1
|
Dutta A, Halder S, Bhaumik I, Debnath U, Dhara D, Misra AK, Jana K. Novel Sulforaphane Analog Disrupts Phosphatidylinositol-3-Kinase-Protein Kinase B Pathway and Inhibits Cancer Cell Progression via Reactive Oxygen Species-Mediated Caspase-Independent Apoptosis. ACS Pharmacol Transl Sci 2024; 7:195-211. [PMID: 38230291 PMCID: PMC10789126 DOI: 10.1021/acsptsci.3c00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 01/18/2024]
Abstract
Sulforaphane, a naturally occurring isothiocyanate, has gained attention due to its tremendous anticancer potential. Thus, an array of sulforaphane analogs were synthesized and evaluated for their cytotoxic potentials on a wide range of malignant cell lines. Among these derivatives, compound 4a displayed exceptional potency in inhibiting the proliferation of cancer cell lines and a negligible effect on normal cell lines through G2/M phase arrest. The lead compound induced reactive oxygen species (ROS)-mediated mitochondrial dysfunction, leading to apoptosis. Further mechanistic studies established the interaction of the compound 4a with the insulin-like growth factor-1 receptor (IGF-R1) and blocking of the phosphatidylinositol-3-kinase (PI3K)-protein kinase B (PKB/Akt) pathway. This led to suppression of nuclear factor erythroid 2-related factor 2 (NRF-2) protein expression, thus increasing the free radicals in the tumor cells. Moreover, compound 4a induced ROS-mediated caspase-independent apoptosis. Finally, compound 4a reduced tumor progression in a 4T1 injected BALB/c syngeneic mice tumor model. In conclusion, this study summarizes the mechanism of compound 4a-mediated ROS-mediated caspase-independent apoptosis. According to the study's findings, compound 4a can be used as a powerful new anticancer agent to enhance cancer treatment.
Collapse
Affiliation(s)
- Ananya Dutta
- Division
of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust
Scheme VII M, Kolkata 700054, India
- Bose
Institute, EN 80, Sector
V, Salt Lake City, Bidhannagar, Kolkata 700091, India
| | - Satyajit Halder
- Division
of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust
Scheme VII M, Kolkata 700054, India
- Bose
Institute, EN 80, Sector
V, Salt Lake City, Bidhannagar, Kolkata 700091, India
| | - Ishani Bhaumik
- Division
of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust
Scheme VII M, Kolkata 700054, India
- Bose
Institute, EN 80, Sector
V, Salt Lake City, Bidhannagar, Kolkata 700091, India
| | - Utsab Debnath
- School
of Health Sciences & Technology, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Debashis Dhara
- Division
of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust
Scheme VII M, Kolkata 700054, India
- Bose
Institute, EN 80, Sector
V, Salt Lake City, Bidhannagar, Kolkata 700091, India
| | - Anup Kumar Misra
- Division
of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust
Scheme VII M, Kolkata 700054, India
- Bose
Institute, EN 80, Sector
V, Salt Lake City, Bidhannagar, Kolkata 700091, India
| | - Kuladip Jana
- Division
of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust
Scheme VII M, Kolkata 700054, India
- Bose
Institute, EN 80, Sector
V, Salt Lake City, Bidhannagar, Kolkata 700091, India
| |
Collapse
|
2
|
Pal C. Small-molecule redox modulators with anticancer activity: A comprehensive mechanistic update. Free Radic Biol Med 2023; 209:211-227. [PMID: 37898387 DOI: 10.1016/j.freeradbiomed.2023.10.406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/27/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
The pursuit of effective anticancer therapies has led to a burgeoning interest in the realm of redox modulation. This review provides a comprehensive exploration of the intricate mechanisms by which diverse anticancer molecules leverage redox pathways for therapeutic intervention. Redox modulation, encompassing the fine balance of oxidation-reduction processes within cells, has emerged as a pivotal player in cancer treatment. This review delves into the multifaceted mechanisms of action employed by various anticancer compounds, including small molecules and natural products, to disrupt cancer cell proliferation and survival. Beginning with an examination of the role of redox signaling in cancer development and resistance, the review highlights how aberrant redox dynamics can fuel tumorigenesis. It then meticulously dissects the strategies employed by anticancer agents to induce oxidative stress, perturb redox equilibrium, and trigger apoptosis within cancer cells. Furthermore, the review explores the challenges and potential side effects associated with redox-based treatments, along with the development of novel redox-targeted agents. In summary, this review offers a profound understanding of the dynamic interplay between redox modulation and anticancer molecules, presenting promising avenues to revolutionize cancer therapy and enhance patient outcomes.
Collapse
Affiliation(s)
- Chinmay Pal
- Department of Chemistry, Gobardanga Hindu College, North 24 Parganas, West Bengal, 743273, India.
| |
Collapse
|
3
|
Thapa P, Jiang H, Ding N, Hao Y, Alshahrani A, Wei Q. The Role of Peroxiredoxins in Cancer Development. BIOLOGY 2023; 12:666. [PMID: 37237480 PMCID: PMC10215932 DOI: 10.3390/biology12050666] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023]
Abstract
Peroxiredoxins (Prxs) are antioxidant enzymes with ubiquitous expression in human tissues. Prxs are expressed in archaea, bacteria, and eukaryota, often in multiple isoforms. Because of their abundant expression in different cellular organelles and extraordinary sensitivity to H2O2, Prxs are among the first defenses against oxidative stress. Prxs undergo reversible oxidation to disulfides, and some family members perform chaperone or phospholipase functions upon further oxidation. Prxs are upregulated in cancer cells. Research has suggested that Prxs can function as tumor promoters in various cancers. The major objective of this review is to summarize novel findings regarding the roles of Prxs in common cancer types. Prxs have been shown to influence differentiation of inflammatory cells and fibroblasts, remodeling of extracellular matrix, and regulation of stemness. Since aggressive cancer cells have higher intracellular levels of ROS that they can utilize to proliferate and metastasize compared to normal cells, it is critical that we understand the regulation and functions of primary antioxidants such as Prxs. These small but mighty proteins could prove to be key for improving cancer therapeutics and patient survival.
Collapse
Affiliation(s)
- Pratik Thapa
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, 1095 Veterans Dr, Lexington, KY 40508, USA
| | - Hong Jiang
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, 1095 Veterans Dr, Lexington, KY 40508, USA
| | - Na Ding
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, 1095 Veterans Dr, Lexington, KY 40508, USA
| | - Yanning Hao
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, 1095 Veterans Dr, Lexington, KY 40508, USA
| | - Aziza Alshahrani
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, 1095 Veterans Dr, Lexington, KY 40508, USA
| | - Qiou Wei
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, 1095 Veterans Dr, Lexington, KY 40508, USA
- Markey Cancer Center, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536, USA
| |
Collapse
|
4
|
Abstract
Significance: Thioredoxin (Trx) is a powerful antioxidant that reduces protein disulfides to maintain redox stability in cells and is involved in regulating multiple redox-dependent signaling pathways. Recent Advance: The current accumulation of findings suggests that Trx participates in signaling pathways that interact with various proteins to manipulate their dynamic regulation of structure and function. These network pathways are critical for cancer pathogenesis and therapy. Promising clinical advances have been presented by most anticancer agents targeting such signaling pathways. Critical Issues: We herein link the signaling pathways regulated by the Trx system to potential cancer therapeutic opportunities, focusing on the coordination and strengths of the Trx signaling pathways in apoptosis, ferroptosis, immunomodulation, and drug resistance. We also provide a mechanistic network for the exploitation of therapeutic small molecules targeting the Trx signaling pathways. Future Directions: As research data accumulate, future complex networks of Trx-related signaling pathways will gain in detail. In-depth exploration and establishment of these signaling pathways, including Trx upstream and downstream regulatory proteins, will be critical to advancing novel cancer therapeutics. Antioxid. Redox Signal. 38, 403-424.
