1
|
Lyon J. Noise Exposure and Hearing Loss Among Landscape and Groundskeepers. Workplace Health Saf 2024:21650799241288910. [PMID: 39445637 DOI: 10.1177/21650799241288910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Excessive noise exposure within the working population is a health concern that has received increased attention in recent years. Levels have been established by national organizations that reflect safe exposure, but many kinds of equipment used in the landscaping and groundskeeper industries still exceed them. While noise risks are often long-term in nature and occur with cumulative exposure, prevention and exposure methods can still be used by employers to protect their workers' long-term health. Recalling the hierarchy of controls established by the National Institute for Occupational Health and Safety (NIOSH), various strategies can be implemented without creating excessive supervisory burden and with minimal costs. Occupational health nurses can further help reduce excessive noise exposure by encouraging the use of an easy-to-use noise-level assessment app created by NIOSH.
Collapse
|
2
|
Kuntic M, Hahad O, Al-Kindi S, Oelze M, Lelieveld J, Daiber A, Münzel T. Pathomechanistic Synergy Between Particulate Matter and Traffic Noise-Induced Cardiovascular Damage and the Classical Risk Factor Hypertension. Antioxid Redox Signal 2024. [PMID: 38874533 DOI: 10.1089/ars.2024.0659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Affiliation(s)
- Marin Kuntic
- Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Mainz, Germany
| | - Omar Hahad
- Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Mainz, Germany
| | - Sadeer Al-Kindi
- Cardiovascular Prevention & Wellness and Center for CV Computational & Precision Health, Houston Methodist DeBakey Heart & Vascular Center, Houston, Texas, USA
| | - Matthias Oelze
- Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Jos Lelieveld
- Max Planck Institute for Chemistry, Atmospheric Chemistry, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Mainz, Germany
| |
Collapse
|
3
|
Arregi A, Vegas O, Lertxundi A, Silva A, Ferreira I, Bereziartua A, Cruz MT, Lertxundi N. Road traffic noise exposure and its impact on health: evidence from animal and human studies-chronic stress, inflammation, and oxidative stress as key components of the complex downstream pathway underlying noise-induced non-auditory health effects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46820-46839. [PMID: 38977550 PMCID: PMC11297122 DOI: 10.1007/s11356-024-33973-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/08/2024] [Indexed: 07/10/2024]
Abstract
In heavily urbanized world saturated with environmental pollutants, road traffic noise stands out as a significant factor contributing to widespread public health issues. It contributes in the development of a diverse range of non-communicable diseases, such as cardiovascular diseases, metabolic dysregulation, cognitive impairment, and neurodegenerative disorders. Although the exact mechanisms behind these non-auditory health effects remain unclear, the noise reaction model centres on the stress response to noise. When exposed to noise, the body activates the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system, leading to the secretion of stress hormones like catecholamines and cortisol. Prolonged exposure to noise-induced stress results in chronic inflammation and oxidative stress. This review underscores the role of inflammation and oxidative stress in the progression of noise-induced vascular dysfunction, disruption of the circadian rhythm, accelerated aging, neuroinflammation, and changes in microbiome. Additionally, our focus is on understanding the interconnected nature of these health outcomes: These interconnected factors create a cascade effect, contributing to the accumulation of multiple risk factors that ultimately lead to severe adverse health effects.
Collapse
Affiliation(s)
- Ane Arregi
- Faculty of Psychology, University of the Basque Country (UPV/EHU), 20008, San Sebastian, Spain
- Environmental Epidemiology and Child Development Group, Biogipuzkoa Health Research Institute, Paseo Doctor Begiristain S/N, 20014, San Sebastian, Spain
| | - Oscar Vegas
- Faculty of Psychology, University of the Basque Country (UPV/EHU), 20008, San Sebastian, Spain
- Environmental Epidemiology and Child Development Group, Biogipuzkoa Health Research Institute, Paseo Doctor Begiristain S/N, 20014, San Sebastian, Spain
| | - Aitana Lertxundi
- Environmental Epidemiology and Child Development Group, Biogipuzkoa Health Research Institute, Paseo Doctor Begiristain S/N, 20014, San Sebastian, Spain
- Spanish Consortium for Research On Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029, Madrid, Spain
- Department of Preventive Medicine and Public Health, Faculty of Medicine, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - Ana Silva
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences, University of Coimbra, 3000-548, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Isabel Ferreira
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences, University of Coimbra, 3000-548, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Ainhoa Bereziartua
- Environmental Epidemiology and Child Development Group, Biogipuzkoa Health Research Institute, Paseo Doctor Begiristain S/N, 20014, San Sebastian, Spain
| | - Maria Teresa Cruz
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences, University of Coimbra, 3000-548, Coimbra, Portugal.
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal.
