1
|
Xu BX, Hu TY, Du JB, Xie T, Xu YW, Jin X, Xu ST, Jin HW, Wang G, Wang J, Zhen L. In pursuit of feedback activation: New insights into redox-responsive hydropersulfide prodrug combating oxidative stress. Redox Biol 2024; 72:103130. [PMID: 38522110 PMCID: PMC10973683 DOI: 10.1016/j.redox.2024.103130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024] Open
Abstract
Redox-responsive hydropersulfide prodrugs are designed to enable a more controllable and efficient hydropersulfide (RSSH) supply and to thoroughly explore their biological and therapeutic applications in oxidative damage. To obtain novel activation patterns triggered by redox signaling, we focused on NAD(P)H: quinone acceptor oxidoreductase 1 (NQO1), a canonical antioxidant enzyme, and designed NQO1-activated RSSH prodrugs. We also performed a head-to-head comparison of two mainstream structural scaffolds with solid quantitative analysis of prodrugs, RSSH, and metabolic by-products by LC-MS/MS, confirming that the perthiocarbamate scaffold was more effective in intracellular prodrug uptake and RSSH production. The prodrug was highly potent in oxidative stress management against cisplatin-induced nephrotoxicity. Strikingly, this prodrug possessed potential feedback activation properties by which the delivered RSSH can further escalate the prodrug activation via NQO1 upregulation. Our strategy pushed RSSH prodrugs one step further in the pursuit of efficient release in biological matrices and improved druggability against oxidative stress.
Collapse
Affiliation(s)
- Bi-Xin Xu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, Jiangsu, China
| | - Tian-Yu Hu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, Jiangsu, China
| | - Jin-Biao Du
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, Jiangsu, China
| | - Tao Xie
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, Jiangsu, China
| | - Ya-Wen Xu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, Jiangsu, China
| | - Xin Jin
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, Jiangsu, China
| | - Si-Tao Xu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, Jiangsu, China
| | - Hao-Wen Jin
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, Jiangsu, China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, Jiangsu, China.
| | - Jiankun Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, Jiangsu, China.
| | - Le Zhen
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
2
|
Zhang S, Cheng Y, Guan Y, Wen J, Chen Z. Hydrogen Sulfide Exerted a Pro-Angiogenic Role by Promoting the Phosphorylation of VEGFR2 at Tyr797 and Ser799 Sites in Hypoxia-Reoxygenation Injury. Int J Mol Sci 2024; 25:4340. [PMID: 38673925 PMCID: PMC11050214 DOI: 10.3390/ijms25084340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The protective effects of hydrogen sulfide (H2S) against ischemic brain injury and its role in promoting angiogenesis have been established. However, the specific mechanism underlying these effects remains unclear. This study is designed to investigate the regulatory impact and mechanism of H2S on VEGFR2 phosphorylation. Following expression and purification, the recombinant His-VEGFR2 protein was subjected to LC-PRM/MS analysis to identify the phosphorylation sites of VEGFR2 upon NaHS treatment. Adenovirus infection was used to transfect primary rat brain artery endothelial cells (BAECs) with the Ad-VEGFR2WT, Ad-VEGFR2Y797F, and Ad-VEGFR2S799A plasmids. The expression of VEGFR2 and recombinant Flag-VEGFR2, along with Akt phosphorylation, cell proliferation, and LDH levels, was assessed. The migratory capacity and tube-forming potential of BAECs were assessed using wound healing, transwell, and tube formation assays. NaHS notably enhanced the phosphorylation of VEGFR2 at Tyr797 and Ser799 sites. These phosphorylation sites were identified as crucial for mediating the protective effects of NaHS against hypoxia-reoxygenation (H/R) injury. NaHS significantly enhanced the Akt phosphorylation, migratory capacity, and tube formation of BAECs and upregulated the expression of VEGFR2 and recombinant proteins. These findings suggest that Tyr797 and Ser799 sites of VEGFR2 serve as crucial mediators of H2S-induced pro-angiogenic effects and protection against H/R injury.