Collapse
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Xinming Li
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.,State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhengjia Zhao
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | | | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.,School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, China
| |
Collapse
|
5
|
Jiang C, Liu F, Yang H, Yang M, Li Z, Han T, Li D, Hua H. Flavonolignans and biflavonoids from Cephalotaxus oliveri exert neuroprotective effect via Nrf2/ARE pathway. PHYTOCHEMISTRY 2022; 204:113436. [PMID: 36130673 DOI: 10.1016/j.phytochem.2022.113436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
Plants of the Cephalotaxus genus are rich in structurally diverse and naturally bioactive components, while limited studies have been reported for Cephalotaxus oliveri. Two undescribed flavonolignans and four undescribed biflavonoids, as well as thirteen known compounds, were isolated from the twigs and leaves of C. oliveri. Their structures were characterized by spectroscopic data analysis, and the absolute configurations were determined by electronic circular dichroism (ECD) calculations. All the isolated compounds were assayed for their neuroprotective activity against hydrogen peroxide (H2O2)-induced SH-SY5Y cell injury. All six undescribed compounds were effective to some degree, and umcephabiflovin B, apigenin 5-O-α-L-rhamnopyranosyl-(1 → 2)-6″-acetyl-β-D-glucopyranoside, and apigenin 7-O-β-D-glucoside exhibited good neuroprotective activity. Umcephabiflovin B protected SH-SY5Y cells against H2O2-induced neurotoxicity by repressing oxidative stress and apoptosis and by activating the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant-response element (ARE) pathway.
Collapse
Affiliation(s)
- Chunyu Jiang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Fangshen Liu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Hangao Yang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Mengyue Yang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Zhanlin Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Tong Han
- Department of Pharmaceutical Engineering, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing, 163319, PR China.
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China.
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China.
| |
Collapse
|
6
|
Huang H, Li P, Ye X, Zhang F, Lin Q, Wu K, Chen W. Isoalantolactone Increases the Sensitivity of Prostate Cancer Cells to Cisplatin Treatment by Inducing Oxidative Stress. Front Cell Dev Biol 2021; 9:632779. [PMID: 33959604 PMCID: PMC8093765 DOI: 10.3389/fcell.2021.632779] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/16/2021] [Indexed: 11/25/2022] Open
Abstract
Prostate cancer is the most common malignancy among men worldwide. Platinum (II)-based chemotherapy has been used to treat a number of malignancies including prostate cancer. However, the potential of cisplatin for treating prostate cancer is restricted owing to its limited efficacy and toxic side effects. Combination therapies have been proposed to increase the efficacy and reduce the toxic side effects. In the present study, we investigated how isoalantolactone (IATL), a sesquiterpene lactone extracted from the medicinal plant Inula helenium L., acts synergistically with cisplatin on human prostate cancer cells. We show that IATL significantly increased cisplatin-induced growth suppression and apoptosis in human prostate cancer cells. Mechanistically, the combined treatment resulted in an excessive accumulation of intracellular reactive oxygen species (ROS), which leads to the activation of endoplasmic reticulum (ER) stress and the JNK signaling pathway in human prostate cancer cells. Pretreatment of cells with the ROS scavenger N-acetylcysteine (NAC) significantly abrogated the combined treatment-induced ROS accumulation and cell apoptosis. In addition, the activation of ER stress and the JNK signaling pathway prompted by IATL and cisplatin was also reversed by NAC pretreatment. In vivo, we found that IATL combined with cisplatin showed the strongest antitumor effects compared with single agents. These results support the notion that IATL and cisplatin combinational treatment may be more effective for treating prostate cancer than cisplatin alone.
Collapse
Affiliation(s)
- Hang Huang
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ping Li
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xueting Ye
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fangyi Zhang
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qi Lin
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Keming Wu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Chen
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Xia Y, Chen J, Yu Y, Wu F, Shen X, Qiu C, Zhang T, Hong L, Zheng P, Shao R, Xu C, Wu F, Chen W, Xie C, Cui R, Zou P. Compensatory combination of mTOR and TrxR inhibitors to cause oxidative stress and regression of tumors. Am J Cancer Res 2021; 11:4335-4350. [PMID: 33754064 PMCID: PMC7977446 DOI: 10.7150/thno.52077] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/31/2021] [Indexed: 01/19/2023] Open
Abstract
Background: Cancer is a leading cause of death worldwide. Extensive research over decades has led to the development of therapies that inhibit oncogenic signaling pathways. The mammalian target of rapamycin (mTOR) signaling pathway plays an important role in the development of many cancers. Several mTOR inhibitors are approved for the treatment of cancers. However, the anticancer efficacies of mTOR inhibitor monotherapy are still limited. Methods: Western blot was used to detect the expression of indicated molecules. Thioredoxin reductase (TrxR) activity in cells was determined by the endpoint insulin reduction assay. Immunofluorescence staining was used to analyze precise location and expression of target proteins. Nude mice were used for xenograft tumor models. Results: We identified a synergistic lethal interaction of mTOR and TrxR inhibitors and elucidated the underlying molecular mechanisms of this synergism. We demonstrated that mTOR and TrxR inhibitors cooperated to induce cell death by triggering oxidative stress, which led to activation of autophagy, endoplasmic reticulum (ER) stress and c-Jun N-terminal Kinase (JNK) signaling pathway in cancer cells. Remarkably, we found that auranofin (AF) combined with everolimus significantly suppressed tumor growth in HCT116 and SGC-7901 xenograft models with no significant signs of toxicity. Conclusion: Our findings identify a promising therapeutic combination for cancer and has important implications for developing mTOR inhibitor-based combination treatments.
Collapse
|
8
|
Li N, Zhan X. MASS SPECTROMETRY-BASED MITOCHONDRIAL PROTEOMICS IN HUMAN OVARIAN CANCERS. MASS SPECTROMETRY REVIEWS 2020; 39:471-498. [PMID: 32020673 DOI: 10.1002/mas.21618] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
The prominent characteristics of mitochondria are highly dynamic and regulatory, which have crucial roles in cell metabolism, biosynthetic, senescence, apoptosis, and signaling pathways. Mitochondrial dysfunction might lead to multiple serious diseases, including cancer. Therefore, identification of mitochondrial proteins in cancer could provide a global view of tumorigenesis and progression. Mass spectrometry-based quantitative mitochondrial proteomics fulfils this task by enabling systems-wide, accurate, and quantitative analysis of mitochondrial protein abundance, and mitochondrial protein posttranslational modifications (PTMs). Multiple quantitative proteomics techniques, including isotope-coded affinity tag, stable isotope labeling with amino acids in cell culture, isobaric tags for relative and absolute quantification, tandem mass tags, and label-free quantification, in combination with different PTM-peptide enrichment methods such as TiO2 enrichment of tryptic phosphopeptides and antibody enrichment of other PTM-peptides, increase flexibility for researchers to study mitochondrial proteomes. This article reviews isolation and purification of mitochondria, quantitative mitochondrial proteomics, quantitative mitochondrial phosphoproteomics, mitochondrial protein-involved signaling pathway networks, mitochondrial phosphoprotein-involved signaling pathway networks, integration of mitochondrial proteomic and phosphoproteomic data with whole tissue proteomic and transcriptomic data and clinical information in ovarian cancers (OC) to in-depth understand its molecular mechanisms, and discover effective mitochondrial biomarkers and therapeutic targets for predictive, preventive, and personalized treatment of OC. This proof-of-principle model about OC mitochondrial proteomics is easily implementable to other cancer types. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Na Li
- University Creative Research Initiatives Center, Shandong First Medical University, Shandong, 250062, P. R. China
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P. R. China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P. R. China
| | - Xianquan Zhan
- University Creative Research Initiatives Center, Shandong First Medical University, Shandong, 250062, P. R. China
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P. R. China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P. R. China
- Department of Oncology, Xiangya Hospital, Central South University, 88 Xiangya Road, Changsha, Hunan, 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 88 Xiangya Road, Changsha, Hunan, 410008, P. R. China
| |
Collapse
|
9
|
Narayanan D, Ma S, Özcelik D. Targeting the Redox Landscape in Cancer Therapy. Cancers (Basel) 2020; 12:cancers12071706. [PMID: 32605023 PMCID: PMC7407119 DOI: 10.3390/cancers12071706] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 12/18/2022] Open
Abstract
Reactive oxygen species (ROS) are produced predominantly by the mitochondrial electron transport chain and by NADPH oxidases in peroxisomes and in the endoplasmic reticulum. The antioxidative defense counters overproduction of ROS with detoxifying enzymes and molecular scavengers, for instance, superoxide dismutase and glutathione, in order to restore redox homeostasis. Mutations in the redox landscape can induce carcinogenesis, whereas increased ROS production can perpetuate cancer development. Moreover, cancer cells can increase production of antioxidants, leading to resistance against chemo- or radiotherapy. Research has been developing pharmaceuticals to target the redox landscape in cancer. For instance, inhibition of key players in the redox landscape aims to modulate ROS production in order to prevent tumor development or to sensitize cancer cells in radiotherapy. Besides the redox landscape of a single cell, alternative strategies take aim at the multi-cellular level. Extracellular vesicles, such as exosomes, are crucial for the development of the hypoxic tumor microenvironment, and hence are explored as target and as drug delivery systems in cancer therapy. This review summarizes the current pharmaceutical and experimental interventions of the cancer redox landscape.