| | - Nerea Lertxundi
- Faculty of Psychology, University of the Basque Country (UPV/EHU), 20008, San Sebastian, Spain
- Environmental Epidemiology and Child Development Group, Biogipuzkoa Health Research Institute, Paseo Doctor Begiristain S/N, 20014, San Sebastian, Spain
- Spanish Consortium for Research On Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029, Madrid, Spain
| |
Collapse
|
4
|
Wu L, Liu Y, Zhou H, Cao Z, Yu J. Gastrodin Ameliorates Learning and Memory Impairments Caused by Long-Term Noise Exposure. Noise Health 2024; 26:396-402. [PMID: 39345083 DOI: 10.4103/nah.nah_76_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/22/2024] [Indexed: 10/01/2024] Open
Abstract
The developing brain is significantly affected by long-term exposure to noise at an early age, leading to functional disorders such as learning and memory impairments. Gastrodin (GAS), a natural organic compound, is an extraction of phenolic glycoside from the rhizome of Gastrodia elata. Clinically, GAS is extensively utilised for the treatment of neurological disorders. This study aimed to explore the effect and mechanism of GAS on noise exposure-induced learning and memory impairments. Rats aged 21 days were exposed to a 90 dB noise environment for 4 weeks and divided into the noise group, the noise + GAS group, and the control group to establish a noise exposure model. After noise exposure treatment, the improvement effect of GAS on the memory of rats was evaluated by Y-maze and Morris water maze. Enzyme-linked immunosorbent assay was utilised to determine the effect of GAS on neurotransmitter levels in the hippocampal tissue of noise-exposed rats. Western blot was applied for the detection of the protein levels of neurotrophic factors. The GAS treatment significantly improved spatial memory and increased the levels of key neurotransmitters (norepinephrine, dopamine and serotonin) and neurotrophic factors (neurotrophin-3 and brain-derived neurotrophic factor) in the hippocampal tissues of noise-exposed rats. These alterations correlate with enhanced cognitive functions, suggesting a neuroprotective effect of GAS against noise-induced cognitive impairments. This study supports the potential of GAS to treat noise-induced learning and memory impairments by modulating neurotransmitter secretion and enhancing the expression levels of neurotrophic factors. These findings offer potential therapeutic avenues for cognitive impairments induced by noise exposure.
Collapse
Affiliation(s)
- Lin Wu
- Department of Pathology, Peking University Cancer Hospital Yunnan/Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University Kunming, Yunnan 650118, China
- Department of Forensic Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Ying Liu
- Department of Pathology, Peking University Cancer Hospital Yunnan/Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University Kunming, Yunnan 650118, China
| | - Hu Zhou
- Department of Forensic Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Zhenzhen Cao
- Department of Anatomy and Histology, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Jianyun Yu
- Department of Forensic Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| |
Collapse
|
5
|
Blaustein JR, Quisel MJ, Hamburg NM, Wittkopp S. Environmental Impacts on Cardiovascular Health and Biology: An Overview. Circ Res 2024; 134:1048-1060. [PMID: 38662864 PMCID: PMC11058466 DOI: 10.1161/circresaha.123.323613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Environmental stressors associated with human activities (eg, air and noise pollution, light disturbance at night) and climate change (eg, heat, wildfires, extreme weather events) are increasingly recognized as contributing to cardiovascular morbidity and mortality. These harmful exposures have been shown to elicit changes in stress responses, circadian rhythms, immune cell activation, and oxidative stress, as well as traditional cardiovascular risk factors (eg, hypertension, diabetes, obesity) that promote cardiovascular diseases. In this overview, we summarize evidence from human and animal studies of the impacts of environmental exposures and climate change on cardiovascular health. In addition, we discuss strategies to reduce the impact of environmental risk factors on current and future cardiovascular disease burden, including urban planning, personal monitoring, and mitigation measures.
Collapse
Affiliation(s)
- Jacob R. Blaustein
- New York University Grossman School of Medicine, Department of Medicine, Leon H. Charney Division of Cardiology, New York, USA
| | - Matthew J. Quisel
- Department of Medicine, Boston University Chobanian and Avedision School of Medicine
| | - Naomi M. Hamburg
- Section of Vascular Biology, Whitaker Cardiovascular Institute, Chobanian and Avedisian School of Medicine, Boston University, Boston, USA
| | - Sharine Wittkopp
- New York University Grossman School of Medicine, Department of Medicine, Leon H. Charney Division of Cardiology, New York, USA
| |
Collapse
|
6
|
Cavanaugh D, Urbanucci A, Mohamed NE, Tewari AK, Figueiro M, Kyprianou N. Link between circadian rhythm and benign prostatic hyperplasia (BPH)/lower urinary tract symptoms (LUTS). Prostate 2024; 84:417-425. [PMID: 38193363 PMCID: PMC10922447 DOI: 10.1002/pros.24656] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Benign prostatic hyperplasia (BPH) is the most common urologic disease in aging males, affecting 50% of men over 50 and up to 80% of men over 80 years old. Its negative impact on health-related quality of life implores further investigation into its risk factors and strategies for effective management. Although the exact molecular mechanisms underlying pathophysiological onset of BPH are poorly defined, the current hypothesized contributors to BPH and lower urinary tract symptoms (LUTS) include aging, inflammation, metabolic syndrome, and hormonal changes. These processes are indirectly influenced by circadian rhythm disruption. In this article, we review the recent evidence on the potential association of light changes/circadian rhythm disruption and the onset of BPH and impact on treatment. METHODS A narrative literature review was conducted using PubMed and Google Scholar to identify supporting evidence. The articles referenced ranged from 1975 to 2023. RESULTS A clear relationship between BPH/LUTS and circadian rhythm disruption is yet to be established. However, common mediators influence both diseases, including proinflammatory states, metabolic syndrome, and hormonal regulation that can be asserted to circadian disruption. Some studies have identified a possible relationship between general LUTS and sleep disturbance, but little research has been done on the medical management of these diseases and how circadian rhythm disruption further affects treatment outcomes. CONCLUSIONS There is evidence to implicate a relationship between BPH/LUTS and circadian rhythm disruptions. However, there is scarce literature on potential specific link in medical management of the disease and treatment outcomes with circadian rhythm disruption. Further study is warranted to provide BPH patients with insights into circadian rhythm directed appropriate interventions.
