1
|
Scherf M, Lammer H, Spross L. Eta-Earth Revisited II: Deriving a Maximum Number of Earth-Like Habitats in the Galactic Disk. ASTROBIOLOGY 2024; 24:e916-e1061. [PMID: 39481023 DOI: 10.1089/ast.2023.0076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
In Lammer et al. (2024), we defined Earth-like habitats (EHs) as rocky exoplanets within the habitable zone of complex life (HZCL) on which Earth-like N2-O2-dominated atmospheres with minor amounts of CO2 can exist, and derived a formulation for estimating the maximum number of EHs in the galaxy given realistic probabilistic requirements that have to be met for an EH to evolve. In this study, we apply this formulation to the galactic disk by considering only requirements that are already scientifically quantifiable. By implementing literature models for star formation rate, initial mass function, and the mass distribution of the Milky Way, we calculate the spatial distribution of disk stars as functions of stellar mass and birth age. For the stellar part of our formulation, we apply existing models for the galactic habitable zone and evaluate the thermal stability of nitrogen-dominated atmospheres with different CO2 mixing ratios inside the HZCL by implementing the newest stellar evolution and upper atmosphere models. For the planetary part, we include the frequency of rocky exoplanets, the availability of surface water and subaerial land, and the potential requirement of hosting a large moon by evaluating their importance and implementing these criteria from minima to maxima values as found in the scientific literature. We also discuss further factors that are not yet scientifically quantifiable but may be requirements for EHs to evolve. Based on such an approach, we find that EHs are relatively rare by obtaining plausible maximum numbers of 2.5 - 2.4 + 71.6 × 10 5 and 0.6 - 0.59 + 27.1 × 10 5 planets that can potentially host N2-O2-dominated atmospheres with maximum CO2 mixing ratios of 10% and 1%, respectively, implying that, on average, a minimum of ∼ 10 3 - 10 6 rocky exoplanets in the HZCL are needed for 1 EH to evolve. The actual number of EHs, however, may be substantially lower than our maximum ranges since several requirements with unknown occurrence rates are not included in our model (e.g., the origin of life, working carbon-silicate and nitrogen cycles); this also implies extraterrestrial intelligence (ETI) to be significantly rarer still. Our results illustrate that not every star can host EHs nor can each rocky exoplanet within the HZCL evolve such that it might be able to host complex animal-like life or even ETIs. The Copernican Principle of Mediocrity therefore cannot be applied to infer that such life will be common in the galaxy.
Collapse
Affiliation(s)
- Manuel Scherf
- Space Research Institute, Austrian Academy of Sciences, Graz Austria
- IGAM/Institute of Physics, University of Graz, Graz, Austria
| | - Helmut Lammer
- Space Research Institute, Austrian Academy of Sciences, Graz Austria
| | - Laurenz Spross
- Space Research Institute, Austrian Academy of Sciences, Graz Austria
- IGAM/Institute of Physics, University of Graz, Graz, Austria
| |
Collapse
|
2
|
Johansen A, Camprubi E, van Kooten E, Hoeijmakers HJ. Self-Oxidation of the Atmospheres of Rocky Planets with Implications for the Origin of Life. ASTROBIOLOGY 2024; 24:856-880. [PMID: 39344975 DOI: 10.1089/ast.2023.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Rocky planets may acquire a primordial atmosphere by the outgassing of volatiles from their magma ocean. The distribution of O between H2O, CO, and CO2 in chemical equilibrium subsequently changes significantly with decreasing temperature. We consider here two chemical models: one where CH4 and NH3 are assumed to be irrevocably destroyed by photolysis and second where these molecules persist. In the first case, we show that CO cannot coexist with H2O, since CO oxidizes at low temperatures to form CO2 and H2. In both cases, H escapes from the thermosphere within a few 10 million years by absorption of stellar XUV radiation. This escape drives an atmospheric self-oxidation process, whereby rocky planet atmospheres become dominated by CO2 and H2O regardless of their initial oxidation state at outgassing. HCN is considered a potential precursor of prebiotic compounds and RNA. Oxidizing atmospheres are inefficient at producing HCN by lightning. Alternatively, we have demonstrated that lightning-produced NO, which dissolves as nitrate in oceans, and interplanetary dust particles may be the main sources of fixed nitrogen in emerging biospheres. Our results highlight the need for origin-of-life scenarios where the first metabolism fixes its C from CO2, rather than from HCN and CO.
Collapse
Affiliation(s)
- Anders Johansen
- Center for Star and Planet Formation, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Lund Observatory, Department of Physics, Lund University, Lund, Sweden
| | - Eloi Camprubi
- School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Elishevah van Kooten
- Center for Star and Planet Formation, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
3
|
Lingam M, Nichols R, Balbi A. A Bayesian Analysis of the Probability of the Origin of Life Per Site Conducive to Abiogenesis. ASTROBIOLOGY 2024; 24:813-823. [PMID: 39159441 DOI: 10.1089/ast.2024.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The emergence of life from nonlife, or abiogenesis, remains a fundamental question in scientific inquiry. In this article, we investigate the probability of the origin of life (per conducive site) by leveraging insights from Earth's environments. If life originated endogenously on Earth, its existence is indeed endowed with informative value, although the interpretation of the attendant significance hinges critically upon prior assumptions. By adopting a Bayesian framework, for an agnostic prior, we establish a direct connection between the number of potential locations for abiogenesis on Earth and the probability of life's emergence per site. Our findings suggest that constraints on the availability of suitable environments for the origin(s) of life on Earth may offer valuable insights into the probability of abiogenesis and the frequency of life in the universe.
Collapse
Affiliation(s)
- Manasvi Lingam
- Department of Aerospace, Physics and Space Sciences, Florida Institute of Technology, Melbourne, Florida, USA
- Department of Physics, The University of Texas at Austin, Austin, Texas, USA
| | - Ruth Nichols
- Department of Aerospace, Physics and Space Sciences, Florida Institute of Technology, Melbourne, Florida, USA
| | - Amedeo Balbi
- Dipartimento di Fisica, Università di Roma "Tor Vergata," Roma, Italy
| |
Collapse
|
4
|
Rodriguez LE, Altair T, Hermis NY, Jia TZ, Roche TP, Steller LH, Weber JM. Chapter 4: A Geological and Chemical Context for the Origins of Life on Early Earth. ASTROBIOLOGY 2024; 24:S76-S106. [PMID: 38498817 DOI: 10.1089/ast.2021.0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Within the first billion years of Earth's history, the planet transformed from a hot, barren, and inhospitable landscape to an environment conducive to the emergence and persistence of life. This chapter will review the state of knowledge concerning early Earth's (Hadean/Eoarchean) geochemical environment, including the origin and composition of the planet's moon, crust, oceans, atmosphere, and organic content. It will also discuss abiotic geochemical cycling of the CHONPS elements and how these species could have been converted to biologically relevant building blocks, polymers, and chemical networks. Proposed environments for abiogenesis events are also described and evaluated. An understanding of the geochemical processes under which life may have emerged can better inform our assessment of the habitability of other worlds, the potential complexity that abiotic chemistry can achieve (which has implications for putative biosignatures), and the possibility for biochemistries that are vastly different from those on Earth.