Collapse
Affiliation(s)
- Sen Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (S.Z.); (Y.G.)
| | - Yongfeng Cheng
- Clinical Medical College, Anhui Medical University, Hefei 230012, China;
| | - Yining Guan
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (S.Z.); (Y.G.)
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (S.Z.); (Y.G.)
| | - Zhiwu Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (S.Z.); (Y.G.)
| |
Collapse
|
3
|
Kim HI, Veeramanoharan A, Selvaraj B, Olivier M, Lee E, Lee JW, Park CM. Thiiranes: Intelligent Molecules for S-Persulfidation. J Am Chem Soc 2024; 146:8820-8825. [PMID: 38518245 DOI: 10.1021/jacs.3c12908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
This study presents a global strategy for the transsulfuration of intracellular thiols (RSH) to persulfides (RSSH). Thiiranes comprising fluorenyl/diphenyl and malonate ester moieties directly convert intercellular RSH to low-molecular-weight RSSH in cells. The efficiency of transsulfuration is determined by counting the number of olefins produced as byproducts, providing ratiometric signals for the corresponding persulfide production. Specifically, the direct and rapid protein S-persulfidation by thiirane is validated. Thiiranes are expected to play a crucial role in the study of sulfur signaling.
Collapse
Affiliation(s)
- Hoe-In Kim
- Department of Chemistry, Gangneung-Wonju National University, Gangneung, Gangnwon 25457, Republic of Korea
| | - Ashokkumar Veeramanoharan
- Department of Chemistry, Gangneung-Wonju National University, Gangneung, Gangnwon 25457, Republic of Korea
| | - Baskar Selvaraj
- Convergence Research Center of Dementia, Brain Science Institute, Korea Institute of Science and Technology, Gangneung, Gangwon 25451, Republic of Korea
| | - Maniriho Olivier
- Department of Chemistry, Gangneung-Wonju National University, Gangneung, Gangnwon 25457, Republic of Korea
| | - Eunji Lee
- Department of Chemistry, Gangneung-Wonju National University, Gangneung, Gangnwon 25457, Republic of Korea
| | - Jae Wook Lee
- Convergence Research Center of Dementia, Brain Science Institute, Korea Institute of Science and Technology, Gangneung, Gangwon 25451, Republic of Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology, Daejeon 34133, Republic of Korea
| | - Chung-Min Park
- Department of Chemistry, Gangneung-Wonju National University, Gangneung, Gangnwon 25457, Republic of Korea
| |
Collapse
|
4
|
Ye J, Salti T, Zanditenas E, Trebicz-Geffen M, Benhar M, Ankri S. Impact of Reactive Sulfur Species on Entamoeba histolytica: Modulating Viability, Motility, and Biofilm Degradation Capacity. Antioxidants (Basel) 2024; 13:245. [PMID: 38397843 PMCID: PMC10886169 DOI: 10.3390/antiox13020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Reactive sulfur species (RSS) like hydrogen sulfide (H2S) and cysteine persulfide (Cys-SSH) emerged as key signaling molecules with diverse physiological roles in the body, depending on their concentration and the cellular environment. While it is known that H2S and Cys-SSH are produced by both colonocytes and by the gut microbiota through sulfur metabolism, it remains unknown how these RSS affect amebiasis caused by Entamoeba histolytica, a parasitic protozoan that can be present in the human gastrointestinal tract. This study investigates H2S and Cys-SSH's impact on E. histolytica physiology and explores potential therapeutic implications. Exposing trophozoites to the H2S donor, sodium sulfide (Na2S), or to Cys-SSH led to rapid cytotoxicity. A proteomic analysis of Cys-SSH-challenged trophozoites resulted in the identification of >500 S-sulfurated proteins, which are involved in diverse cellular processes. Functional assessments revealed inhibited protein synthesis, altered cytoskeletal dynamics, and reduced motility in trophozoites treated with Cys-SSH. Notably, cysteine proteases (CPs) were significantly inhibited by S-sulfuration, affecting their bacterial biofilm degradation capacity. Immunofluorescence microscopy confirmed alterations in actin dynamics, corroborating the proteomic findings. Thus, our study reveals how RSS perturbs critical cellular functions in E. histolytica, potentially influencing its pathogenicity and interactions within the gut microbiota. Understanding these molecular mechanisms offers novel insights into amebiasis pathogenesis and unveils potential therapeutic avenues targeting RSS-mediated modifications in parasitic infections.