Collapse
Affiliation(s)
- Dana Cavanaugh
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Tisch Cancer Institute at Mount Sinai, New York, NY, USA
| | - Alfonso Urbanucci
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology and FiCanMid, Tampere University, Tampere, Finland
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Nihal E. Mohamed
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Tisch Cancer Institute at Mount Sinai, New York, NY, USA
| | - Ashutosh K. Tewari
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Tisch Cancer Institute at Mount Sinai, New York, NY, USA
| | - Mariana Figueiro
- Tisch Cancer Institute at Mount Sinai, New York, NY, USA
- Light and Health Research Center, Department of Population Health Science and Policy, Mount Sinai Health, New York, NY, USA
| | - Natasha Kyprianou
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Tisch Cancer Institute at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
7
|
Sørensen M, Pershagen G, Thacher JD, Lanki T, Wicki B, Röösli M, Vienneau D, Cantuaria ML, Schmidt JH, Aasvang GM, Al-Kindi S, Osborne MT, Wenzel P, Sastre J, Fleming I, Schulz R, Hahad O, Kuntic M, Zielonka J, Sies H, Grune T, Frenis K, Münzel T, Daiber A. Health position paper and redox perspectives - Disease burden by transportation noise. Redox Biol 2024; 69:102995. [PMID: 38142584 PMCID: PMC10788624 DOI: 10.1016/j.redox.2023.102995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/26/2023] Open
Abstract
Transportation noise is a ubiquitous urban exposure. In 2018, the World Health Organization concluded that chronic exposure to road traffic noise is a risk factor for ischemic heart disease. In contrast, they concluded that the quality of evidence for a link to other diseases was very low to moderate. Since then, several studies on the impact of noise on various diseases have been published. Also, studies investigating the mechanistic pathways underlying noise-induced health effects are emerging. We review the current evidence regarding effects of noise on health and the related disease-mechanisms. Several high-quality cohort studies consistently found road traffic noise to be associated with a higher risk of ischemic heart disease, heart failure, diabetes, and all-cause mortality. Furthermore, recent studies have indicated that road traffic and railway noise may increase the risk of diseases not commonly investigated in an environmental noise context, including breast cancer, dementia, and tinnitus. The harmful effects of noise are related to activation of a physiological stress response and nighttime sleep disturbance. Oxidative stress and inflammation downstream of stress hormone signaling and dysregulated circadian rhythms are identified as major disease-relevant pathomechanistic drivers. We discuss the role of reactive oxygen species and present results from antioxidant interventions. Lastly, we provide an overview of oxidative stress markers and adverse redox processes reported for noise-exposed animals and humans. This position paper summarizes all available epidemiological, clinical, and preclinical evidence of transportation noise as an important environmental risk factor for public health and discusses its implications on the population level.
Collapse
Affiliation(s)
- Mette Sørensen
- Work, Environment and Cancer, Danish Cancer Institute, Copenhagen, Denmark; Department of Natural Science and Environment, Roskilde University, Denmark.
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jesse Daniel Thacher
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Timo Lanki
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland; School of Medicine, University of Eastern Finland, Kuopio, Finland; Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Benedikt Wicki
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Martin Röösli
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Danielle Vienneau
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Manuella Lech Cantuaria
- Work, Environment and Cancer, Danish Cancer Institute, Copenhagen, Denmark; Research Unit for ORL - Head & Neck Surgery and Audiology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Jesper Hvass Schmidt
- Research Unit for ORL - Head & Neck Surgery and Audiology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Gunn Marit Aasvang
- Department of Air Quality and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Sadeer Al-Kindi
- Department of Medicine, University Hospitals, Harrington Heart & Vascular Institute, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH, 44106, USA
| | - Michael T Osborne
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Boston, MA, USA; Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Philip Wenzel
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Spain
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt Am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Rainer Schulz
- Institute of Physiology, Faculty of Medicine, Justus-Liebig University, Gießen, 35392, Gießen, Germany
| | - Omar Hahad
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Marin Kuntic
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Faculty of Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Katie Frenis
- Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA; Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany.
| |
Collapse
|
8
|
Hahad O, Kuntic M, Al-Kindi S, Kuntic I, Gilan D, Petrowski K, Daiber A, Münzel T. Noise and mental health: evidence, mechanisms, and consequences. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024:10.1038/s41370-024-00642-5. [PMID: 38279032 DOI: 10.1038/s41370-024-00642-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
The recognition of noise exposure as a prominent environmental determinant of public health has grown substantially. While recent years have yielded a wealth of evidence linking environmental noise exposure primarily to cardiovascular ailments, our understanding of the detrimental effects of noise on the brain and mental health outcomes remains limited. Despite being a nascent research area, an increasing body of compelling research and conclusive findings confirms that exposure to noise, particularly from sources such as traffic, can potentially impact the central nervous system. These harms of noise increase the susceptibility to mental health conditions such as depression, anxiety, suicide, and behavioral problems in children and adolescents. From a mechanistic perspective, several investigations propose direct adverse phenotypic changes in brain tissue by noise (e.g. neuroinflammation, cerebral oxidative stress), in addition to feedback signaling by remote organ damage, dysregulated immune cells, and impaired circadian rhythms, which may collectively contribute to noise-dependent impairment of mental health. This concise review linking noise exposure to mental health outcomes seeks to fill research gaps by assessing current findings from studies involving both humans and animals.