Collapse
Affiliation(s)
- Laura E Rodriguez
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Lunar and Planetary Institute, Universities Space Research Association, Houston, Texas, USA. (Current)
| | - Thiago Altair
- Institute of Chemistry of São Carlos, Universidade de São Paulo, São Carlos, Brazil
- Department of Chemistry, College of the Atlantic, Bar Harbor, Maine, USA. (Current)
| | - Ninos Y Hermis
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Department of Physics and Space Sciences, University of Granada, Granada Spain. (Current)
| | - Tony Z Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Tyler P Roche
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Luke H Steller
- Australian Centre for Astrobiology, and School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, Australia
| | - Jessica M Weber
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
5
|
Tayfun Ü, Tirkeş S, Doğan M, Tirkeş S, Zahmakıran M. Comparative Performance Study of Acidic Pumice and Basic Pumice Inclusions for Acrylonitrile-Butadiene-Styrene-Based Composite Filaments. 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:276-286. [PMID: 38389678 PMCID: PMC10880650 DOI: 10.1089/3dp.2022.0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
This study aims to evaluate the effective use of porous pumice powder as an additive in acrylonitrile-butadiene-styrene (ABS)-based composite materials. The influence of pumice addition on mechanical, thermomechanical, thermal, and physical properties of ABS filaments was reported. Two types of pumice, namely acidic pumice (AP) and basic pumice (BP), were melt compounded with ABS at loading levels of 5%, 10%, 15%, and 20% by weight using the melt extrusion preparation method. Composites were shaped into dog bone test specimens by the injection molding process. The physical properties of pumice powders were investigated by particle size analysis and X-ray spectroscopy techniques. Mechanical, thermomechanical, thermal, melt flow, and morphological behaviors of ABS/AP and ABS/BP composite filaments were proposed. According to test results, pumice addition led to an increase in the mechanical response of ABS up to a filling ratio of 10%. Further inclusion of pumice caused sharp reduction due to the possible agglomeration of pumice particles. Composites filled with AP yielded remarkably higher mechanical performance in terms of tensile, impact, and hardness strength compared with BP-loaded composites. According to thermal analyses, ABS exhibited higher thermal stability after incorporation of AP and BP. Pumice addition also resulted in raising the glass transition temperature of ABS. Melt flow index (MFI) findings revealed that addition of two types of pumice led to an opposite trend in the melt flow behavior of ABS filaments. Homogeneous dispersion of pumice particles into the ABS matrix when adding low amounts, as well as reduction in dispersion homogeneity with high amounts, of AP and BP was confirmed by scanning electron microscopy (SEM) micrographs.
Collapse
Affiliation(s)
- Ümit Tayfun
- Department of Basic Sciences, Bartın University, Bartın, Türkiye
| | - Seha Tirkeş
- Department of Chemical Engineering, Atilim University, Ankara, Türkiye
| | - Mehmet Doğan
- Department of Textile Engineering, Erciyes University, Kayseri, Türkiye
| | - Süha Tirkeş
- Welding Technology and Non-destructive Testing Research and Application Center, Middle East Technical University, Ankara, Türkiye
| | | |
Collapse
|
6
|
Fisk M, Popa R. Decorated Vesicles as Prebiont Systems (a Hypothesis). ORIGINS LIFE EVOL B 2023; 53:187-203. [PMID: 38072914 DOI: 10.1007/s11084-023-09643-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/20/2023] [Indexed: 12/31/2023]
Abstract
Decorated vesicles in deep, seafloor basalts form abiotically, but show at least four life-analogous features, which makes them a candidate for origin of life research. These features are a physical enclosure, carbon-assimilatory catalysts, semi-permeable boundaries, and a source of usable energy. The nanometer-to-micron-sized spherules on the inner walls of decorated vesicles are proposed to function as mineral proto-enzymes. Chemically, these structures resemble synthetic FeS clusters shown to convert CO2, CO and H2 into methane, formate, and acetate. Secondary phyllosilicate minerals line the vesicles' inner walls and can span openings in the vesicles and thus can act as molecular sieves between the vesicles' interior and the surrounding aquifer. Lastly, basalt glass in the vesicle walls takes up protons, which replace cations in the silicate framework. This results in an inward proton flux, reciprocal outward flux of metal cations, more alkaline pH inside the vesicle than outside, and production of more phyllosilicates. Such life-like features could have been exploited to move decorated vesicles toward protolife systems. Decorated vesicles are proposed as study models of prebiotic systems that are expected to have existed on the early Earth and Earth-like exoplanets. Their analysis can lead to better understanding of changes in planetary geocycles during the origin of life.
Collapse
Affiliation(s)
- Martin Fisk
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, 97330, USA.
| | - Radu Popa
- River Road Research, Tonawanda, NY, 14150, USA
| |
Collapse
|
7
|
Ge Q, Liu Y, You W, Wang W, Li K, Ruan X, Xie L, Wang T, Zhang L. Prebiotic synthesis of mineral-bearing microdroplet from inorganic carbon photoreduction at air-water interface. PNAS NEXUS 2023; 2:pgad389. [PMID: 38034096 PMCID: PMC10682977 DOI: 10.1093/pnasnexus/pgad389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023]
Abstract
The origin of life on Earth is an enigmatic and intricate conundrum that has yet to be comprehensively resolved despite recent significant developments within the discipline of archaeology and geology. Chemically, metal-sulfide minerals are speculated to serve as an important medium for giving birth in early life, while yet so far direct evidence to support the hypothesis for the highly efficient conversion of inorganic carbon into praxiological biomolecules remains scarce. In this work, we provide an initial indication that sphalerite, employed as a typical mineral, shows its enormous capability for promoting the conversion of inorganic carbon into elementary biomolecule formic acid (HCOOH) in airborne mineral-bearing aerosol microdroplet, which is over two orders of magnitude higher than that of the corresponding conventional bulk-like aqueous phase medium in the environment (e.g. river, lake, sea, etc.). This significant enhancement was further validated by a wide range of minerals and clays, including CuS, NiS, CoS, CdS, MnS, elemental sulfur, Arizona Test Dust, loess, nontronite, and montmorillonite. We reveal that the abundant interface of unique physical-chemical features instinct for aerosol or cloud microdroplets reduces the reaction energy barrier for the reaction, thus leading to extremely high HCOOH production (2.52 × 1014 kg year-1). This study unfolds unrecognized remarkable contributions of the considered scheme in the accumulation of prebiotic biomolecules in the ancient period of the Earth.