Collapse
Affiliation(s)
- Jun Ye
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel (M.T.-G.)
| | - Talal Salti
- Department of Biochemistry, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Eva Zanditenas
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel (M.T.-G.)
| | - Meirav Trebicz-Geffen
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel (M.T.-G.)
| | - Moran Benhar
- Department of Biochemistry, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Serge Ankri
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel (M.T.-G.)
| |
Collapse
|
5
|
Nishimura A, Yoon S, Matsunaga T, Ida T, Jung M, Ogata S, Morita M, Yoshitake J, Unno Y, Barayeu U, Takata T, Takagi H, Motohashi H, van der Vliet A, Akaike T. Longevity control by supersulfide-mediated mitochondrial respiration and regulation of protein quality. Redox Biol 2024; 69:103018. [PMID: 38199039 PMCID: PMC10821618 DOI: 10.1016/j.redox.2023.103018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Supersulfides, which are defined as sulfur species with catenated sulfur atoms, are increasingly being investigated in biology. We recently identified pyridoxal phosphate (PLP)-dependent biosynthesis of cysteine persulfide (CysSSH) and related supersulfides by cysteinyl-tRNA synthetase (CARS). Here, we investigated the physiological role of CysSSH in budding yeast (Saccharomyces cerevisiae) by generating a PLP-binding site mutation K109A in CRS1 (the yeast ortholog of CARS), which decreased the synthesis of CysSSH and related supersulfides and also led to reduced chronological aging, effects that were associated with an increased endoplasmic reticulum stress response and impaired mitochondrial bioenergetics. Reduced chronological aging in the K109A mutant could be rescued by using exogenous supersulfide donors. Our findings indicate important roles for CARS in the production and metabolism of supersulfides-to mediate mitochondrial function and to regulate longevity.
Collapse
Affiliation(s)
- Akira Nishimura
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan; Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan.
| | - Sunghyeon Yoon
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuro Matsunaga
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomoaki Ida
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan; Organization for Research Promotion, Osaka Metropolitan University, Osaka, Japan
| | - Minkyung Jung
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Seiryo Ogata
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masanobu Morita
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jun Yoshitake
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuka Unno
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Uladzimir Barayeu
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tsuyoshi Takata
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Takagi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
6
|
Sawase LR, Kumar TA, Mathew AB, Khodade VS, Toscano JP, Saini DK, Chakrapani H. β-Galactosidase-activated nitroxyl (HNO) donors provide insights into redox cross-talk in senescent cells. Chem Commun (Camb) 2023; 59:12751-12754. [PMID: 37811588 DOI: 10.1039/d3cc03094f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The cross-talk among reductive and oxidative species (redox cross-talk), especially those derived from sulfur, nitrogen and oxygen, influence several physiological processes including aging. One major hallmark of aging is cellular senescence, which is associated with chronic systemic inflammation. Here, we report a chemical tool that generates nitoxyl (HNO) upon activation by β-galactosidase, an enzyme that is over-expressed in senescent cells. In a radiation-induced senescence model, the HNO donor suppressed reactive oxygen species (ROS) in a hydrogen sulfide (H2S)-dependent manner. Hence, the newly developed tool provides insights into redox cross-talk and establishes the foundation for new interventions that modulate levels of these species to mitigate oxidative stress and inflammation.