Collapse
Affiliation(s)
- Omar Hahad
- Department of Cardiology-Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), partner site Rhine-Main, Mainz, Germany.
| | - Marin Kuntic
- Department of Cardiology-Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), partner site Rhine-Main, Mainz, Germany
| | - Sadeer Al-Kindi
- Cardiovascular Prevention and Wellness, DeBakey Heart and Vascular Center, Houston Methodist, Houston, TX, USA
| | - Ivana Kuntic
- Department of Cardiology-Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Donya Gilan
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Katja Petrowski
- Medical Psychology & Medical Sociology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology-Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), partner site Rhine-Main, Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology-Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), partner site Rhine-Main, Mainz, Germany
| |
Collapse
|
9
|
Lévi FA, Okyar A, Hadadi E, Innominato PF, Ballesta A. Circadian Regulation of Drug Responses: Toward Sex-Specific and Personalized Chronotherapy. Annu Rev Pharmacol Toxicol 2024; 64:89-114. [PMID: 37722720 DOI: 10.1146/annurev-pharmtox-051920-095416] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Today's challenge for precision medicine involves the integration of the impact of molecular clocks on drug pharmacokinetics, toxicity, and efficacy toward personalized chronotherapy. Meaningful improvements of tolerability and/or efficacy of medications through proper administration timing have been confirmed over the past decade for immunotherapy and chemotherapy against cancer, as well as for commonly used pharmacological agents in cardiovascular, metabolic, inflammatory, and neurological conditions. Experimental and human studies have recently revealed sexually dimorphic circadian drug responses. Dedicated randomized clinical trials should now aim to issue personalized circadian timing recommendations for daily medical practice, integrating innovative technologies for remote longitudinal monitoring of circadian metrics, statistical prediction of molecular clock function from single-timepoint biopsies, and multiscale biorhythmic mathematical modelling. Importantly, chronofit patients with a robust circadian function, who would benefit most from personalized chronotherapy, need to be identified. Conversely, nonchronofit patients could benefit from the emerging pharmacological class of chronobiotics targeting the circadian clock.
Collapse
Affiliation(s)
- Francis A Lévi
- Chronotherapy, Cancers and Transplantation Research Unit, Faculty of Medicine, Paris-Saclay University, Villejuif, France;
- Gastrointestinal and General Oncology Service, Paul-Brousse Hospital, Assistance Publique-Hôpitaux de Paris, Villejuif, France
- Department of Statistics, University of Warwick, Coventry, United Kingdom
| | - Alper Okyar
- Faculty of Pharmacy, Department of Pharmacology, Istanbul University, Beyazit-Istanbul, Turkey
| | - Eva Hadadi
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory for Myeloid Cell Immunology, Center for Inflammation Research VIB, Zwijnaarde, Belgium
| | - Pasquale F Innominato
- Oncology Department, Ysbyty Gwynedd Hospital, Betsi Cadwaladr University Health Board, Bangor, United Kingdom
- Warwick Medical School and Cancer Research Centre, University of Warwick, Coventry, United Kingdom
| | - Annabelle Ballesta
- Inserm Unit 900, Cancer Systems Pharmacology, Institut Curie, MINES ParisTech CBIO-Centre for Computational Biology, PSL Research University, Saint-Cloud, France
| |
Collapse
|
10
|
Bayo Jimenez MT, Gericke A, Frenis K, Rajlic S, Kvandova M, Kröller-Schön S, Oelze M, Kuntic M, Kuntic I, Mihalikova D, Tang Q, Jiang S, Ruan Y, Duerr GD, Steven S, Schmeisser MJ, Hahad O, Li H, Daiber A, Münzel T. Effects of aircraft noise cessation on blood pressure, cardio- and cerebrovascular endothelial function, oxidative stress, and inflammation in an experimental animal model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166106. [PMID: 37567316 DOI: 10.1016/j.scitotenv.2023.166106] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/04/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
Large epidemiological studies have shown that traffic noise promotes the development of cardiometabolic diseases. It remains to be established how long these adverse effects of noise may persist in response to a noise-off period. We investigated the effects of acute aircraft noise exposure (mean sound level of 72 dB(A) applied for 4d) on oxidative stress and inflammation mediating vascular dysfunction and increased blood pressure in male C57BL/6 J mice. 1, 2 or 4d of noise cessation after a 4d continuous noise exposure period completely normalized noise-induced endothelial dysfunction of the aorta (measured by acetylcholine-dependent relaxation) already after a 1d noise pause. Vascular oxidative stress and the increased blood pressure were partially corrected, while markers of inflammation (VCAM-1, IL-6 and leukocyte oxidative burst) showed a normalization within 4d of noise cessation. In contrast, endothelial dysfunction, oxidative stress, and inflammation of the cerebral microvessels of noise-exposed mice did not improve at all. These data demonstrate that the recovery from noise-induced damage is more complex than expected demonstrating a complete restoration of large conductance vessel function but persistent endothelial dysfunction of the microcirculation. These findings also imply that longer noise pauses are required to completely reverse noise-induced vascular dysfunction including the resistance vessels.