Collapse
Affiliation(s)
- Qiuyue Ge
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China
| | - Yangyang Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China
| | - Wenbo You
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China
| | - Wei Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China
| | - Kejian Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China
| | - Xuejun Ruan
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China
| | - Lifang Xie
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China
| | - Tao Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China
| | - Liwu Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| |
Collapse
|
8
|
Bada JL. Volcanic Island lightning prebiotic chemistry and the origin of life in the early Hadean eon. Nat Commun 2023; 14:2011. [PMID: 37037857 PMCID: PMC10086016 DOI: 10.1038/s41467-023-37894-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/04/2023] [Indexed: 04/12/2023] Open
Affiliation(s)
- Jeffrey L Bada
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92024, USA.
| |
Collapse
|
9
|
Westall F, Brack A, Fairén AG, Schulte MD. Setting the geological scene for the origin of life and continuing open questions about its emergence. FRONTIERS IN ASTRONOMY AND SPACE SCIENCES 2023; 9:1095701. [PMID: 38274407 PMCID: PMC7615569 DOI: 10.3389/fspas.2022.1095701] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The origin of life is one of the most fundamental questions of humanity. It has been and is still being addressed by a wide range of researchers from different fields, with different approaches and ideas as to how it came about. What is still incomplete is constrained information about the environment and the conditions reigning on the Hadean Earth, particularly on the inorganic ingredients available, and the stability and longevity of the various environments suggested as locations for the emergence of life, as well as on the kinetics and rates of the prebiotic steps leading to life. This contribution reviews our current understanding of the geological scene in which life originated on Earth, zooming in specifically on details regarding the environments and timescales available for prebiotic reactions, with the aim of providing experimenters with more specific constraints. Having set the scene, we evoke the still open questions about the origin of life: did life start organically or in mineralogical form? If organically, what was the origin of the organic constituents of life? What came first, metabolism or replication? What was the time-scale for the emergence of life? We conclude that the way forward for prebiotic chemistry is an approach merging geology and chemistry, i.e., far-from-equilibrium, wet-dry cycling (either subaerial exposure or dehydration through chelation to mineral surfaces) of organic reactions occurring repeatedly and iteratively at mineral surfaces under hydrothermal-like conditions.
Collapse
Affiliation(s)
| | - André Brack
- Centre de Biophysique Moléculaire, CNRS, Orléans, France
| | - Alberto G. Fairén
- Centro de Astrobiología (CAB, CSIC-INTA), Madrid, Spain
- Cornell University, Ithaca, NY, United States
| | | |
Collapse
|
10
|
Abstract
An explosive volcanic eruption occurred in the Ogasawara Islands on 13-15 August 2021, bringing unprecedented amounts of floating pumice to the coast of Okinawa Island in the Ryukyu Archipelago, 1300 km west of the volcano, approximately 2 months later. The coast of Okinawa Island, especially along the northern part, is home to many typical subtropical seascapes, including coral reefs and mangrove forests, so the possible impact of the large amount of pumice is attracting attention. Here, we report early evidence of ecosystem changes as a result of large-scale pumice stranding on coastal beaches, in estuaries and mangrove forests and passage across fringing coral reefs. Massive pumice drifts are major obstacles to fishing activities and ship traffic, but short and long-term changes in coastal ecosystems can also occur. The phenomena observed on Okinawa Island can be a preview of coastal impacts for the Kyushu, Shikoku, Honshu Islands, where pumice has subsequently washed ashore.
Collapse
|
11
|
Lalla EA, Konstantinidis M, Veneranda M, Daly MG, Manrique JA, Lymer EA, Freemantle J, Cloutis EA, Stromberg JM, Shkolyar S, Caudill C, Applin D, Vago JL, Rull F, Lopez-Reyes G. Raman Characterization of the CanMars Rover Field Campaign Samples Using the Raman Laser Spectrometer ExoMars Simulator: Implications for Mars and Planetary Exploration. ASTROBIOLOGY 2022; 22:416-438. [PMID: 35041521 DOI: 10.1089/ast.2021.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The Mars 2020 Perseverance rover landed on February 18, 2021, and has started ground operations. The ExoMars Rosalind Franklin rover will touch down on June 10, 2023. Perseverance will be the first-ever Mars sample caching mission-a first step in sample return to Earth. SuperCam and Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals (SHERLOC) on Perseverance, and Raman Laser Spectrometer (RLS) on Rosalind Franklin, will comprise the first ever in situ planetary mission Raman spectroscopy instruments to identify rocks, minerals, and potential organic biosignatures on Mars' surface. There are many challenges associated when using Raman instruments and the optimization and quantitative analysis of resulting data. To understand how best to overcome them, we performed a comprehensive Raman analysis campaign on CanMars, a Mars sample caching rover analog mission undertaken in Hanksville, Utah, USA, in 2016. The Hanksville region presents many similarities to Oxia Planum's past habitable conditions, including liquid water, flocculent, and elemental compounds (such as clays), catalysts, substrates, and energy/food sources for life. We sampled and conducted a complete band analysis of Raman spectra as mission validation analysis with the RLS ExoMars Simulator or RLS Sim, a breadboard setup representative of the ExoMars RLS instrument. RLS Sim emulates the operational behavior of RLS on the Rosalind Franklin rover. Given the high fidelity of the Mars analog site and the RLS Sim, the results presented here may provide important information useful for guiding in situ analysis and sample triage for caching relevant for the Perseverance and Rosalind Franklin missions. By using the RLS Sim on CanMars samples, our measurements detected oxides, sulfates, nitrates, carbonates, feldspars, and carotenoids, many with a higher degree of sensitivity than past results. Future work with the RLS Sim will aim to continue developing and improving the capability of the RLS system in the future ExoMars mission.