Collapse
Affiliation(s)
- Laxman R Sawase
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Pune 411 008, Maharashtra, India.
| | - T Anand Kumar
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Pune 411 008, Maharashtra, India.
| | - Abraham B Mathew
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Vinayak S Khodade
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - John P Toscano
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Deepak K Saini
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Harinath Chakrapani
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Pune 411 008, Maharashtra, India.
| |
Collapse
|
7
|
Wu Z, Barayeu U, Schilling D, Dick TP, Pratt DA. Emergence of (hydro)persulfides as suppressors of lipid peroxidation and ferroptotic cell death. Curr Opin Chem Biol 2023; 76:102353. [PMID: 37356334 DOI: 10.1016/j.cbpa.2023.102353] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/27/2023]
Abstract
Recognition of the prevalence of hydropersulfides (RSSH) and characterization of their enhanced two-electron reactivity relative to thiols have led to their implication in maintaining cellular redox homeostasis, in addition to other potential roles. Recent attention on the one-electron reactivity of RSSH has uncovered their potent radical-trapping antioxidant activity, which enables them to inhibit phospholipid peroxidation and associated cell death by ferroptosis. Herein, we briefly review key aspects of the reactivity and underlying physicochemical properties of RSSH. We emphasize their reactivity to radicals-particularly lipid peroxyl radicals that propagate the lipid peroxidation chain reaction-and the recent recognition that this results in ferroptosis suppression. We highlight open questions related to recent developments in this area and, given that all living organisms possess the ability to synthesize persulfides endogenously, suggest they may be primordial radical scavengers that occurred early in evolution and still play a role today.
Collapse
Affiliation(s)
- Zijun Wu
- Department of Chemistry & Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - Uladzimir Barayeu
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Danny Schilling
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Tobias P Dick
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.
| | - Derek A Pratt
- Department of Chemistry & Biomolecular Sciences, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
8
|
Tain YL, Hou CY, Chang-Chien GP, Lin S, Hsu CN. Protection by Means of Perinatal Oral Sodium Thiosulfate Administration against Offspring Hypertension in a Rat Model of Maternal Chronic Kidney Disease. Antioxidants (Basel) 2023; 12:1344. [PMID: 37507884 PMCID: PMC10376339 DOI: 10.3390/antiox12071344] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/08/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Hydrogen sulfide (H2S) and related reactive sulfur species are implicated in chronic kidney disease (CKD) and hypertension. Offspring born to CKD-afflicted mothers could develop hypertension coinciding with disrupted H2S and nitric oxide (NO) signaling pathways as well as gut microbiota. Thiosulfate, a precursor of H2S and an antioxidant, has shown anti-hypertensive effects. This study aimed to investigate the protective effects of sodium thiosulfate (STS) in a rat model of maternal CKD-induced hypertension. Before mating, CKD was induced through feeding 0.5% adenine chow for 3 weeks. Mother rats were given a vehicle or STS at a dosage of 2 g/kg/day in drinking water throughout gestation and lactation. Perinatal STS treatment protected 12-week-old offspring from maternal CKD-primed hypertension. The beneficial effects of STS could partially be explained by the enhancement of both H2S and NO signaling pathways and alterations in gut microbiota. Not only increasing beneficial microbes but maternal STS treatment also mediates several hypertension-associated intestinal bacteria. In conclusion, perinatal treatment with STS improves maternal CKD-primed offspring hypertension, suggesting that early-life RSS-targeting interventions have potential preventive and therapeutic benefits, awaiting future translational research.