Collapse
Affiliation(s)
- Maria Teresa Bayo Jimenez
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg University, Langenbeckstraße 1, 55131 Mainz, Germany; Department of Pharmacology, University of Granada, Spain
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Katie Frenis
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg University, Langenbeckstraße 1, 55131 Mainz, Germany; Boston Children's Hospital and Harvard Medical School, Department of Hematology/Oncology, Boston, MA, USA
| | - Sanela Rajlic
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg University, Langenbeckstraße 1, 55131 Mainz, Germany; Department of Cardiovascular Surgery, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Miroslava Kvandova
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg University, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Swenja Kröller-Schön
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg University, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Matthias Oelze
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg University, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Marin Kuntic
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg University, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Ivana Kuntic
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg University, Langenbeckstraße 1, 55131 Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Dominika Mihalikova
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg University, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Qi Tang
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Subao Jiang
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Yue Ruan
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Georg Daniel Duerr
- Department of Cardiovascular Surgery, University Medical Center of the Johannes Gutenberg University, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Sebastian Steven
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg University, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Michael J Schmeisser
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany; Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Omar Hahad
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg University, Langenbeckstraße 1, 55131 Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Huige Li
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg University, Langenbeckstraße 1, 55131 Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg University, Langenbeckstraße 1, 55131 Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| |
Collapse
|
11
|
Fasipe B, Laher I. Nrf2 modulates the benefits of evening exercise in type 2 diabetes. SPORTS MEDICINE AND HEALTH SCIENCE 2023; 5:251-258. [PMID: 38314046 PMCID: PMC10831386 DOI: 10.1016/j.smhs.2023.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 02/06/2024] Open
Abstract
Exercise has well-characterized therapeutic benefits in the management of type 2 diabetes mellitus (T2DM). Most of the beneficial effects of exercise arise from the impact of nuclear factor erythroid 2 related factor-2 (Nrf2) activation of glucose metabolism. Nrf2 is an essential controller of cellular anti-oxidative capacity and circadian rhythms. The circadian rhythm of Nrf2 is influenced by circadian genes on its expression, where the timing of exercise effects the activation of Nrf2 and the rhythmicity of Nrf2 and signaling, such that the timing of exercise has differential physiological effects. Exercise in the evening has beneficial effects on diabetes management, such as lowering of blood glucose and weight. The mechanisms responsible for these effects have not yet been associated with the influence of exercise on the circadian rhythm of Nrf2 activity. A better understanding of exercise-induced Nrf2 activation on Nrf2 rhythm and signaling can improve our appreciation of the distinct effects of morning and evening exercise. This review hypothesizes that activation of Nrf2 by exercise in the morning, when Nrf2 level is already at high levels, leads to hyperactivation and decrease in Nrf2 signaling, while activation of Nrf2 in the evening, when Nrf2 levels are at nadir levels, improves Nrf2 signaling and lowers blood glucose levels and increases fatty acid oxidation. Exploring the effects of Nrf2 activators on rhythmic signaling could also provide valuable insights into the optimal timing of their application, while also holding promise for timed treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Babatunde Fasipe
- Faculty of Basic Clinical Sciences, Department of Pharmacology and Therapeutics, Bowen University, Iwo, Nigeria
| | - Ismail Laher
- Faculty of Medicine, Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
12
|
Krittanawong C, Qadeer YK, Hayes RB, Wang Z, Virani S, Zeller M, Dadvand P, Lavie CJ. Noise Exposure and Cardiovascular Health. Curr Probl Cardiol 2023; 48:101938. [PMID: 37422031 DOI: 10.1016/j.cpcardiol.2023.101938] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
Noise is considered an environmental stressor adversely affecting well-being and quality of life, inter-individual communications, and attention and cognitive function and inducing emotional responses, corresponding to noise annoyance. In addition, noise exposure is associated with nonauditory effects including worsening mental health, cognitive impairments, and adverse birth outcomes, sleep disorders, and increased annoyance. An accumulating body of evidence has indicated that traffic noise is also associated with CVD, through multiple pathways. It has been shown that psychological stress and mental health disorders such as depression and anxiety have a negative impact on the development of cardiovascular diseases and outcomes. Likewise, reduced sleep quality and/or duration has been reported to increase sympathetic nervous system activity, which can predispose to conditions like hypertension and diabetes mellitus, known risk factors for CVD. Finally, there seems to be a disruption in the hypothalamic-pituitary-axis secondary to noise pollution that also results in an increased risk of CVD. The World Health Organization has estimated that the number of DALYs (disability-adjusted life-years) lost resulting from environmental noise in Western Europe ranges from 1 to 1.6 million, making noise the second major contributor to the burden of disease in Europe, only after air pollution. Thus, we sought to explore the relationship between noise pollution and risk of CVD.
Collapse
Affiliation(s)
| | | | - Richard B Hayes
- Division of Epidemiology, Department of Population Health, NYU Grossman School of Medicine, New York, NY
| | - Zhen Wang
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN; Division of Health Care Policy and Research, Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Salim Virani
- Section of Cardiology, Baylor College of Medicine, Houston, TX; The Aga Khan University, Karachi, Pakistan; Baylor College of Medicine, Houston, TX, USA
| | - Marianne Zeller
- Laboratoire PEC2, EA 7460, Université de Bourgogne-Franche Comté, Dijon, France
| | - Payam Dadvand
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; CIBERESP (Centro de Investigación Biomédica en Red Epidemiología y Salud Pública), Madrid, Spain
| | - Carl J Lavie
- John Ochsner Heart and Vascular Institute, Ochsner Clinical School, The University of Queensland School of Medicine, New Orleans, LA, USA
| |
Collapse
|
13
|
Münzel T, Sørensen M, Hahad O, Nieuwenhuijsen M, Daiber A. The contribution of the exposome to the burden of cardiovascular disease. Nat Rev Cardiol 2023; 20:651-669. [PMID: 37165157 DOI: 10.1038/s41569-023-00873-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 05/12/2023]
Abstract
Large epidemiological and health impact assessment studies at the global scale, such as the Global Burden of Disease project, indicate that chronic non-communicable diseases, such as atherosclerosis and diabetes mellitus, caused almost two-thirds of the annual global deaths in 2020. By 2030, 77% of all deaths are expected to be caused by non-communicable diseases. Although this increase is mainly due to the ageing of the general population in Western societies, other reasons include the increasing effects of soil, water, air and noise pollution on health, together with the effects of other environmental risk factors such as climate change, unhealthy city designs (including lack of green spaces), unhealthy lifestyle habits and psychosocial stress. The exposome concept was established in 2005 as a new strategy to study the effect of the environment on health. The exposome describes the harmful biochemical and metabolic changes that occur in our body owing to the totality of different environmental exposures throughout the life course, which ultimately lead to adverse health effects and premature deaths. In this Review, we describe the exposome concept with a focus on environmental physical and chemical exposures and their effects on the burden of cardiovascular disease. We discuss selected exposome studies and highlight the relevance of the exposome concept for future health research as well as preventive medicine. We also discuss the challenges and limitations of exposome studies.