Collapse
Affiliation(s)
- Dilip Narayanan
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (D.N.); (S.M.)
| | - Sana Ma
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (D.N.); (S.M.)
| | - Dennis Özcelik
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (D.N.); (S.M.)
- current address: Chemistry | Biology | Pharmacy Information Center, ETH Zürich, Vladimir-Prelog-Weg 10, 8093 Zürich, Switzerland
- Correspondence:
| |
Collapse
|
10
|
Mu W, Cheng X, Zhang X, Liu Y, Lv Q, Liu G, Zhang J, Li X. Hinokiflavone induces apoptosis via activating mitochondrial ROS/JNK/caspase pathway and inhibiting NF-κB activity in hepatocellular carcinoma. J Cell Mol Med 2020; 24:8151-8165. [PMID: 32519392 PMCID: PMC7348176 DOI: 10.1111/jcmm.15474] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 01/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common malignancy with limited treatment options. Hinokiflavone (HF), a natural biflavonoid, has shown to inhibit the proliferation of melanoma, whereas its antitumour effect against HCC and the underlying mechanisms remain elusive. Here, we aimed at evaluating its antitumour effect against HCC in both in vitro and in vivo. Cell counting kit 8, colony formation assay, PI/RNase staining and Western blotting revealed that HF inhibited the proliferation of HCC cells via G0/G1 cell cycle arrest with p21/p53 up-regulation. DAPI staining, Annexin V-FITC/PI staining and Western blotting confirmed that HF triggered caspase-dependent apoptosis. Moreover, HF increased the levels of mitochondrial reactive oxygen species (mtROS) and activated c-Jun N-terminal kinase (JNK) pathway, as measured by MitoSOX Red staining and Western blotting. After respectively inhibiting mtROS (Mito-TEMPO) and JNK (SP600125), HF-induced apoptosis was reversed. Additionally, Western blotting documented that HF suppressed nuclear factor kappa B (NF-κB) activity and the anti-apoptotic genes downstream, contributing to cell apoptosis. Finally, in vivo studies demonstrated that HF significantly impaired tumour growth in HCC xenograft. Collectively, these findings suggested that HF induced apoptosis through activating mtROS/JNK/caspase pathway and inhibiting NF-κB signalling, which may represent a novel therapeutic agent for treating HCC.
Collapse
Affiliation(s)
- Wan Mu
- Department of Pharmacy, Shanghai Eye Diseases Prevention and Treatment Center/Shanghai Eye Hospital, Shanghai General Hospital, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai engineering research center of precise diagnosis and treatment of eye diseases, Shanghai, China
| | - Xuefang Cheng
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Liu
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qianzhou Lv
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gaolin Liu
- Department of Pharmacy, Shanghai Eye Diseases Prevention and Treatment Center/Shanghai Eye Hospital, Shanghai General Hospital, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai engineering research center of precise diagnosis and treatment of eye diseases, Shanghai, China
| | - Jigang Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyu Li
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Lee S, Lee JY, Lee EW, Park S, Kang DH, Min C, Lee DJ, Kang D, Song J, Kwon J, Kang SW. Absence of Cytosolic 2-Cys Prx Subtypes I and II Exacerbates TNF-α-Induced Apoptosis via Different Routes. Cell Rep 2020; 26:2194-2211.e6. [PMID: 30784599 DOI: 10.1016/j.celrep.2019.01.081] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 12/04/2018] [Accepted: 01/22/2019] [Indexed: 01/19/2023] Open
Abstract
There are abundant peroxiredoxin (Prx) enzymes, but an increase of cellular H2O2 level always happens in apoptotic cells. Here, we show that cellular H2O2 switches different apoptosis pathways depending on which type of Prx enzyme is absent. TNF-α-induced H2O2 burst preferentially activates the DNA damage-dependent apoptosis pathway in the absence of PrxI. By contrast, the same H2O2 burst stimulates the RIPK1-dependent apoptosis pathway in the absence of PrxII by inducing the destruction of cIAP1 in caveolar membrane. Specifically, H2O2 induces the oxidation of Cys308 residue in the cIAP1-BIR3 domain, which induces the dimerization-dependent E3 ligase activation. Thus, the reduction in cIAP level by the absence of PrxII triggers cell-autonomous apoptosis in cancer cells and tumors. Such differential functions of PrxI and PrxII are mediated by interaction with H2AX and cIAP1, respectively. Collectively, this study reveals the distinct switch roles of 2-Cys Prx isoforms in apoptosis signaling.
Collapse
Affiliation(s)
- Sunmi Lee
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea; Research Center for Cell Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Joo Young Lee
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
| | - Eun Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Sujin Park
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
| | - Dong Hoon Kang
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea; Research Center for Cell Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Chengchun Min
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea; Research Center for Cell Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Doo Jae Lee
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea; Research Center for Cell Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Dongmin Kang
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
| | - Jaewhan Song
- Department of Biochemistry, Yonsei University, Seoul 03722, Korea
| | - Jongbum Kwon
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea; Research Center for Cell Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Sang Won Kang
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea; Research Center for Cell Homeostasis, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
12
|
Zhang T, Zheng P, Shen X, Shao R, Wang B, Shen H, Zhang J, Xia Y, Zou P. Curcuminoid WZ26, a TrxR1 inhibitor, effectively inhibits colon cancer cell growth and enhances cisplatin-induced cell death through the induction of ROS. Free Radic Biol Med 2019; 141:93-102. [PMID: 31176737 DOI: 10.1016/j.freeradbiomed.2019.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/02/2019] [Accepted: 06/05/2019] [Indexed: 12/24/2022]
Abstract
Colon cancer is one of the leading causes of cancer-related deaths. Chemotherapy has improved survival in patients with colon cancer, but has a narrow therapeutic window due to its toxicity. Therefore, novel therapies for colon cancer are urgently needed. We previously developed a curcumin analog WZ26 as an anti-cancer agent in pre-clinical evaluation. In the present study, we further explored the mechanism and target of WZ26 in colon cancer cells. Our results show that WZ26 targets thioredoxin reductase 1 (TrxR1) and increases cellular reactive oxygen species (ROS) levels, which results in the activation of JNK signaling pathway in human colon cancer cells. Furthermore, we found that WZ26 significantly enhances cisplatin-induced cell growth inhibition in colon cancer cells. WZ26 combined with cisplatin markedly increases the accumulation of ROS, and thereby induces DNA damage and activation of JNK signaling pathway. Pretreatment with antioxidant N-acetyl-l-cysteine (NAC) significantly abrogates the combined treatment-induced ROS generation, DNA damage and cell death. In addition, the activation of JNK signaling pathway prompted by WZ26 and cisplatin was also reversed by NAC pretreatment. In vivo, WZ26 combined with cisplatin significantly inhibits tumor growth in a colon cancer xenograft model. Remarkably, WZ26 attenuates the body weight loss evoked by cisplatin treatment. This study discloses a previously unrecognized mechanism underlying the biological activity of WZ26, and reveals that WZ26 and cisplatin combinational treatment might potentially become a more effective regimen in colon cancer therapy.