Collapse
Affiliation(s)
- You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 330, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Guo-Ping Chang-Chien
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan
- Institute of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, Kaohsiung 833, Taiwan
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Sufan Lin
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan
- Institute of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, Kaohsiung 833, Taiwan
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
9
|
Pharoah BM, Zhang C, Khodade VS, Keceli G, McGinity C, Paolocci N, Toscano JP. Hydropersulfides (RSSH) attenuate doxorubicin-induced cardiotoxicity while boosting its anticancer action. Redox Biol 2023; 60:102625. [PMID: 36773545 PMCID: PMC9929489 DOI: 10.1016/j.redox.2023.102625] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/19/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Cardiotoxicity is a frequent and often lethal complication of doxorubicin (DOX)-based chemotherapy. Here, we report that hydropersulfides (RSSH) are the most effective reactive sulfur species in conferring protection against DOX-induced toxicity in H9c2 cardiac cells. Mechanistically, RSSH supplementation alleviates the DOX-evoked surge in reactive oxygen species (ROS), activating nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent pathways, thus boosting endogenous antioxidant defenses. Simultaneously, RSSH turns on peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), a master regulator of mitochondrial function, while decreasing caspase-3 activity to inhibit apoptosis. Of note, we find that RSSH potentiate anticancer DOX effects in three different cancer cell lines, with evidence that suggests this occurs via induction of reductive stress. Indeed, cancer cells already exhibit much higher basal hydrogen sulfide (H2S), sulfane sulfur, and reducing equivalents compared to cardiac cells. Thus, RSSH may represent a new promising avenue to fend off DOX-induced cardiotoxicity while boosting its anticancer effects.
Collapse
Affiliation(s)
- Blaze M Pharoah
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Chengximeng Zhang
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Vinayak S Khodade
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Gizem Keceli
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Christopher McGinity
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, United States
| | - Nazareno Paolocci
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States; Department of Biomedical Sciences, University of Padova, Padova, Italy.
| | - John P Toscano
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, United States.
| |
Collapse
|
10
|
Shen B, Li W, Wang Y, Cheng S, Wang X, Zhu L, Zhang Y, Gao L, Jiang L. Rapid capture and killing of bacteria by lyophilized nFeS-Hydrogel for improved healing of infected wounds. BIOMATERIALS ADVANCES 2022; 144:213207. [PMID: 36446252 DOI: 10.1016/j.bioadv.2022.213207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022]
Abstract
Due to their antibacterial activity, sulfur-containing nanomaterials are increasingly being developed into nanodrugs against bacterial infection. Nano iron sulfide (nFeS) is a new nanomaterial that can convert organic sulfur into inorganic sulfur, which has excellent antibacterial activity. However, the inorganic sulfur produced by nFeS can easily change its form or volatilize in aqueous solution, which may affect the efficacy of nFeS. We propose a new strategy to encapsulate nFeS in a hydrogel to preserve inorganic sulfides, and the macroporous structure of the hydrogel can capture bacteria to increase their interaction with nFeS. The in-depth characterization conducted in this study demonstrate that the water swelling characteristics of the lyophilized nFeS-Hydrogel and the ability to effectively maintain the antibacterial active ingredients in nFeS results in more effective killing of harmful bacteria than pure nFeS, while also prolonging the shelf life of antibacterial activity. We discovered that bacteria exhibit a unique mode of cell death when nFeS contained in hydrogels interacts with the cells by producing hydrogen polysulfanes, which increased intracellular ROS levels and reduced GSH levels. Furthermore, the nFeS-Hydrogel was found to reduce inflammation and exhibited excellent biocompatibility. Accordingly, the nFeS-Hydrogel has great application prospects as a fast excipient for clearing infection, reducing inflammation, and accelerating wound healing.
Collapse
Affiliation(s)
- Bowen Shen
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China
| | - Wenhan Li
- Yixing Hospital of Traditional Chinese Medicine, Department of Pharmacy, Yixing, China
| | - Yuxian Wang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China
| | - Shuyu Cheng
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Xiaonan Wang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Liying Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Yangheng Zhang
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China.
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Ling Jiang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 210009, China.
| |
Collapse
|
11
|
Aggarwal SC, Khodade VS, Porche S, Pharoah BM, Toscano JP. Photochemical Release of Hydropersulfides. J Org Chem 2022; 87:12644-12652. [PMID: 36084133 DOI: 10.1021/acs.joc.2c01049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydropersulfides (RSSH) have received significant interest in the field of redox biology because of their intriguing biochemical properties. However, because RSSH are inherently unstable, their study is challenging, and as a result, the details of their physiological roles remain ill-defined. Herein, we report strategies to release RSSH utilizing photoremovable protecting groups. RSSH protection with the well-established p-hydroxyphenacyl (pHP) photoprotecting group resulted in inefficient RSSH photorelease along with complex chemistry. Therefore, an alternative precursor was examined in which a self-immolative linker was inserted between the pHP group and RSSH, providing nearly quantitative RSSH release following photolysis at 365 nm. Inspired by these results, we also synthesized an analogous precursor derivatized with 7-diethylaminocoumarin (DEACM), a visible light-cleavable photoprotecting group. Photolysis of this precursor at 420 nm led to efficient RSSH release, and in vitro experiments demonstrated intracellular RSSH delivery in breast cancer MCF-7 cells.