Collapse
Affiliation(s)
- Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Mette Sørensen
- Danish Cancer Society, Copenhagen, Denmark
- Department of Natural Science and Environment, Roskilde University, Roskilde, Denmark
| | - Omar Hahad
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Mark Nieuwenhuijsen
- Institute for Global Health (ISGlobal), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), PRBB building (Mar Campus), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
14
|
Bayo Jimenez MT, Hahad O, Kuntic M, Daiber A, Münzel T. Noise, Air, and Heavy Metal Pollution as Risk Factors for Endothelial Dysfunction. Eur Cardiol 2023; 18:e09. [PMID: 37377448 PMCID: PMC10291605 DOI: 10.15420/ecr.2022.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/12/2022] [Indexed: 06/29/2023] Open
Abstract
During the last two decades, large epidemiological studies have shown that the physical environment, including noise, air pollution or heavy metals, have a considerable impact on human health. It is known that the most common cardiovascular risk factors are all associated with endothelial dysfunction. Vascular tone, circulation of blood cells, inflammation, and platelet activity are some of the most essential functions regulated by the endothelium that suffer negative effects as a consequence of environmental pollution, causing endothelial dysfunction. In this review, we delineate the impact of environmental risk factors in connection to endothelial function. On a mechanistic level, a significant number of studies suggest the involvement of endothelial dysfunction to fundamentally drive the adverse endothelium health effects of the different pollutants. We focus on well-established studies that demonstrate the negative effects on the endothelium, with a focus on air, noise, and heavy metal pollution. This in-depth review on endothelial dysfunction as a consequence of the physical environment aims to contribute to the associated research needs by evaluating current findings from human and animal studies. From a public health perspective, these findings may also help to reinforce efforts promoting the research for adequate promising biomarkers for cardiovascular diseases since endothelial function is considered a hallmark of environmental stressor health effects.
Collapse
Affiliation(s)
- Maria Teresa Bayo Jimenez
- Department of Cardiology – Cardiology I, University Medical Center of the Johannes Gutenberg University MainzMainz, Germany
| | - Omar Hahad
- Department of Cardiology – Cardiology I, University Medical Center of the Johannes Gutenberg University MainzMainz, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Rhine-MainMainz, Germany
- Leibniz Institute for Resilience Research (LIR)Mainz, Germany
| | - Marin Kuntic
- Department of Cardiology – Cardiology I, University Medical Center of the Johannes Gutenberg University MainzMainz, Germany
| | - Andreas Daiber
- Department of Cardiology – Cardiology I, University Medical Center of the Johannes Gutenberg University MainzMainz, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Rhine-MainMainz, Germany
| | - Thomas Münzel
- Department of Cardiology – Cardiology I, University Medical Center of the Johannes Gutenberg University MainzMainz, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Rhine-MainMainz, Germany
| |
Collapse
|
15
|
Münzel T, Daiber A. Vascular redox signaling, eNOS uncoupling and endothelial dysfunction in the setting of transportation noise exposure or chronic treatment with organic nitrates. Antioxid Redox Signal 2023; 38:1001-1021. [PMID: 36719770 PMCID: PMC10171967 DOI: 10.1089/ars.2023.0006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
SIGNIFICANCE Cardiovascular disease and drug-induced health side effects are frequently associated with - or even caused by - an imbalance between the concentrations of reactive oxygen and nitrogen species (RONS) and antioxidants respectively determining the metabolism of these harmful oxidants. RECENT ADVANCES According to the "kindling radical" hypothesis, initial formation of RONS may further trigger the additional activation of RONS formation under certain pathological conditions. The present review will specifically focus on a dysfunctional, uncoupled endothelial nitric oxide synthase (eNOS) caused by RONS in the setting of transportation noise exposure or chronic treatment with organic nitrates, especially nitroglycerin. We will further describe the various "redox switches" that are proposed to be involved in the uncoupling process of eNOS. CRITICAL ISSUES In particular, the oxidative depletion of tetrahydrobiopterin (BH4), and S-glutathionylation of the eNOS reductase domain will be highlighted as major pathways for eNOS uncoupling upon noise exposure or nitroglycerin treatment. In addition, oxidative disruption of the eNOS dimer, inhibitory phosphorylation of eNOS at threonine or tyrosine residues, redox-triggered accumulation of asymmetric dimethylarginine (ADMA) and L-arginine deficiency will be discussed as alternative mechanisms of eNOS uncoupling. FUTURE DIRECTIONS The clinical consequences of eNOS dysfunction due to uncoupling on cardiovascular disease will be summarized also providing a template for future clinical studies on endothelial dysfunction caused by pharmacological or environmental risk factors.