Collapse
Affiliation(s)
- Emmanuel A Lalla
- Centre for Research in Earth and Space Science, Lassonde School of Engineering, York University, Toronto, Canada
| | - Menelaos Konstantinidis
- Centre for Research in Earth and Space Science, Lassonde School of Engineering, York University, Toronto, Canada
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Canada
| | - Marco Veneranda
- Unidad Asociada Universidad de Valladolid-CSIC-CAB, Boecillo, Spain
| | - Michael G Daly
- Centre for Research in Earth and Space Science, Lassonde School of Engineering, York University, Toronto, Canada
| | | | - Elizabeth A Lymer
- Centre for Research in Earth and Space Science, Lassonde School of Engineering, York University, Toronto, Canada
| | - James Freemantle
- Centre for Research in Earth and Space Science, Lassonde School of Engineering, York University, Toronto, Canada
| | - Edward A Cloutis
- Department of Geography, University of Winnipeg, Winnipeg, Canada
| | - Jessica M Stromberg
- Department of Geography, University of Winnipeg, Winnipeg, Canada
- CSIRO Mineral Resources, Kensington, Australia
| | - Svetlana Shkolyar
- Universities Space Research Association, Columbia, Maryland, USA
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Christy Caudill
- Centre for Planetary Science and Exploration/Department of Earth Sciences, University of Western Ontario, London, Canada
| | - Daniel Applin
- Department of Geography, University of Winnipeg, Winnipeg, Canada
| | - Jorge L Vago
- European Space Agency, ESA/ESTEC (SCI-S), Noordwijk, The Netherlands
| | - Fernando Rull
- Unidad Asociada Universidad de Valladolid-CSIC-CAB, Boecillo, Spain
| | | |
Collapse
|
12
|
Kloprogge JT(T, Hartman H. Clays and the Origin of Life: The Experiments. Life (Basel) 2022; 12:259. [PMID: 35207546 PMCID: PMC8880559 DOI: 10.3390/life12020259] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/08/2022] [Accepted: 02/01/2022] [Indexed: 12/15/2022] Open
Abstract
There are three groups of scientists dominating the search for the origin of life: the organic chemists (the Soup), the molecular biologists (RNA world), and the inorganic chemists (metabolism and transient-state metal ions), all of which have experimental adjuncts. It is time for Clays and the Origin of Life to have its experimental adjunct. The clay data coming from Mars and carbonaceous chondrites have necessitated a review of the role that clays played in the origin of life on Earth. The data from Mars have suggested that Fe-clays such as nontronite, ferrous saponites, and several other clays were formed on early Mars when it had sufficient water. This raised the question of the possible role that these clays may have played in the origin of life on Mars. This has put clays front and center in the studies on the origin of life not only on Mars but also here on Earth. One of the major questions is: What was the catalytic role of Fe-clays in the origin and development of metabolism here on Earth? First, there is the recent finding of a chiral amino acid (isovaline) that formed on the surface of a clay mineral on several carbonaceous chondrites. This points to the formation of amino acids on the surface of clay minerals on carbonaceous chondrites from simpler molecules, e.g., CO2, NH3, and HCN. Additionally, there is the catalytic role of small organic molecules, such as dicarboxylic acids and amino acids found on carbonaceous chondrites, in the formation of Fe-clays themselves. Amino acids and nucleotides adsorb on clay surfaces on Earth and subsequently polymerize. All of these observations and more must be subjected to strict experimental analysis. This review provides an overview of what has happened and is now happening in the experimental clay world related to the origin of life. The emphasis is on smectite-group clay minerals, such as montmorillonite and nontronite.
Collapse
Affiliation(s)
- Jacob Teunis (Theo) Kloprogge
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Chemistry, College of Arts and Sciences, University of the Philippines Visayas, Miagao 5023, Philippines
| | - Hyman Hartman
- Department of Earth Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
13
|
Gaylor MO, Miro P, Vlaisavljevich B, Kondage AAS, Barge LM, Omran A, Videau P, Swenson VA, Leinen LJ, Fitch NW, Cole KL, Stone C, Drummond SM, Rageth K, Dewitt LR, González Henao S, Karanauskus V. Plausible Emergence and Self Assembly of a Primitive Phospholipid from Reduced Phosphorus on the Primordial Earth. ORIGINS LIFE EVOL B 2021; 51:185-213. [PMID: 34279769 DOI: 10.1007/s11084-021-09613-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/19/2021] [Indexed: 11/28/2022]
Abstract
How life arose on the primitive Earth is one of the biggest questions in science. Biomolecular emergence scenarios have proliferated in the literature but accounting for the ubiquity of oxidized (+ 5) phosphate (PO43-) in extant biochemistries has been challenging due to the dearth of phosphate and molecular oxygen on the primordial Earth. A compelling body of work suggests that exogenous schreibersite ((Fe,Ni)3P) was delivered to Earth via meteorite impacts during the Heavy Bombardment (ca. 4.1-3.8 Gya) and there converted to reduced P oxyanions (e.g., phosphite (HPO32-) and hypophosphite (H2PO2-)) and phosphonates. Inspired by this idea, we review the relevant literature to deduce a plausible reduced phospholipid analog of modern phosphatidylcholines that could have emerged in a primordial hydrothermal setting. A shallow alkaline lacustrine basin underlain by active hydrothermal fissures and meteoritic schreibersite-, clay-, and metal-enriched sediments is envisioned. The water column is laden with known and putative primordial hydrothermal reagents. Small system dimensions and thermal- and UV-driven evaporation further concentrate chemical precursors. We hypothesize that a reduced phospholipid arises from Fischer-Tropsch-type (FTT) production of a C8 alkanoic acid, which condenses with an organophosphinate (derived from schreibersite corrosion to hypophosphite with subsequent methylation/oxidation), to yield a reduced protophospholipid. This then condenses with an α-amino nitrile (derived from Strecker-type reactions) to form the polar head. Preliminary modeling results indicate that reduced phospholipids do not aggregate rapidly; however, single layer micelles are stable up to aggregates with approximately 100 molecules.
Collapse
Affiliation(s)
- Michael O Gaylor
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA.
| | - Pere Miro
- Department of Chemistry, University of South Dakota, Vermillion, SD, 57069, USA
| | - Bess Vlaisavljevich
- Department of Chemistry, University of South Dakota, Vermillion, SD, 57069, USA
| | | | - Laura M Barge
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| | - Arthur Omran
- School of Geosciences, University of South Florida, Tampa, FL, 33620, USA
- Department of Chemistry, University of North Florida, Jacksonville, FL, 32224, USA
| | - Patrick Videau
- Department of Biology, Southern Oregon University, Ashland, OR, 97520, USA
- Bayer Crop Science, Chesterfield, MO, 63017, USA
| | - Vaille A Swenson
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lucas J Leinen
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | - Nathaniel W Fitch
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | - Krista L Cole
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | - Chris Stone
- Department of Biology, Southern Oregon University, Ashland, OR, 97520, USA
| | - Samuel M Drummond
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | - Kayli Rageth
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | - Lillian R Dewitt
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | | | | |
Collapse
|
14
|
'Whole Organism', Systems Biology, and Top-Down Criteria for Evaluating Scenarios for the Origin of Life. Life (Basel) 2021; 11:life11070690. [PMID: 34357062 PMCID: PMC8306273 DOI: 10.3390/life11070690] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/22/2022] Open
Abstract
While most advances in the study of the origin of life on Earth (OoLoE) are piecemeal, tested against the laws of chemistry and physics, ultimately the goal is to develop an overall scenario for life's origin(s). However, the dimensionality of non-equilibrium chemical systems, from the range of possible boundary conditions and chemical interactions, renders the application of chemical and physical laws difficult. Here we outline a set of simple criteria for evaluating OoLoE scenarios. These include the need for containment, steady energy and material flows, and structured spatial heterogeneity from the outset. The Principle of Continuity, the fact that all life today was derived from first life, suggests favoring scenarios with fewer non-analog (not seen in life today) to analog (seen in life today) transitions in the inferred first biochemical pathways. Top-down data also indicate that a complex metabolism predated ribozymes and enzymes, and that full cellular autonomy and motility occurred post-LUCA. Using these criteria, we find the alkaline hydrothermal vent microchamber complex scenario with a late evolving exploitation of the natural occurring pH (or Na+ gradient) by ATP synthase the most compelling. However, there are as yet so many unknowns, we also advocate for the continued development of as many plausible scenarios as possible.