Collapse
Affiliation(s)
- Tingting Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Peisen Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xin Shen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Rongrong Shao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Bin Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Huanpei Shen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jingjing Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yiqun Xia
- Department of Digestive Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Peng Zou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
13
|
Sharapov MG, Novoselov VI. Catalytic and Signaling Role of Peroxiredoxins in Carcinogenesis. BIOCHEMISTRY (MOSCOW) 2019; 84:79-100. [PMID: 31216969 DOI: 10.1134/s0006297919020019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cancer cells experience strong oxidative stress caused by disorders in cell metabolism and action of external factors. For survival, cancer cells have developed a highly efficient system of antioxidant defense, some of the most important elements of which are peroxiredoxins (Prxs). Prxs are an evolutionarily ancient family of selenium-independent peroxidases that reduce a wide range of organic and inorganic hydroperoxides in the cell and the extracellular space. In addition, some Prxs exhibit chaperone and phospholipase activities. Prxs play an important role in the maintenance of the cell redox homeostasis; they prevent oxidation and aggregation of regulatory proteins, thereby affecting many cell signaling pathways. Prxs are involved in the regulation of cell growth, differentiation, and apoptosis. Due to their versatility and wide representation in all tissues and organs, Prxs participate in the development/suppression of many pathological conditions, among which cancer occupies a special place. This review focuses on the role of Prxs in the development of various forms of cancer. Understanding molecular mechanisms of Prx involvement in these processes will allow to develop new approaches to the prevention and treatment of cancer.
Collapse
Affiliation(s)
- M G Sharapov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - V I Novoselov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
14
|
p53 sensitizes chemoresistant non-small cell lung cancer via elevation of reactive oxygen species and suppression of EGFR/PI3K/AKT signaling. Cancer Cell Int 2019; 19:188. [PMID: 31360122 PMCID: PMC6642601 DOI: 10.1186/s12935-019-0910-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/15/2019] [Indexed: 01/21/2023] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is the leading cause of cancer deaths primarily due to chemoresistance. Somatic mutation of TP53 (36%) and epidermal growth factor receptor (EGFR; > 30%) are major contributors to cisplatin (CDDP) resistance. Substantial evidence suggests the elevated levels of reactive oxygen species (ROS) is a key determinant in cancer. The elevated ROS can affect the cellular responses to chemotherapeutic treatments. Although the role of EGFR in PI3K/Akt signaling cascade in NSCLC is extensively studied, the molecular link between EGFR and p53 and the role of ROS in pathogenesis of NSCLC are limitedly addressed. In this study, we investigated the role of p53 in regulation of ROS production and EGFR signaling, and the chemosensitivity of NSCLC. Methods In multiple NSCLC cell lines with varied p53 and EGFR status, we compared and examined the protein contents involved in EGFR-Akt-P53 signaling loop (EGFR, P-EGFR, Akt, P-Akt, p53, P-p53) by Western blot. Apoptosis was determined based on nuclear morphological assessment using Hoechst 33258 staining. Cellular ROS levels were measured by dichlorofluorescin diacetate (DCFDA) staining followed by flow cytometry analysis. Results We have demonstrated for the first time that activation of p53 sensitizes chemoresistant NSCLC cells to CDDP by down-regulating EGFR signaling pathway and promoting intracellular ROS production. Likewise, blocking EGFR/PI3K/AKT signaling with PI3K inhibitor elicited a similar response. Our findings suggest that CDDP-induced apoptosis in chemosensitive NSCLC cells involves p53 activation, leading to suppressed EGFR signaling and ROS production. In contrast, in chemoresistant NSCLC, activated Akt promotes EGFR signaling by the positive feedback loop and suppresses CDDP-induced ROS production and apoptosis. Conclusion Collectively, our study reveals that the interaction of the p53 and Akt feedback loops determine the fate of NSCLC cells and their CDDP sensitivity. Electronic supplementary material The online version of this article (10.1186/s12935-019-0910-2) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Forshaw TE, Holmila R, Nelson KJ, Lewis JE, Kemp ML, Tsang AW, Poole LB, Lowther WT, Furdui CM. Peroxiredoxins in Cancer and Response to Radiation Therapies. Antioxidants (Basel) 2019; 8:antiox8010011. [PMID: 30609657 PMCID: PMC6356878 DOI: 10.3390/antiox8010011] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/23/2018] [Accepted: 12/25/2018] [Indexed: 12/11/2022] Open
Abstract
Peroxiredoxins have a long-established cellular function as regulators of redox metabolism by catalyzing the reduction of peroxides (e.g., H2O2, lipid peroxides) with high catalytic efficiency. This activity is also critical to the initiation and relay of both phosphorylation and redox signaling in a broad range of pathophysiological contexts. Under normal physiological conditions, peroxiredoxins protect normal cells from oxidative damage that could promote oncogenesis (e.g., environmental stressors). In cancer, higher expression level of peroxiredoxins has been associated with both tumor growth and resistance to radiation therapies. However, this relationship between the expression of peroxiredoxins and the response to radiation is not evident from an analysis of data in The Cancer Genome Atlas (TCGA) or NCI60 panel of cancer cell lines. The focus of this review is to summarize the current experimental knowledge implicating this class of proteins in cancer, and to provide a perspective on the value of targeting peroxiredoxins in the management of cancer. Potential biases in the analysis of the TCGA data with respect to radiation resistance are also highlighted.
Collapse
Affiliation(s)
- Tom E Forshaw
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Reetta Holmila
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Kimberly J Nelson
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Joshua E Lewis
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
| | - Melissa L Kemp
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
| | - Allen W Tsang
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Leslie B Poole
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - W Todd Lowther
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
16
|
Cancer-Associated Function of 2-Cys Peroxiredoxin Subtypes as a Survival Gatekeeper. Antioxidants (Basel) 2018; 7:antiox7110161. [PMID: 30423872 PMCID: PMC6262534 DOI: 10.3390/antiox7110161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/02/2018] [Accepted: 11/07/2018] [Indexed: 12/15/2022] Open
Abstract
Cancer cells are abnormal cells that do not comply with tissue homeostasis but undergo uncontrolled proliferation. Such abnormality is driven mostly by somatic mutations on oncogenes and tumor suppressors. Cancerous mutations show intra-tumoral heterogeneity across cancer types and eventually converge into the self-activation of proliferative signaling. While transient production of intracellular reactive oxygen species (ROS) is essential for cell signaling, its persistent production is cytotoxic. Thus, cancer cells require increased levels of intracellular ROS for continuous proliferation, but overexpress cellular peroxidase enzymes, such as 2-Cys peroxiredoxins, to maintain ROS homeostasis. However, suppression of 2-Cys peroxiredoxins has also been reported in some metastatic cancers. Hence, the cancer-associated functions of 2-Cys peroxiredoxins must be illuminated in the cellular context. In this review, we describe the distinctive signaling roles of 2-Cys peroxiredoxins beyond their intrinsic ROS-scavenging role in relation to cancer cell death and survival.