Collapse
Affiliation(s)
- Thomas Münzel
- University Medical Center of the Johannes Gutenberg University Mainz, 39068, Cardiology I, Mainz, Rheinland-Pfalz, Germany;
| | - Andreas Daiber
- University Medical Center of the Johannes Gutenberg University Mainz, 39068, Cardiology I, Mainz, Rheinland-Pfalz, Germany;
| |
Collapse
|
16
|
Calderón-Garcidueñas L, Kulesza R, Greenough GP, García-Rojas E, Revueltas-Ficachi P, Rico-Villanueva A, Flores-Vázquez JO, Brito-Aguilar R, Ramírez-Sánchez S, Vacaseydel-Aceves N, Cortes-Flores AP, Mansour Y, Torres-Jardón R, Villarreal-Ríos R, Koseoglu E, Stommel EW, Mukherjee PS. Fall Risk, Sleep Behavior, and Sleep-Related Movement Disorders in Young Urbanites Exposed to Air Pollution. J Alzheimers Dis 2023; 91:847-862. [PMID: 36502327 DOI: 10.3233/jad-220850] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Quadruple aberrant hyperphosphorylated tau, amyloid-β, α-synuclein, and TDP-43 pathology had been documented in 202/203 forensic autopsies in Metropolitan Mexico City ≤40-year-olds with high exposures to ultrafine particulate matter and engineered nanoparticles. Cognition deficits, gait, equilibrium abnormalities, and MRI frontal, temporal, caudate, and cerebellar atrophy are documented in young adults. OBJECTIVE This study aimed to identify an association between falls, probable Rapid Eye Movement Sleep Behavior Disorder (pRBD), restless leg syndrome (RLS), and insomnia in 2,466 Mexican, college-educated volunteers (32.5±12.4 years). METHODS The anonymous, online study applied the pRBD and RLS Single-Questions and self-reported night-time sleep duration, excessive daytime sleepiness, insomnia, and falls. RESULTS Fall risk was strongly associated with pRBD and RLS. Subjects who fell at least once in the last year have an OR = 1.8137 [1.5352, 2.1426] of answering yes to pRBD and/or RLS questions, documented in 29% and 24% of volunteers, respectively. Subjects fell mostly outdoors (12:01 pm to 6:00 pm), 43% complained of early wake up hours, and 35% complained of sleep onset insomnia (EOI). EOI individuals have an OR of 2.5971 [2.1408, 3.1506] of answering yes to the RLS question. CONCLUSION There is a robust association between falls, pRBD, and RLS, strongly suggesting misfolded proteinopathies involving critical brainstem arousal and motor hubs might play a crucial role. Nanoparticles are likely a significant risk for falls, sleep disorders, insomnia, and neurodegenerative lethal diseases, thus characterizing air particulate pollutants' chemical composition, emission sources, and cumulative exposure concentrations are strongly recommended.
Collapse
Affiliation(s)
| | - Randy Kulesza
- Auditory Research Center, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | - Glen P Greenough
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover NH, USA
| | | | | | | | | | | | | | | | | | - Yusra Mansour
- Department of Otolaryngology -Head and Neck Surgery, Henry Ford Macomb Hospital, Clinton Township, MI, USA
| | - Ricardo Torres-Jardón
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional, Autónoma de México, México
| | | | - Emel Koseoglu
- Neurology Department, Erciyes University, Kayseri, Turkey
| | - Elijah W Stommel
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover NH, USA
| | - Partha S Mukherjee
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata, India
| |
Collapse
|
17
|
Wang J, Zhang P, Wang Y, Wang H, Gao Y, Zhang Y. Association of occupational noise exposure with hypertension: A cross-sectional study. J Clin Hypertens (Greenwich) 2022; 25:158-164. [PMID: 36585815 PMCID: PMC9903191 DOI: 10.1111/jch.14619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 01/01/2023]
Abstract
The effects of chronic occupational noise exposure on hypertension are debated. We aimed to investigate the association between occupational noise exposure and the prevalence of hypertension. The cross-sectional data were collected from 2017 to 2018 using occupational physical examination data from a local aircraft manufacturing enterprise in Xi'an. We categorized occupational noise exposure as high (≥85 dBA) and low noise exposure (< 85 dBA). Logistic regression analysis was performed to evaluate the association between occupational noise exposure and hypertension, and associations were further evaluated using subgroup analyses for age, sex, and body mass index (BMI). Of the 4746 participants (median age, 43 years; 73.4% men), 9.57% (454/4746) had hypertension and 32.4% (1540/4746) were exposed to high noise. Compared to the participants with low occupational exposure to noise, the adjusted odds ratio (OR) for hypertension prevalence was 1.30 (1.05-1.62) for those with high occupational noise exposure. Subgroup analyses revealed that the noise-hypertension association only existed in young participants (OR, 1.70; 95% CI, 1.21-2.40). This study revealed a harmful association between high occupational noise exposure and hypertension in young adults. The study suggests occupational noise exposure as a target for worksite interventions to prevent hypertension.