Collapse
|
15
|
Carrillo U, Díaz-Villanueva V. Impacts of volcanic eruptions and early recovery in freshwater environments and organisms. Biol Rev Camb Philos Soc 2021; 96:2546-2560. [PMID: 34145724 DOI: 10.1111/brv.12766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/28/2022]
Abstract
Volcanic eruptions modify environments physically and chemically with serious consequences for the biota. In this review, we analysed 80 papers reporting the effects of volcanic eruptions in freshwater environments and on freshwater organisms. An increase in water turbidity is the most common reported physical effect while increases in concentrations of inorganic elements, many representing nutrients for primary producers, are the most common chemical effects. Bacterial growth is usually stimulated, while autotrophs can be either positively or negatively affected depending on the type of impact. A persistent effect reported in the biota is changes to the assemblage, which could generate further changes in terms of ecosystem functions. This analysis also identifies some information gaps, particularly involving the effects of eruptions on heterotrophic biofilms in streams and on invertebrates and fish in lakes. Most studies were carried out soon after the volcanic eruption, so it is difficult to assess the recovery of the ecosystems. Eruptions present unique opportunities for scientific discovery, although such studies are often hindered by a lack of pre-eruption data, which would allow for a more comprehensive assessment of the effects.
Collapse
Affiliation(s)
- Uara Carrillo
- Laboratorio de Limnología, Instituto de Investigaciones en Biodiversidad y Medioambiente, CONICET - Universidad Nacional del Comahue, Quintral 1250, Bariloche, Río Negro, 8400, Argentina
| | - Verónica Díaz-Villanueva
- Laboratorio de Limnología, Instituto de Investigaciones en Biodiversidad y Medioambiente, CONICET - Universidad Nacional del Comahue, Quintral 1250, Bariloche, Río Negro, 8400, Argentina
| |
Collapse
|
16
|
Osinski G, Cockell C, Pontefract A, Sapers H. The Role of Meteorite Impacts in the Origin of Life. ASTROBIOLOGY 2020; 20:1121-1149. [PMID: 32876492 PMCID: PMC7499892 DOI: 10.1089/ast.2019.2203] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The conditions, timing, and setting for the origin of life on Earth and whether life exists elsewhere in our solar system and beyond represent some of the most fundamental scientific questions of our time. Although the bombardment of planets and satellites by asteroids and comets has long been viewed as a destructive process that would have presented a barrier to the emergence of life and frustrated or extinguished life, we provide a comprehensive synthesis of data and observations on the beneficial role of impacts in a wide range of prebiotic and biological processes. In the context of previously proposed environments for the origin of life on Earth, we discuss how meteorite impacts can generate both subaerial and submarine hydrothermal vents, abundant hydrothermal-sedimentary settings, and impact analogues for volcanic pumice rafts and splash pools. Impact events can also deliver and/or generate many of the necessary chemical ingredients for life and catalytic substrates such as clays as well. The role that impact cratering plays in fracturing planetary crusts and its effects on deep subsurface habitats for life are also discussed. In summary, we propose that meteorite impact events are a fundamental geobiological process in planetary evolution that played an important role in the origin of life on Earth. We conclude with the recommendation that impact craters should be considered prime sites in the search for evidence of past life on Mars. Furthermore, unlike other geological processes such as volcanism or plate tectonics, impact cratering is ubiquitous on planetary bodies throughout the Universe and is independent of size, composition, and distance from the host star. Impact events thus provide a mechanism with the potential to generate habitable planets, moons, and asteroids throughout the Solar System and beyond.
Collapse
Affiliation(s)
- G.R. Osinski
- Institute for Earth and Space Exploration, University of Western Ontario, London, Canada
- Department of Earth Sciences, University of Western Ontario, London, Canada
- Address correspondence to: Dr. Gordon Osinski, Department of Earth Sciences, 1151 Richmond Street, University of Western Ontario, London ON, N6A 5B7, Canada
| | - C.S. Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - A. Pontefract
- Department of Biology, Georgetown University, Washington, DC, USA
| | - H.M. Sapers
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
17
|
Lalla E, Sanz-Arranz A, Lopez-Reyes G, Cote K, Daly M, Konstantinidis M, Rodriguez-Losada JA, Groemer G, Medina J, Martínez-Frías J, Rull-Pérez F. A micro-Raman and X-ray study of erupted submarine pyroclasts from El Hierro (Spain) and its' astrobiological implications. LIFE SCIENCES IN SPACE RESEARCH 2019; 21:49-64. [PMID: 31101155 DOI: 10.1016/j.lssr.2019.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/12/2019] [Accepted: 04/14/2019] [Indexed: 06/09/2023]
Abstract
The pumice volcanic samples could have possible connections to the evolution of life and give us insight about their bio-geochemical processes related. In this regard, the samples from the volcanic eruption from La Restinga (El Hierro, Spain) in 2011 have been mainly studied by means of Raman spectroscopy. The research also includes analysis of XRD, Scanning Electron Microscopy and Optical Microscopy to support the Raman analysis. The results show that the Raman methods and mineral analyses are in strong agreement with the results obtained from other authors and techniques. The internal white foamy core (WFC) of the studied pumice samples shows amorphous silica, Fe-oxides, Ti-oxides, quartz, certain sulfates, carbonates, zeolites and organics. On the other hand, the external part (dark crust - DC) of these samples mainly presents primary-sequence mineralogy combined with some secondary alteration minerals such as olivine, feldspar, pyroxene, amorphous silica, and Fe-oxide. Raman spectroscopy detected other minerals not yet reported on these samples like barite, celestine and lepidocrocite. Also, the different chemometric and calibration methods for Raman spectroscopy in elemental composition, mineral classification and structural characterization has been successfully applied. From the astrobiological perspective, the research was also complemented with comparisons to other similar samples from terrestrial analogs. The main consideration was taking into account the proposed hypothesis regarding the potential behavior of the pumice as a substrate for the evolution of life. Furthermore, the detailed analysis from La Restinga eruption is coherent with the mineral phases and processes discussed from previous literature. The white internal part fulfills the conditions to work as an organic reservoir, confirmed by the detection of organic matter and selected minerals that could be used as energy sources for bacterial communities. The external layers of the samples work as a shielding layer to protect the organics from decay in extreme conditions. Finally, here we have demonstrated that the characteristics and advantages of Raman spectroscopy could help to assess and understand the possible biogenicity and alteration processes of any geological sample to be found on Mars.