Collapse
Affiliation(s)
- Sahil C Aggarwal
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Vinayak S Khodade
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Sarah Porche
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Blaze M Pharoah
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - John P Toscano
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
12
|
Reactive sulfur species and their significance in health and disease. Biosci Rep 2022; 42:231692. [PMID: 36039860 PMCID: PMC9484011 DOI: 10.1042/bsr20221006] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022] Open
Abstract
Reactive sulfur species (RSS) have been recognized in the last two decades as very important molecules in redox regulation. They are involved in metabolic processes and, in this way, they are responsible for maintenance of health. This review summarizes current information about the essential biological RSS, including H2S, low molecular weight persulfides, protein persulfides as well as organic and inorganic polysulfides, their synthesis, catabolism and chemical reactivity. Moreover, the role of RSS disturbances in various pathologies including vascular diseases, chronic kidney diseases, diabetes mellitus Type 2, neurological diseases, obesity, chronic obstructive pulmonary disease and in the most current problem of COVID-19 is presented. The significance of RSS in aging is also mentioned. Finally, the possibilities of using the precursors of various forms of RSS for therapeutic purposes are discussed.
Collapse
|
13
|
Wu Z, Khodade VS, Chauvin JPR, Rodriguez D, Toscano JP, Pratt DA. Hydropersulfides Inhibit Lipid Peroxidation and Protect Cells from Ferroptosis. J Am Chem Soc 2022; 144:15825-15837. [PMID: 35977425 DOI: 10.1021/jacs.2c06804] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hydropersulfides (RSSH) are believed to serve important roles in vivo, including as scavengers of damaging oxidants and electrophiles. The α-effect makes RSSH not only much better nucleophiles than thiols (RSH), but also much more potent H-atom transfer agents. Since HAT is the mechanism of action of the most potent small-molecule inhibitors of phospholipid peroxidation and associated ferroptotic cell death, we have investigated their reactivity in this context. Using the fluorescence-enabled inhibited autoxidation (FENIX) approach, we have found RSSH to be highly reactive toward phospholipid-derived peroxyl radicals (kinh = 2 × 105 M-1 s-1), equaling the most potent ferroptosis inhibitors identified to date. Related (poly)sulfide products resulting from the rapid self-reaction of RSSH under physiological conditions (e.g., disulfide, trisulfide, H2S) are essentially unreactive, but combinations from which RSSH can be produced in situ (i.e., polysulfides with H2S or thiols with H2S2) are effective. In situ generation of RSSH from designed precursors which release RSSH via intramolecular substitution or hydrolysis improve the radical-trapping efficiency of RSSH by minimizing deleterious self-reactions. A brief survey of structure-reactivity relationships enabled the design of new precursors that are more efficient. The reactivity of RSSH and their precursors translates from (phospho)lipid bilayers to cell culture (mouse embryonic fibroblasts), where they were found to inhibit ferroptosis induced by inactivation of glutathione peroxidase-4 (GPX4) or deletion of the gene encoding it. These results suggest that RSSH and the pathways responsible for their biosynthesis may act as a ferroptosis suppression system alongside the recently discovered FSP1/ubiquinone and GCH1/BH4/DHFR systems.