Collapse
|
17
|
A pharmacological probe identifies cystathionine β-synthase as a new negative regulator for ferroptosis. Cell Death Dis 2018; 9:1005. [PMID: 30258181 PMCID: PMC6158189 DOI: 10.1038/s41419-018-1063-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/26/2018] [Accepted: 08/30/2018] [Indexed: 12/16/2022]
Abstract
Cystathionine β-synthase (CBS) is responsible for the first enzymatic reaction in the transsulfuration pathway of sulfur amino acids. The molecular function and mechanism of CBS as well as that of transsulfuration pathway remain ill-defined in cell proliferation and death. In the present study, we designed, synthesized and obtained a bioactive inhibitor CH004 for human CBS, which functions in vitro and in vivo. CH004 inhibits CBS activity, elevated the cellular homocysteine and suppressed the production of hydrogen sulfide in a dose-dependent manner in cells or in vivo. Chemical or genetic inhibition of CBS demonstrates that endogenous CBS is closely coupled with cell proliferation and cell cycle. Moreover, CH004 substantially retarded in vivo tumor growth in a xenograft mice model of liver cancer. Importantly, inhibition of CBS triggers ferroptosis in hepatocellular carcinoma. Overall, the study provides several clues for studying the interplays amongst transsulfuration pathway, ferroptosis and liver cancer.
Collapse
|
18
|
Zhu Y, Dean AE, Horikoshi N, Heer C, Spitz DR, Gius D. Emerging evidence for targeting mitochondrial metabolic dysfunction in cancer therapy. J Clin Invest 2018; 128:3682-3691. [PMID: 30168803 DOI: 10.1172/jci120844] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mammalian cells use a complex network of redox-dependent processes necessary to maintain cellular integrity during oxidative metabolism, as well as to protect against and/or adapt to stress. The disruption of these redox-dependent processes, including those in the mitochondria, creates a cellular environment permissive for progression to a malignant phenotype and the development of resistance to commonly used anticancer agents. An extension of this paradigm is that when these mitochondrial functions are altered by the events leading to transformation and ensuing downstream metabolic processes, they can be used as molecular biomarkers or targets in the development of new therapeutic interventions to selectively kill and/or sensitize cancer versus normal cells. In this Review we propose that mitochondrial oxidative metabolism is altered in tumor cells, and the central theme of this dysregulation is electron transport chain activity, folate metabolism, NADH/NADPH metabolism, thiol-mediated detoxification pathways, and redox-active metal ion metabolism. It is proposed that specific subgroups of human malignancies display distinct mitochondrial transformative and/or tumor signatures that may benefit from agents that target these pathways.
Collapse
Affiliation(s)
- Yueming Zhu
- Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Angela Elizabeth Dean
- Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Nobuo Horikoshi
- Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Collin Heer
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, USA
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, USA
| | - David Gius
- Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
19
|
Mattarei A, Romio M, Managò A, Zoratti M, Paradisi C, Szabò I, Leanza L, Biasutto L. Novel Mitochondria-Targeted Furocoumarin Derivatives as Possible Anti-Cancer Agents. Front Oncol 2018; 8:122. [PMID: 29740538 PMCID: PMC5925966 DOI: 10.3389/fonc.2018.00122] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/04/2018] [Indexed: 01/10/2023] Open
Abstract
Targeting small molecules to appropriate subcellular compartments is a way to increase their selectivity and effectiveness while minimizing side effects. This can be accomplished either by stably incorporating specific "homing" properties into the structure of the active principle, or by attaching to it a targeting moiety via a labile linker, i.e., by producing a "targeting pro-drug." Mitochondria are a recognized therapeutic target in oncology, and blocking the population of the potassium channel Kv1.3 residing in the inner mitochondrial membrane (mtKv1.3) has been shown to cause apoptosis of cancerous cells expressing it. These concepts have led us to devise novel, mitochondria-targeted, membrane-permeant drug candidates containing the furocoumarin (psoralenic) ring system and the triphenylphosphonium (TPP) lipophilic cation. The strategy has proven effective in various cancer models, including pancreatic ductal adenocarcinoma, melanoma, and glioblastoma, stimulating us to devise further novel molecules to extend and diversify the range of available drugs of this type. New compounds were synthesized and tested in vitro; one of them-a prodrug in which the coumarinic moiety and the TPP group are linked by a bridge comprising a labile carbonate bond system-proved quite effective in in vitro cytotoxicity assays. Selective death induction is attributed to inhibition of mtKv1.3. This results in oxidative stress, which is fatal for the already-stressed malignant cells. This compound may thus be a candidate drug for the mtKv1.3-targeting therapeutic approach.
Collapse
Affiliation(s)
- Andrea Mattarei
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Matteo Romio
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | | | - Mario Zoratti
- CNR Neuroscience Institute, Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Cristina Paradisi
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padova, Padova, Italy
| | - Luigi Leanza
- Department of Biology, University of Padova, Padova, Italy
| | - Lucia Biasutto
- CNR Neuroscience Institute, Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
20
|
Wang R, Wei J, Zhang S, Wu X, Guo J, Liu M, Du K, Xu J, Peng L, Lv Z, You W, Xiong Y, Fu Z. Peroxiredoxin 2 is essential for maintaining cancer stem cell-like phenotype through activation of Hedgehog signaling pathway in colon cancer. Oncotarget 2018; 7:86816-86828. [PMID: 27894099 PMCID: PMC5349956 DOI: 10.18632/oncotarget.13559] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/11/2016] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) are a key target for reducing tumor growth, metastasis, and recurrence. Redox status is a critical factor in the maintenance of CSCs, and the antioxidant enzyme Peroxiredoxin 2 (Prdx2) plays an important role in the development of colon cancer. Therefore, we investigated the contribution of Prdx2 to the maintenance of stemness of colon CSCs. Here, we used short-hairpin RNAs and a Prdx2-overexpression vector to determine the effects of Prdx2. We demonstrated that knockdown of Prdx2 reduced the self-renewal and sphere formation and resulted in increased 5-FU-induced apoptosis in human colon CSCs. Prdx2 overexpression induced reversion of the self-renewal and sphere formation. Furthermore, the effects of Prdx2 resulted in an altered expression of stemness associated with the Hh/Gli1 signaling pathway. Finally, knockdown of Prdx2 in CD133+ cells reduced the volume of xenograft tumors in BALB/c-nu mice. Taken together, colon CSCs overexpress Prdx2, which promotes their stem cell properties via the Hh/Gli1 signaling pathway. The results suggest that Prdx2 may be an effective therapeutic target for the elimination of CSCs in colorectal cancer.
Collapse
Affiliation(s)
- Rong Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Jinlai Wei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Shouru Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Xingye Wu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Jinbao Guo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Maoxi Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Kunli Du
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Jun Xu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Linglong Peng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Zhenbing Lv
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Wenxian You
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yongfu Xiong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Zhongxue Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
21
|
Hampton MB, Vick KA, Skoko JJ, Neumann CA. Peroxiredoxin Involvement in the Initiation and Progression of Human Cancer. Antioxid Redox Signal 2018; 28:591-608. [PMID: 29237274 PMCID: PMC9836708 DOI: 10.1089/ars.2017.7422] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
SIGNIFICANCE It has been proposed that cancer cells are heavily dependent on their antioxidant defenses for survival and growth. Peroxiredoxins are a family of abundant thiol-dependent peroxidases that break down hydrogen peroxide, and they have a central role in the maintenance and response of cells to alterations in redox homeostasis. As such, they are potential targets for disrupting tumor growth. Recent Advances: Genetic disruption of peroxiredoxin expression in mice leads to an increased incidence of neoplastic disease, consistent with a role for peroxiredoxins in protecting genomic integrity. In contrast, many human tumors display increased levels of peroxiredoxin expression, suggesting that strengthened antioxidant defenses provide a survival advantage for tumor progression. Peroxiredoxin inhibitors are being developed and explored as therapeutic agents in different cancer models. CRITICAL ISSUES It is important to complement peroxiredoxin knockout and expression studies with an improved understanding of the biological function of the peroxiredoxins. Although current results can be interpreted within the context that peroxiredoxins scavenge hydroperoxides, some peroxiredoxin family members appear to have more complex roles in regulating the response of cells to oxidative stress through protein interactions with constituents of other signaling pathways. FUTURE DIRECTIONS Further mechanistic information is required for understanding the role of oxidative stress in cancer, the function of peroxiredoxins in normal versus cancer cells, and for the design and testing of specific peroxiredoxin inhibitors that display selectivity to malignant cells. Antioxid. Redox Signal. 28, 591-608.
