sen University; Guangzhou China
| | - Minfei Guo
- Department of Ophthalmology; The Huichang County People's Hospital; Jiangxi China
| | - Binbin Li
- Department of Ophthalmology; Ganzhou City People's Hospital; Jiangxi China
| | - Jing Yang
- State Key Laboratory of Ophthalmology; Zhongshan Ophthalmic Center; Sun Yat-sen University; Guangzhou China
| | - Vincent M. Monnier
- Department of Pathology; Case Western Reserve University; Cleveland OH 44120 USA
- Department of Biochemistry; Case Western Reserve University; Cleveland OH 44120 USA
| | - Xingjun Fan
- Department of Pathology; Case Western Reserve University; Cleveland OH 44120 USA
| |
Collapse
|
21
|
Abstract
This unit describes a number of methods for modifying cysteine residues of proteins and peptides. A general procedure for alkylation of cysteine residues in a protein of known size and composition with haloacyl reagents or N-ethylmaleimide (NEM) is presented, and alternate protocols describe similar procedures for use when the size and composition are not known and when only very small amounts of protein are available. Alkylations that introduce amino groups using bromopropylamine and N-(iodoethyl)-trifluoroacetamide are also presented. Two procedures that are often used for subsequent sequence analysis of the protein, alkylation with 4-vinylpyridine and acrylamide, are described, and a specialized procedure for 4-vinylpyridine alkylation of protein that has been adsorbed onto a sequencing membrane is also presented. Reversible modification of cysteine residues by way of sulfitolysis is described, and a protocol for oxidation with performic acid for amino acid compositional analysis is also provided. Gentle oxidation of cysteine residues to disulfides by exposure to air is described. Support protocols are included for recrystallization of iodoacetic acid, colorimetric detection of free sulfhydryls, and desalting of modified samples. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Gregory A Grant
- Washington University School of Medicine, Department of Medicine and Department of Developmental Biology, St. Louis, Missouri
| |
Collapse
|
22
|
Gu L, Robinson RAS. Proteomic approaches to quantify cysteine reversible modifications in aging and neurodegenerative diseases. Proteomics Clin Appl 2016; 10:1159-1177. [PMID: 27666938 DOI: 10.1002/prca.201600015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/13/2016] [Accepted: 09/23/2016] [Indexed: 01/11/2023]
Abstract
Cysteine is a highly reactive amino acid and is subject to a variety of reversible post-translational modifications (PTMs), including nitrosylation, glutathionylation, palmitoylation, as well as formation of sulfenic acid and disulfides. These modifications are not only involved in normal biological activities, such as enzymatic catalysis, redox signaling, and cellular homeostasis, but can also be the result of oxidative damage. Especially in aging and neurodegenerative diseases, oxidative stress leads to aberrant cysteine oxidations that affect protein structure and function leading to neurodegeneration as well as other detrimental effects. Methods that can identify cysteine modifications by type, including the site of modification, as well as the relative stoichiometry of the modification can be very helpful for understanding the role of the thiol proteome and redox homeostasis in the context of disease. Cysteine reversible modifications however, are challenging to investigate as they are low abundant, diverse, and labile especially under endogenous conditions. Thanks to the development of redox proteomic approaches, large-scale quantification of cysteine reversible modifications is possible. These approaches cover a range of strategies to enrich, identify, and quantify cysteine reversible modifications from biological samples. This review will focus on nongel-based redox proteomics workflows that give quantitative information about cysteine PTMs and highlight how these strategies have been useful for investigating the redox thiol proteome in aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Liqing Gu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Renã A S Robinson
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|