Collapse
Affiliation(s)
- E Lalla
- Centre for Research in Earth and Space Science, York University, Petrie Science Building, 4700 Keele St, Toronto, M3J 1P3, ON, Canada; Austrian Space Forum, Sillufer 3a, Innsbruck, 6020, Austria.
| | - A Sanz-Arranz
- Departamento de Física de la Materia Condensada, Cristalografía y Mineralogía. Universidad de Valladolid, P de Belén 7, 47011, Valladolid, Spain
| | - G Lopez-Reyes
- Departamento de Física de la Materia Condensada, Cristalografía y Mineralogía. Universidad de Valladolid, P de Belén 7, 47011, Valladolid, Spain
| | - K Cote
- Centre for Research in Earth and Space Science, York University, Petrie Science Building, 4700 Keele St, Toronto, M3J 1P3, ON, Canada
| | - M Daly
- Centre for Research in Earth and Space Science, York University, Petrie Science Building, 4700 Keele St, Toronto, M3J 1P3, ON, Canada
| | - M Konstantinidis
- Centre for Research in Earth and Space Science, York University, Petrie Science Building, 4700 Keele St, Toronto, M3J 1P3, ON, Canada
| | - J A Rodriguez-Losada
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, Tenerife, C/ Astrofisco Sanchez s/n, 38211, La Laguna, Santa Cruz de Tenerife, Spain
| | - G Groemer
- Austrian Space Forum, Sillufer 3a, Innsbruck, 6020, Austria
| | - J Medina
- Departamento de Física de la Materia Condensada, Cristalografía y Mineralogía. Universidad de Valladolid, P de Belén 7, 47011, Valladolid, Spain
| | - J Martínez-Frías
- Dinámica Terrestre y Observación de la Tierra, Instituto de Geociencias, C/Severo Ochoa 7, Ed Entrepabellones 7 y 8, Ciudad Universitaria, 28040 Madrid, Spain
| | - F Rull-Pérez
- Austrian Space Forum, Sillufer 3a, Innsbruck, 6020, Austria
| |
Collapse
|
18
|
Wacey D, Noffke N, Saunders M, Guagliardo P, Pyle DM. Volcanogenic Pseudo-Fossils from the ∼3.48 Ga Dresser Formation, Pilbara, Western Australia. ASTROBIOLOGY 2018; 18:539-555. [PMID: 29461869 PMCID: PMC5963881 DOI: 10.1089/ast.2017.1734] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/29/2017] [Indexed: 05/31/2023]
Abstract
The ∼3.48 billion-year-old Dresser Formation, Pilbara Craton, Western Australia, is a key geological unit for the study of Earth's earliest life and the habitats it occupied. Here, we describe a new suite of spheroidal to lenticular microstructures that morphologically resemble some previously reported Archean microfossils. Correlative microscopy shows that these objects have a size distribution, wall ultrastructure, and chemistry that are incompatible with a microfossil origin and instead are interpreted as pyritized and silicified fragments of vesicular volcanic glass. Organic kerogenous material is associated with much of the altered volcanic glass; variable quantities of organic carbon line or fill the insides of some individual vesicles, while relatively large, tufted organic-rich laminae envelop multiple vesicles. The microstructures reported herein constitute a new type of abiogenic artifact (pseudo-fossil) that must be considered when evaluating potential signs of early life on Earth or elsewhere. In the sample studied here, where hundreds of these microstructures are present, the combined evidence permits a relatively straightforward interpretation as vesicular volcanic glass. However, reworked, isolated, and silicified microstructures of this type may prove particularly problematic in early or extraterrestrial life studies since they adsorb carbon onto their surfaces and are readily pyritized, mimicking a common preservation mechanism for bona fide microfossils. In those cases, nanoscale analysis of wall ultrastructure would be required to firmly exclude a biological origin. Key Words: Microfossils-Pseudo-fossils-Volcanic vesicles-Archean life-Pilbara Craton-Dresser Formation. Astrobiology 18, 539-555.
Collapse
Affiliation(s)
- David Wacey
- Centre for Microscopy Characterisation and Analysis, The University of Western Australia, Perth, Australia
| | - Nora Noffke
- Department of Ocean, Earth and Atmospheric Sciences, Old Dominion University, Norfolk, Virginia, USA
| | - Martin Saunders
- Centre for Microscopy Characterisation and Analysis, The University of Western Australia, Perth, Australia
| | - Paul Guagliardo
- Centre for Microscopy Characterisation and Analysis, The University of Western Australia, Perth, Australia
| | - David M. Pyle
- Department of Earth Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
19
|
Potential Role of Inorganic Confined Environments in Prebiotic Phosphorylation. Life (Basel) 2018; 8:life8010007. [PMID: 29510574 PMCID: PMC5871939 DOI: 10.3390/life8010007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/25/2018] [Accepted: 02/28/2018] [Indexed: 01/19/2023] Open
Abstract
A concise outlook on the potential role of confinement in phosphorylation and phosphate condensation pertaining to prebiotic chemistry is presented. Inorganic confinement is a relatively uncharted domain in studies concerning prebiotic chemistry, and even more so in terms of experimentation. However, molecular crowding within confined dimensions is central to the functioning of contemporary biology. There are numerous advantages to confined environments and an attempt to highlight this fact, within this article, has been undertaken, keeping in context the limitations of aqueous phase chemistry in phosphorylation and, to a certain extent, traditional approaches in prebiotic chemistry.