Collapse
Affiliation(s)
- Zijun Wu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ONK1N 6N5, Canada
| | - Vinayak S Khodade
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland21218, United States
| | - Jean-Philippe R Chauvin
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ONK1N 6N5, Canada
| | - Deborah Rodriguez
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland21218, United States
| | - John P Toscano
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland21218, United States
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ONK1N 6N5, Canada
| |
Collapse
|
14
|
Zarenkiewicz J, Perez-Ternero C, Kojasoy V, McGinity C, Khodade VS, Lin J, Tantillo DJ, Toscano JP, Hobbs AJ, Fukuto JM. The reaction of hydropersulfides (RSSH) with S-nitrosothiols (RS-NO) and the biological/physiological implications. Free Radic Biol Med 2022; 188:459-467. [PMID: 35809768 DOI: 10.1016/j.freeradbiomed.2022.06.245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/06/2022] [Accepted: 06/29/2022] [Indexed: 01/03/2023]
Abstract
S-Nitrosothiol (RS-NO) generation/levels have been implicated as being important to numerous physiological and pathophysiological processes. As such, the mechanism(s) of their generation and degradation are important factors in determining their biological activity. Along with the effects on the activity of thiol proteins, RS-NOs have also been reported to be reservoirs or storage forms of nitric oxide (NO). That is, it is hypothesized that NO can be released from RS-NO at opportune times to, for example, regulate vascular tone. However, to date there are few established mechanisms that can account for facile NO release from RS-NO. Recent discovery of the biological formation and prevalence of hydropersulfides (RSSH) and their subsequent reaction with RS-NO species provides a possible route for NO release from RS-NO. Herein, it is found that RSSH is capable of reacting with RS-NO to liberate NO and that the analogous reaction using RSH is not nearly as proficient in generating NO. Moreover, computational results support the prevalence of this reaction over other possible competing processes. Finally, results of biological studies of NO-mediated vasorelaxation are consistent with the idea that RS-NO species can be degraded by RSSH to release NO.
Collapse
Affiliation(s)
| | - Christina Perez-Ternero
- William Harvey Research Institute, Barts & The London School of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Volga Kojasoy
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Christopher McGinity
- William Harvey Research Institute, Barts & The London School of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Vinayak S Khodade
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Joseph Lin
- Department of Biology, Sonoma State University, Rohnert Park, CA, 94928, USA
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, CA, 95616, USA.
| | - John P Toscano
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts & The London School of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| | - Jon M Fukuto
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Chemistry, Sonoma State University, Rohnert Park, CA, 94928, USA.
| |
Collapse
|
15
|
Hydropersulfides (RSSH) Outperform Post-Conditioning and Other Reactive Sulfur Species in Limiting Ischemia-Reperfusion Injury in the Isolated Mouse Heart. Antioxidants (Basel) 2022; 11:antiox11051010. [PMID: 35624878 PMCID: PMC9137952 DOI: 10.3390/antiox11051010] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 01/21/2023] Open
Abstract
Hydrogen sulfide (H2S) exhibits protective effects in cardiovascular disease such as myocardial ischemia/reperfusion (I/R) injury, cardiac hypertrophy, and atherosclerosis. Despite these findings, its mechanism of action remains elusive. Recent studies suggest that H2S can modulate protein activity through redox-based post-translational modifications of protein cysteine residues forming hydropersulfides (RSSH). Furthermore, emerging evidence indicates that reactive sulfur species, including RSSH and polysulfides, exhibit cardioprotective action. However, it is not clear yet whether there are any pharmacological differences in the use of H2S vs. RSSH and/or polysulfides. This study aims to examine the differing cardioprotective effects of distinct reactive sulfur species (RSS) such as H2S, RSSH, and dialkyl trisulfides (RSSSR) compared with canonical ischemic post-conditioning in the context of a Langendorff ex-vivo myocardial I/R injury model. For the first time, a side-by-side study has revealed that exogenous RSSH donation is a superior approach to maintain post-ischemic function and limit infarct size when compared with other RSS and mechanical post-conditioning. Our results also suggest that RSSH preserves mitochondrial respiration in H9c2 cardiomyocytes exposed to hypoxia-reoxygenation via inhibition of oxidative phosphorylation while preserving cell viability.
Collapse
|