Collapse
Affiliation(s)
- Mark B Hampton
- 1 Department of Pathology, Centre for Free Radical Research, University of Otago , Christchurch, Christchurch, New Zealand
| | - Kate A Vick
- 1 Department of Pathology, Centre for Free Radical Research, University of Otago , Christchurch, Christchurch, New Zealand
| | - John J Skoko
- 2 Womens Cancer Research Center, University of Pittsburgh Cancer Center , Pittsburgh, Pennsylvania.,3 Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Carola A Neumann
- 2 Womens Cancer Research Center, University of Pittsburgh Cancer Center , Pittsburgh, Pennsylvania.,3 Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
22
|
Li B, Chen M, Lu M, Xin-Xiang J, Meng-Xiong P, Jun-Wu M. Glutaredoxin 3 promotes migration and invasion via the Notch signalling pathway in oral squamous cell carcinoma. Free Radic Res 2018; 52:390-401. [PMID: 29397791 DOI: 10.1080/10715762.2018.1435871] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Substantial evidence indicates that the alteration of the cellular redox status is a critical factor involved in cell growth and death and results in tumourigenesis. Cancer cells have an efficient antioxidant system to counteract the increased generation of ROS. However, whether this ability to survive high levels of ROS has an important role in the growth and metastasis of tumours is not well understood. Glutaredoxin 3 (GLRX3), also known as TXNL2, Grx3 and PICOT, maintains a low level of ROS, thus contributing to the survival and metastasis of several types of cancer. However, little is known about the role of GLRX3 and the underlying mechanisms that suppress oral squamous cell carcinoma (OSCC) progression. Here, by using immunohistochemical staining, we demonstrated that GLRX3 was overexpressed in human OSCC, and enhanced GLRX3 expression correlated with metastasis and with decreased overall patient survival. Knockdown of GLRX3 in human OSCC cell lines reduced Notch activity by reversing the epithelial-mesenchymal transition (EMT), resulting in the inhibition of in vitro migration and invasion. Importantly, knockdown of GLRX3 triggered the generation of ROS. Furthermore, N-acetyl cysteine (NAC), an ROS scavenger, enhanced the effects of GLRX3 knockdown on Notch-dependent EMT. Collectively, these findings suggested the vital roles of GLRX3 in OSCC progression through its relationship with EMT progression, and these data also suggest that a strategy of blocking ROS to enhance the activity of GLRX3 knockdown warrants further attention in the treatment of OSCC.
Collapse
Affiliation(s)
- Bo Li
- a Department of Oral and Maxillofacial Surgery , Affiliated Hospital of Guilin, Medical University , Guilin , PR China
| | - Mei Chen
- a Department of Oral and Maxillofacial Surgery , Affiliated Hospital of Guilin, Medical University , Guilin , PR China
| | - Mei Lu
- a Department of Oral and Maxillofacial Surgery , Affiliated Hospital of Guilin, Medical University , Guilin , PR China
| | - Jiang Xin-Xiang
- a Department of Oral and Maxillofacial Surgery , Affiliated Hospital of Guilin, Medical University , Guilin , PR China
| | - Pan Meng-Xiong
- a Department of Oral and Maxillofacial Surgery , Affiliated Hospital of Guilin, Medical University , Guilin , PR China
| | - Mao Jun-Wu
- a Department of Oral and Maxillofacial Surgery , Affiliated Hospital of Guilin, Medical University , Guilin , PR China
| |
Collapse
|
23
|
AMRI-59 functions as a radiosensitizer via peroxiredoxin I-targeted ROS accumulation and apoptotic cell death induction. Oncotarget 2017; 8:114050-114064. [PMID: 29371968 PMCID: PMC5768385 DOI: 10.18632/oncotarget.23114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/26/2017] [Indexed: 01/01/2023] Open
Abstract
Previously, we identified AMRI-59 as a specific pharmaceutical inhibitor of peroxiredoxin (PRX) I enzyme activity. In this study, we examined whether AMRI-59 acts as a radiosensitizer in non-small cell lung cancer cells using clonogenic assays. The intracellular mechanisms underlying the radiosensitization effect of AMRI-59 were determined via immunoblotting in addition to measurement of ROS generation, mitochondrial potential and cell death. AMRI-59 activity in vivo was examined by co-treating nude mice with the compound and γ-ionizing radiation (IR), followed by measurement of tumor volumes and apoptosis. The dose enhancement ratios of 30 μM AMRI-59 in NCI-H460 and NCI-H1299 were 1.51 and 2.12, respectively. Combination of AMRI-59 with IR augmented ROS production and mitochondrial potential disruption via enhancement of PRX I oxidation, leading to increased expression of γH2AX, a DNA damage marker, and suppression of ERK phosphorylation, and finally, activation of caspase-3. Notably, inhibition of ROS production prevented ERK suppression, and blockage of ERK in combination with AMRI-59 and IR led to enhanced caspase-3 activation and apoptosis. In a xenograft assay using NCI-H460 and NCI-H1299, combined treatment with AMRI-59 and IR delayed tumor growth by 26.98 and 14.88 days, compared with controls, yielding enhancement factors of 1.73 and 1.37, respectively. Taken together, the results indicate that AMRI-59 functions as a PRX I-targeted radiosensitizer by inducing apoptosis through activation of the ROS/γH2AX/caspase pathway and suppression of ERK.
Collapse
|
24
|
Panieri E, Millia C, Santoro MM. Real-time quantification of subcellular H 2O 2 and glutathione redox potential in living cardiovascular tissues. Free Radic Biol Med 2017; 109:189-200. [PMID: 28192232 DOI: 10.1016/j.freeradbiomed.2017.02.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/31/2017] [Accepted: 02/08/2017] [Indexed: 12/17/2022]
Abstract
Detecting and measuring the dynamic redox events that occur in vivo is a prerequisite for understanding the impact of oxidants and redox events in normal and pathological conditions. These aspects are particularly relevant in cardiovascular tissues wherein alterations of the redox balance are associated with stroke, aging, and pharmacological intervention. An ambiguous aspect of redox biology is how redox events occur in subcellular organelles including mitochondria, and nuclei. Genetically-encoded Rogfp2 fluorescent probes have become powerful tools for real-time detection of redox events. These probes detect hydrogen peroxide (H2O2) levels and glutathione redox potential (EGSH), both with high spatiotemporal resolution. By generating novel transgenic (Tg) zebrafish lines that express compartment-specific Rogfp2-Orp1 and Grx1-Rogfp2 sensors we analyzed cytosolic, mitochondrial, and the nuclear redox state of endothelial cells and cardiomyocytes of living zebrafish embryos. We provide evidence for the usefulness of these Tg lines for pharmacological compounds screening by addressing the blocking of pentose phosphate pathways (PPP) and glutathione synthesis, thus altering subcellular redox state in vivo. Rogfp2-based transgenic zebrafish lines represent valuable tools to characterize the impact of redox changes in living tissues and offer new opportunities for studying metabolic driven antioxidant response in biomedical research.