Collapse
|
20
|
Westall F, Hickman-Lewis K, Hinman N, Gautret P, Campbell KA, Bréhéret JG, Foucher F, Hubert A, Sorieul S, Dass AV, Kee TP, Georgelin T, Brack A. A Hydrothermal-Sedimentary Context for the Origin of Life. ASTROBIOLOGY 2018; 18:259-293. [PMID: 29489386 PMCID: PMC5867533 DOI: 10.1089/ast.2017.1680] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/07/2017] [Indexed: 05/02/2023]
Abstract
Critical to the origin of life are the ingredients of life, of course, but also the physical and chemical conditions in which prebiotic chemical reactions can take place. These factors place constraints on the types of Hadean environment in which life could have emerged. Many locations, ranging from hydrothermal vents and pumice rafts, through volcanic-hosted splash pools to continental springs and rivers, have been proposed for the emergence of life on Earth, each with respective advantages and certain disadvantages. However, there is another, hitherto unrecognized environment that, on the Hadean Earth (4.5-4.0 Ga), would have been more important than any other in terms of spatial and temporal scale: the sedimentary layer between oceanic crust and seawater. Using as an example sediments from the 3.5-3.33 Ga Barberton Greenstone Belt, South Africa, analogous at least on a local scale to those of the Hadean eon, we document constant permeation of the porous, carbonaceous, and reactive sedimentary layer by hydrothermal fluids emanating from the crust. This partially UV-protected, subaqueous sedimentary environment, characterized by physical and chemical gradients, represented a widespread system of miniature chemical reactors in which the production and complexification of prebiotic molecules could have led to the origin of life. Key Words: Origin of life-Hadean environment-Mineral surface reactions-Hydrothermal fluids-Archean volcanic sediments. Astrobiology 18, 259-293.
Collapse
Affiliation(s)
- F Westall
- 1 CNRS-Centre de Biophysique Moléculaire , Orléans, France
| | - K Hickman-Lewis
- 1 CNRS-Centre de Biophysique Moléculaire , Orléans, France
- 2 Dipartmento di Scienze biologiche, geologiche e ambientale, Università di Bologna , Bologna, Italy
| | - N Hinman
- 3 Geosciences, University of Montana , Missoula, Montana, USA
| | - P Gautret
- 4 University of Orléans , ISTO, UMR 7327, Orléans, France, and CNRS, ISTO, UMR 7327, Orléans, France, and BRGM, ISTO, UMR 7327, Orléans, France
| | - K A Campbell
- 5 School of Environment, The University of Auckland , Auckland, New Zealand
| | - J G Bréhéret
- 6 GéoHydrosytèmes Continentaux, Faculté des Sciences et Techniques, Université François-Rabelais de Tours , Tours, France
| | - F Foucher
- 1 CNRS-Centre de Biophysique Moléculaire , Orléans, France
| | - A Hubert
- 1 CNRS-Centre de Biophysique Moléculaire , Orléans, France
| | - S Sorieul
- 7 University of Bordeaux , CNRS, IN2P3, CENBG, UMR5797, Gradignan, France
| | - A V Dass
- 1 CNRS-Centre de Biophysique Moléculaire , Orléans, France
| | - T P Kee
- 8 School of Chemistry, University of Leeds , Leeds, UK
| | - T Georgelin
- 1 CNRS-Centre de Biophysique Moléculaire , Orléans, France
- 9 Sorbonne Universités , UPMC Paris 06, CNRS UMR 7197, Laboratoire de Réactivité de Surface, Paris, France
| | - A Brack
- 1 CNRS-Centre de Biophysique Moléculaire , Orléans, France
| |
Collapse
|
21
|
Dass AV, Hickman-Lewis K, Brack A, Kee TP, Westall F. Stochastic Prebiotic Chemistry within Realistic Geological Systems. ChemistrySelect 2016. [DOI: 10.1002/slct.201600829] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
| | | | - André Brack
- CNRS Centre de Biophysique Moléculaire; Rue Charles Sadron 45071 Orléans France
| | - Terence P. Kee
- School of Chemistry; University of Leeds; Leeds LS2 9JT UK
| | - Frances Westall
- CNRS Centre de Biophysique Moléculaire; Rue Charles Sadron 45071 Orléans France
| |
Collapse
|
22
|
Modenutti BE, Balseiro EG, Bastidas Navarro MA, Lee ZM, Souza MS, Corman JR, Elser JJ. Effects of Volcanic Pumice Inputs on Microbial Community Composition and Dissolved C/P Ratios in Lake Waters: an Experimental Approach. MICROBIAL ECOLOGY 2016; 71:18-28. [PMID: 26563321 DOI: 10.1007/s00248-015-0707-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 11/02/2015] [Indexed: 06/05/2023]
Abstract
Volcanic eruptions discharge massive amounts of ash and pumice that decrease light penetration in lakes and lead to concomitant increases in phosphorus (P) concentrations and shifts in soluble C/P ratios. The consequences of these sudden changes for bacteria community composition, metabolism, and enzymatic activity remain unclear, especially for the dynamic period immediately after pumice deposition. Thus, the main aim of our study was to determine how ambient bacterial communities respond to pumice inputs in lakes that differ in dissolved organic carbon (DOC) and P concentrations and to what extent these responses are moderated by substrate C/P stoichiometry. We performed an outdoor experiment with natural lake water from two lakes that differed in dissolved organic carbon (DOC) concentration. We measured nutrient concentrations, alkaline phosphatase activity (APA), and DOC consumption rates and assessed different components of bacterial community structure using next-generation sequencing of the 16S rRNA gene. Pumice inputs caused a decrease in the C/P ratio of dissolved resources, a decrease in APA, and an increase in DOC consumption, indicating reduced P limitation. These changes in bacteria metabolism were coupled with modifications in the assemblage composition and an increase in diversity, with increases in bacterial taxa associated with biofilm and sediments, in predatory bacteria, and in bacteria with gliding motility. Our results confirm that volcanic eruptions have the potential to alter nutrient partitioning and light penetration in receiving waterways which can have dramatic impacts on microbial community dynamics.
Collapse
Affiliation(s)
- B E Modenutti
- Laboratorio de Limnología, INIBIOMA, CONICET-University of Comahue, Quintral 1250, 8400, Bariloche, Argentina.