Collapse
Affiliation(s)
- Jin Wang
- Department of Cardiovascular Disease, East District of the First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Panpan Zhang
- Department of Neurology, the First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Yaning Wang
- Department of Cardiovascular Disease, East District of the First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Hui Wang
- Department of Cardiovascular Disease, East District of the First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Yuan Gao
- Department of Cardiovascular Disease, East District of the First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Yurong Zhang
- Department of Neurology, the First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| |
Collapse
|
18
|
Dasari SS, Archer M, Mohamed NE, Tewari AK, Figueiro MG, Kyprianou N. Circadian Rhythm Disruption as a Contributor to Racial Disparities in Prostate Cancer. Cancers (Basel) 2022; 14:cancers14205116. [PMID: 36291899 PMCID: PMC9600368 DOI: 10.3390/cancers14205116] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/08/2022] [Accepted: 10/15/2022] [Indexed: 01/27/2023] Open
Abstract
In the United States, African American (AA) men have a 2.4 times higher mortality rate due to prostate cancer than White men. The multifactorial causes of the racial disparities in prostate cancer involve various social determinants of health, socioeconomic status, and access to healthcare. However, emerging evidence also suggests that circadian rhythm disruption (CRD) contributes to prostate cancer, and AA men may be more susceptible to developing CRDs. Circadian rhythms play a significant role in metabolism, hormone secretion, and sleep/wake cycles. Disruption in these circadian rhythms can be caused by airplane travel/jetlag, night shift work, exposure to light, and neighborhood noise levels, which can contribute to sleep disorders and chronic conditions such as obesity, diabetes, cardiovascular disease, and depression. The drivers of the racial disparities in CRD include night shift work, racial discrimination, elevated stress, and residing in poor neighborhoods characterized by high noise pollution. Given the increased vulnerability of AA men to CRDs, and the role that CRDs play in prostate cancer, elucidating the clock-related prostate cancer pathways and their behavior and environmental covariates may be critical to better understanding and reducing the racial disparities in prostate cancer.
Collapse
Affiliation(s)
- Sonali S. Dasari
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Maddison Archer
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nihal E. Mohamed
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Mount Sinai Health, New York, NY 10029, USA
| | - Ashutosh K. Tewari
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Mount Sinai Health, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mariana G. Figueiro
- Tisch Cancer Institute, Mount Sinai Health, New York, NY 10029, USA
- Light and Health Research Center, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: (M.G.F.); (N.K.)
| | - Natasha Kyprianou
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Mount Sinai Health, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: (M.G.F.); (N.K.)
| |
Collapse
|
19
|
Liu Y, Yan S, Zou L, Wen J, Fu W. Noise exposure and risk of myocardial infarction incidence and mortality: a dose-response meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:46458-46470. [PMID: 35504989 DOI: 10.1007/s11356-022-20377-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
The strength and shape of the dose-response relationship between different types of noise and myocardial infarction (MI) remain unclear. Therefore, we aimed to summarize the evidence of the association between various types of noise and MI incidence and mortality through a dose-response meta-analysis. We performed a systematic search of the PubMed, Embase, and Web of Science databases up to December 19, 2021. The generalized least-squares method and restricted cubic splines were used to assess the potential linear and nonlinear dose-response relationships between noise exposure and the risk of MI events. Twenty observational studies with 34 reports met the eligibility criteria. In the linear models, the pooled relative risk and corresponding 95% confidence interval (CI) for MI incidence was 1.04 (95% CI: 1.02 - 1.05), and the MI mortality was 1.02 (95% CI: 1.02 - 1.03) for each 10 dB(A) increase in noise exposure. In addition, we observed an approximately J-shaped dose-response relationship between noise and MI mortality (Pnonlinearity = 0.0037), whereas the threshold for the statistical impact of noise on MI mortality may be 42 dB(A). Our findings support the notion that various types of noise exposure have a positive dose-response relationship with the risk of MI incidence and mortality.
Collapse
Affiliation(s)
- Yifang Liu
- School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Shijiao Yan
- School of Public Health, Hainan Medical University, Haikou, 571199, China
| | - Li Zou
- Department of Neurology, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China
| | - Jing Wen
- School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Wenning Fu
- School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
| |
Collapse
|
20
|
Zuo J, Zhang Z, Luo M, Zhou L, Nice EC, Zhang W, Wang C, Huang C. Redox signaling at the crossroads of human health and disease. MedComm (Beijing) 2022; 3:e127. [PMID: 35386842 PMCID: PMC8971743 DOI: 10.1002/mco2.127] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
Redox biology is at the core of life sciences, accompanied by the close correlation of redox processes with biological activities. Redox homeostasis is a prerequisite for human health, in which the physiological levels of nonradical reactive oxygen species (ROS) function as the primary second messengers to modulate physiological redox signaling by orchestrating multiple redox sensors. However, excessive ROS accumulation, termed oxidative stress (OS), leads to biomolecule damage and subsequent occurrence of various diseases such as type 2 diabetes, atherosclerosis, and cancer. Herein, starting with the evolution of redox biology, we reveal the roles of ROS as multifaceted physiological modulators to mediate redox signaling and sustain redox homeostasis. In addition, we also emphasize the detailed OS mechanisms involved in the initiation and development of several important diseases. ROS as a double-edged sword in disease progression suggest two different therapeutic strategies to treat redox-relevant diseases, in which targeting ROS sources and redox-related effectors to manipulate redox homeostasis will largely promote precision medicine. Therefore, a comprehensive understanding of the redox signaling networks under physiological and pathological conditions will facilitate the development of redox medicine and benefit patients with redox-relevant diseases.
Collapse
Affiliation(s)
- Jing Zuo
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
| | - Maochao Luo
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
| | - Edouard C. Nice
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVictoriaAustralia
| | - Wei Zhang
- West China Biomedical Big Data CenterWest China HospitalSichuan UniversityChengduP. R. China
- Mental Health Center and Psychiatric LaboratoryThe State Key Laboratory of BiotherapyWest China Hospital of Sichuan UniversityChengduP. R. China
| | - Chuang Wang
- Department of PharmacologyProvincial Key Laboratory of Pathophysiology, Ningbo University School of MedicineNingboZhejiangP. R. China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
- Department of PharmacologyProvincial Key Laboratory of Pathophysiology, Ningbo University School of MedicineNingboZhejiangP. R. China
| |
Collapse
|