Collapse
Affiliation(s)
- Emiliano Panieri
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Carlo Millia
- Laboratory of Endothelial Molecular Biology, Vesalius Research Center, Department of Oncology, VIB-KUL, Leuven, Belgium
| | - Massimo M Santoro
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy; Laboratory of Endothelial Molecular Biology, Vesalius Research Center, Department of Oncology, VIB-KUL, Leuven, Belgium.
| |
Collapse
|
25
|
Shi XJ, Ding L, Zhou W, Ji Y, Wang J, Wang H, Ma Y, Jiang G, Tang K, Ke Y, Zhao W, Liu HM. Pro-Apoptotic Effects of JDA-202, a Novel Natural Diterpenoid, on Esophageal Cancer Through Targeting Peroxiredoxin I. Antioxid Redox Signal 2017; 27:73-92. [PMID: 27650197 PMCID: PMC5510680 DOI: 10.1089/ars.2016.6703] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AIMS Esophageal cancer (EC) is an aggressive malignancy and the most common solid tumor of gastrointestinal tract all over the world, with high incidence in Asia. The current study was designed to investigate the anticancer efficacy and mechanism that is involved in the action of a natural ent-kaurene diterpenoid, JDA-202, targeting EC. RESULTS We found that an antioxidant protein peroxiredoxin I (Prx I) was upregulated in human EC tissues as well as in EC cell lines. JDA-202, a novel natural compound isolated from Isodon rubescens (Labiatae), was proved to possess strong anti-proliferative activities on those cell lines. Importantly, JDA-202 does not only bind to Prx I directly and markedly inhibit the activity of Prx I in vitro, but it also significantly induces hydrogen peroxide (H2O2)-related cell death. Furthermore, overexpression of Prx I significantly reversed EC109 cell apoptosis caused by JDA-202, whereas short interfering RNA (siRNA)-induced Prx I knockdown resulted in marked cell death even without JDA-202 pretreatment. On the other hand, the increased phosphorylation of mitogen-activated protein kinase (MAPK) proteins (c-Jun N-terminal kinase [JNK], p38, and extracellular signal-regulated kinase [ERK]) by JDA-202 was suppressed by N-acetylcysteine (NAC) or catalase, a known reactive oxygen species (ROS) or H2O2 scavenger. JDA-202 also significantly inhibited the growth of EC109 tumor xenograft, without significant body weight loss and multi-organ toxicities. Innovation and Conclusion: Our findings, for the first time, demonstrated that JDA-202 may serve as a lead compound, targeting the overexpressed Prx I in EC cell lines and ROS accumulation as well as inhibiting the activation of their downstream targets in MAPKs. Antioxid. Redox Signal. 27, 73-92.
Collapse
Affiliation(s)
- Xiao-Jing Shi
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou, China
| | - Lina Ding
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou, China
| | - Wenjuan Zhou
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou, China
| | - Yage Ji
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou, China
| | - Junwei Wang
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou, China
| | - Huimin Wang
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou, China
| | - Yongcheng Ma
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou, China
| | - Guozhong Jiang
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou, China
| | - Kai Tang
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou, China
| | - Yu Ke
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou, China
| | - Wen Zhao
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou, China
| | - Hong-Min Liu
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou, China
| |
Collapse
|
26
|
Wang G, Zhang T, Sun W, Wang H, Yin F, Wang Z, Zuo D, Sun M, Zhou Z, Lin B, Xu J, Hua Y, Li H, Cai Z. Arsenic sulfide induces apoptosis and autophagy through the activation of ROS/JNK and suppression of Akt/mTOR signaling pathways in osteosarcoma. Free Radic Biol Med 2017; 106:24-37. [PMID: 28188923 DOI: 10.1016/j.freeradbiomed.2017.02.015] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/23/2017] [Accepted: 02/06/2017] [Indexed: 12/11/2022]
Abstract
Osteosarcoma is a common primary malignant bone tumor, the cure rate of which has stagnated over the past 25-30 years. Arsenic sulfide (As2S2), the main active ingredient of the traditional Chinese medicine realgar, has been proved to have antitumor efficacy in several tumor types including acute promyelocytic leukemia, gastric cancer and colon cancer. Here, we investigated the efficacy and mechanism of As2S2 in osteosarcoma both in vitro and in vivo. In this study, we demonstrated that As2S2 potently suppressed cell proliferation by inducing G2/M phase arrest in various osteosarcoma cell lines. Also, treatment with As2S2 induced apoptosis and autophagy in osteosarcoma cells. The apoptosis induction was related to PARP cleavage and activation of caspase-3, -8, -9. As2S2 was demonstrated to induce autophagy as evidenced by formation of autophagosome and accumulation of LC3II. Further studies showed that As2S2-induced apoptosis and autophagy could be significantly attenuated by ROS scavenger and JNK inhibitor. Moreover, we found that As2S2 inhibited Akt/mTOR signaling pathway, and suppressing Akt and mTOR kinases activity can increase As2S2-induced apoptosis and autophagy. Finally, As2S2in vivo suppressed tumor growth with few side effects. In summary, our results revealed that As2S2 induced G2/M phase arrest, apoptosis, and autophagy via activing ROS/JNK and blocking Akt/mTOR signaling pathway in human osteosarcoma cells. Arsenic sulfide may be a potential clinical antitumor drugs targeting osteosarcoma.
Collapse
Affiliation(s)
- Gangyang Wang
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Tao Zhang
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wei Sun
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hongsheng Wang
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Orthopaedics, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Fei Yin
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhuoying Wang
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Dongqing Zuo
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Mengxiong Sun
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zifei Zhou
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Orthopaedics, Shanghai East Hospital, Tongji University, Shanghai, China.
| | - Binhui Lin
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jing Xu
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yingqi Hua
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Haoqing Li
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhengdong Cai
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
27
|
Liu J, Liu T, Mou H, Jia S, Huang C, Yan S, Lin J, Luo Y, Zhang J. An Isoquinolin-1(2H)-Imine Derivative Induces Cell Death via Generation of Reactive Oxygen Species and Activation of JNK in Human A549 Cancer Cells. J Cell Biochem 2017; 118:4394-4403. [PMID: 28444898 DOI: 10.1002/jcb.26093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 04/25/2017] [Indexed: 11/11/2022]
Abstract
Compound 11-benzoyl-10-chloro-7,9-difluoro-6-imino-2,3,4,6-tetrahydro-1H-pyrimido[1,2-b]isoquinoline-8-carbonitrile (HC6h) is a novel polyhalo 1,3-diazaheterocycle fused isoquinolin-1(2H)-imines derivative, which displays good anticancer activity and low toxicity in vivo. However, the underlying anticancer mechanisms have not previously been identified. The proliferation of A549 was assessed by MTT assay. The reactive oxygen species (ROS) level was assessed in A549 with a H2 DCFDA probe. Mitochondrial membrane potential was measured using the JC-1 staining. Apoptosis were measured by annexin-V/PI assay and autophagy by acridine orange staining and GFP-LC3 fluorescence assay. The expression of autophagic and apoptotic proteins was determined by Western blot. The compound HC6h increased accumulation of vesicles, acridine orange-stained cells and LC3-II in A549 cells. Inhibition of compound HC6h-induced autophagy by bafilomycin A1 increased apoptosis. Compound HC6h enhanced activation of caspase-3, caspase-9 and PARP cleavage in A549 cells. Compound HC6h leads to the rapid generation of intracellular ROS. Moreover, compound HC6h induced phosphorylation of JNK and was conferred by the increased ROS levels. Furthermore, down-regulation of JNK attenuated autophagic and apoptotic effect in response to HC6h. The induction of ROS upon HC6h treatment leads to the activation of JNK that mediates autophagy and apoptosis in human A549 cancer cells. J. Cell. Biochem. 118: 4394-4403, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jing Liu
- Laboratory of Molecular Genetics of Aging and Tumor, Faculty of Medicine, Kunming University of Science and Technology, Kunming 650500, P.R. China
| | - Tongyang Liu
- Laboratory of Molecular Genetics of Aging and Tumor, Faculty of Medicine, Kunming University of Science and Technology, Kunming 650500, P.R. China
| | - Hanchuan Mou
- Laboratory of Molecular Genetics of Aging and Tumor, Faculty of Medicine, Kunming University of Science and Technology, Kunming 650500, P.R. China
| | - Shuting Jia
- Laboratory of Molecular Genetics of Aging and Tumor, Faculty of Medicine, Kunming University of Science and Technology, Kunming 650500, P.R. China
| | - Chao Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P.R. China
| | - Shengjiao Yan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P.R. China
| | - Jun Lin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P.R. China
| | - Ying Luo
- Laboratory of Molecular Genetics of Aging and Tumor, Faculty of Medicine, Kunming University of Science and Technology, Kunming 650500, P.R. China
| | - Jihong Zhang
- Laboratory of Molecular Genetics of Aging and Tumor, Faculty of Medicine, Kunming University of Science and Technology, Kunming 650500, P.R. China
| |
Collapse
|
28
|
Dharmaraja AT. Role of Reactive Oxygen Species (ROS) in Therapeutics and Drug Resistance in Cancer and Bacteria. J Med Chem 2017; 60:3221-3240. [DOI: 10.1021/acs.jmedchem.6b01243] [Citation(s) in RCA: 280] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Allimuthu T. Dharmaraja
- Department of Genetics and Genome Sciences and Comprehensive Cancer
Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
29
|
Zhong H, Xiao M, Zarkovic K, Zhu M, Sa R, Lu J, Tao Y, Chen Q, Xia L, Cheng S, Waeg G, Zarkovic N, Yin H. Mitochondrial control of apoptosis through modulation of cardiolipin oxidation in hepatocellular carcinoma: A novel link between oxidative stress and cancer. Free Radic Biol Med 2017; 102:67-76. [PMID: 27838437 DOI: 10.1016/j.freeradbiomed.2016.10.494] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/21/2016] [Accepted: 10/21/2016] [Indexed: 02/08/2023]
Abstract
Altered redox status in cancer cells has been linked to lipid peroxidation induced by reactive oxygen species (ROS) and subsequent formation of reactive lipid electrophiles, especially 4-hydroxy-nonenal (4-HNE). Emerging evidence suggests that cancer cells manipulate redox status to acquire anti-apoptotic phenotype but the underlying mechanisms are poorly understood. Cardiolipin (CL), a mitochondria-specific inner membrane phospholipid, is critical for maintaining mitochondrial function. Paradoxically, liver tissues contain tetralinoleoyl cardiolipin (TLCL) as the major CL in mitochondria yet emerging evidence suggests that ROS generated in mitochondria may lead to CL peroxidation and activation of intrinsic apoptosis. It remains unclear how CL oxidation leads to apoptosis and its relevance to the pathogenesis of hepatocellular carcinoma (HCC). We employed a mass spectrometry-based lipidomic approach to profile lipids in human tissues of HCC and found that CL was gradually decreased in tumor comparing to peripheral non-cancerous tissues, accompanied by a concomitant decrease of oxidized CL and its oxidation product, 4-HNE. Incubation of liver cancer cells with TLCL significantly restored apoptotic sensitivity accompanied by an increase of CL and its oxidation products when treated with staurosporine (STS) or Sorafenib (the standard treatment for late stage HCC patients). Our studies uncovered a novel mechanism by which cancer cells adopt to evade apoptosis, highlighting the importance of mitochondrial control of apoptosis through modulation of CL oxidation and subsequent 4-HNE formation in HCC. Thus manipulation of mitochondrial CL oxidation and lipid electrophile formation may have potential therapeutic value for diseases linked to oxidative stress and mitochondrial dysfunctions.
Collapse
Affiliation(s)
- Huiqin Zhong
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS) Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200031, China; University of the Chinese Academy of Sciences, CAS, Beijing, China
| | - Mengqing Xiao
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS) Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200031, China; University of the Chinese Academy of Sciences, CAS, Beijing, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Kamelija Zarkovic
- Division of Pathology, Clinical Hospital Centre & Medical Faculty, University of Zagreb, Croatia
| | - Mingjiang Zhu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS) Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200031, China
| | - Rina Sa
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS) Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200031, China; University of the Chinese Academy of Sciences, CAS, Beijing, China
| | - Jianhong Lu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS) Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200031, China; University of the Chinese Academy of Sciences, CAS, Beijing, China
| | - Yongzhen Tao
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS) Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200031, China
| | - Qun Chen
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS) Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200031, China; University of the Chinese Academy of Sciences, CAS, Beijing, China
| | - Lin Xia
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS) Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200031, China
| | - Shuqun Cheng
- The Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Georg Waeg
- Institute of Molecular Biosciences, Karl Franz University of Graz, Austria
| | - Neven Zarkovic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Zagreb, Croatia
| | - Huiyong Yin
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS) Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200031, China; University of the Chinese Academy of Sciences, CAS, Beijing, China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
30
|
Kumar A, Kawamura T, Kawatani M, Osada H, Zhang KYJ. Identification and structure-activity relationship of purine derivatives as novel MTH1 inhibitors. Chem Biol Drug Des 2016; 89:862-869. [PMID: 27863017 DOI: 10.1111/cbdd.12909] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/13/2016] [Accepted: 10/25/2016] [Indexed: 12/17/2022]
Abstract
The human mutT homolog-1 (MTH1) protein prevents the incorporation of oxidized nucleotides such as 2-OH-dATP and 8-oxo-dGTP during DNA replication by hydrolyzing them into their corresponding monophosphates. It was found previously that cancer cells could tolerate oxidative stress due to this enzymatic activity of MTH1 and its inhibition could be a promising approach to treat several types of cancer. This finding has been challenged recently with increasing line of evidence suggesting that the cancer cell-killing effects of MTH1 inhibitors may be related to their engagement of off-targets. We have previously reported a few purine-based MTH1 inhibitors that enabled us to elucidate the dispensability of MTH1 in cancer cell survival. Here, we provide a detailed process of the identification of purine-based MTH1 inhibitors. Several new compounds with potency in the submicromolar range are disclosed. Furthermore, the structure-activity relationship and associated binding mode prediction using molecular docking have provided insights for the development of highly potent MTH1 inhibitors.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Structural Bioinformatics Team, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan
| | - Tatsuro Kawamura
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Makoto Kawatani
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Kam Y J Zhang
- Structural Bioinformatics Team, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan
| |
Collapse
|
31
|
ROS homeostasis and metabolism: a dangerous liason in cancer cells. Cell Death Dis 2016; 7:e2253. [PMID: 27277675 PMCID: PMC5143371 DOI: 10.1038/cddis.2016.105] [Citation(s) in RCA: 780] [Impact Index Per Article: 97.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 02/07/2023]
Abstract
Tumor cells harbor genetic alterations that promote a continuous and elevated production of reactive oxygen species. Whereas such oxidative stress conditions would be harmful to normal cells, they facilitate tumor growth in multiple ways by causing DNA damage and genomic instability, and ultimately, by reprogramming cancer cell metabolism. This review outlines the metabolic-dependent mechanisms that tumors engage in when faced with oxidative stress conditions that are critical for cancer progression by producing redox cofactors. In particular, we describe how the mitochondria has a key role in regulating the interplay between redox homeostasis and metabolism within tumor cells. Last, we will discuss the potential therapeutic use of agents that directly or indirectly block metabolism.
Collapse
|