| | - E G Balseiro
- Laboratorio de Limnología, INIBIOMA, CONICET-University of Comahue, Quintral 1250, 8400, Bariloche, Argentina
| | - M A Bastidas Navarro
- Laboratorio de Limnología, INIBIOMA, CONICET-University of Comahue, Quintral 1250, 8400, Bariloche, Argentina
| | - Z M Lee
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - M S Souza
- Laboratorio de Limnología, INIBIOMA, CONICET-University of Comahue, Quintral 1250, 8400, Bariloche, Argentina
| | - J R Corman
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Center for Limnology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - J J Elser
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
23
|
Uroz S, Kelly LC, Turpault MP, Lepleux C, Frey-Klett P. The Mineralosphere Concept: Mineralogical Control of the Distribution and Function of Mineral-associated Bacterial Communities. Trends Microbiol 2015; 23:751-762. [DOI: 10.1016/j.tim.2015.10.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 10/02/2015] [Accepted: 10/09/2015] [Indexed: 11/17/2022]
|
24
|
Grosch EG, Hazen RM. Microbes, Mineral Evolution, and the Rise of Microcontinents-Origin and Coevolution of Life with Early Earth. ASTROBIOLOGY 2015; 15:922-939. [PMID: 26430911 DOI: 10.1089/ast.2015.1302] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Earth is the most mineralogically diverse planet in our solar system, the direct consequence of a coevolving geosphere and biosphere. We consider the possibility that a microbial biosphere originated and thrived in the early Hadean-Archean Earth subseafloor environment, with fundamental consequences for the complex evolution and habitability of our planet. In this hypothesis paper, we explore possible venues for the origin of life and the direct consequences of microbially mediated, low-temperature hydrothermal alteration of the early oceanic lithosphere. We hypothesize that subsurface fluid-rock-microbe interactions resulted in more efficient hydration of the early oceanic crust, which in turn promoted bulk melting to produce the first evolved fragments of felsic crust. These evolved magmas most likely included sialic or tonalitic sheets, felsic volcaniclastics, and minor rhyolitic intrusions emplaced in an Iceland-type extensional setting as the earliest microcontinents. With the further development of proto-tectonic processes, these buoyant felsic crustal fragments formed the nucleus of intra-oceanic tonalite-trondhjemite-granitoid (TTG) island arcs. Thus microbes, by facilitating extensive hydrothermal alteration of the earliest oceanic crust through bioalteration, promoted mineral diversification and may have been early architects of surface environments and microcontinents on young Earth. We explore how the possible onset of subseafloor fluid-rock-microbe interactions on early Earth accelerated metavolcanic clay mineral formation, crustal melting, and subsequent metamorphic mineral evolution. We also consider environmental factors supporting this earliest step in geosphere-biosphere coevolution and the implications for habitability and mineral evolution on other rocky planets, such as Mars.
Collapse
Affiliation(s)
- Eugene G Grosch
- 1 Department of Earth Science, University of Bergen , Bergen, Norway
| | - Robert M Hazen
- 2 Geophysical Laboratory, Carnegie Institution of Washington , Washington, DC, USA
| |
Collapse
|
25
|
|
26
|
Community structure and biogeochemical impacts of microbial life on floating pumice. Appl Environ Microbiol 2014; 81:1542-9. [PMID: 25527547 DOI: 10.1128/aem.03160-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Volcanic eruptions are a widespread force of geological and ecological disturbance and present recurrent opportunities for the study of biological responses to novel habitat formation. However, scientific study of such events is difficult given their short duration and often distant location. Here we report results from opportunistic sampling of unique volcano-generated habitats formed during the 2011 explosive eruption in the Puyehue-Cordón Caulle complex (Chile), when massive amounts of pumice were ejected, creating novel floating substrata that have never before been characterized from a microbiological perspective. DNA sequencing revealed a dynamic community of microbes that came to inhabit the pumice, with a unique composition distinct from that of the lakes' surface waters and with suggestions of ecological convergence across lakes and sampling times. Furthermore, biogeochemical studies of net nutrient fluxes showed that, while the fresh pumice arriving to the lakes was an initial source of phosphorus (P), colonized pumice had high rates of nitrogen (N) and P uptake and was sufficiently abundant to represent a significant lake-wide nutrient sink. These findings highlight the remarkable versatility of microbes in exploiting novel environments and are consistent with a recent proposal of floating pumice as a favorable environment for the initial origins of life on early Earth.
Collapse
|
27
|
Sousa FL, Thiergart T, Landan G, Nelson-Sathi S, Pereira IAC, Allen JF, Lane N, Martin WF. Early bioenergetic evolution. Philos Trans R Soc Lond B Biol Sci 2013; 368:20130088. [PMID: 23754820 PMCID: PMC3685469 DOI: 10.1098/rstb.2013.0088] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Life is the harnessing of chemical energy in such a way that the energy-harnessing device makes a copy of itself. This paper outlines an energetically feasible path from a particular inorganic setting for the origin of life to the first free-living cells. The sources of energy available to early organic synthesis, early evolving systems and early cells stand in the foreground, as do the possible mechanisms of their conversion into harnessable chemical energy for synthetic reactions. With regard to the possible temporal sequence of events, we focus on: (i) alkaline hydrothermal vents as the far-from-equilibrium setting, (ii) the Wood-Ljungdahl (acetyl-CoA) pathway as the route that could have underpinned carbon assimilation for these processes, (iii) biochemical divergence, within the naturally formed inorganic compartments at a hydrothermal mound, of geochemically confined replicating entities with a complexity below that of free-living prokaryotes, and (iv) acetogenesis and methanogenesis as the ancestral forms of carbon and energy metabolism in the first free-living ancestors of the eubacteria and archaebacteria, respectively. In terms of the main evolutionary transitions in early bioenergetic evolution, we focus on: (i) thioester-dependent substrate-level phosphorylations, (ii) harnessing of naturally existing proton gradients at the vent-ocean interface via the ATP synthase, (iii) harnessing of Na(+) gradients generated by H(+)/Na(+) antiporters, (iv) flavin-based bifurcation-dependent gradient generation, and finally (v) quinone-based (and Q-cycle-dependent) proton gradient generation. Of those five transitions, the first four are posited to have taken place at the vent. Ultimately, all of these bioenergetic processes depend, even today, upon CO2 reduction with low-potential ferredoxin (Fd), generated either chemosynthetically or photosynthetically, suggesting a reaction of the type 'reduced iron → reduced carbon' at the beginning of bioenergetic evolution.
Collapse
Affiliation(s)
- Filipa L. Sousa
- Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Thorsten Thiergart
- Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Giddy Landan
- Institute of Genomic Microbiology, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Shijulal Nelson-Sathi
- Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Inês A. C. Pereira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - John F. Allen
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, UK
- Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London, UK
| | - Nick Lane
- Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London, UK
| | - William F. Martin
- Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
28
|
Spitzer J. Emergence of life from multicomponent mixtures of chemicals: the case for experiments with cycling physicochemical gradients. ASTROBIOLOGY 2013; 13:404-413. [PMID: 23577817 DOI: 10.1089/ast.2012.0924] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The emergence of life from planetary multicomponent mixtures of chemicals is arguably the most complicated and least understood natural phenomenon. The fact that living cells are non-equilibrium systems suggests that life can emerge only from non-equilibrium chemical systems. From an astrobiological standpoint, non-equilibrium chemical systems arise naturally when solar irradiation strikes rotating surfaces of habitable planets: the resulting cycling physicochemical gradients persistently drive planetary chemistries toward "embryonic" living systems and an eventual emergence of life. To better understand the factors that lead to the emergence of life, I argue for cycling non-equilibrium experiments with multicomponent chemical systems designed to represent the evolving chemistry of Hadean Earth ("prebiotic soups"). Specifically, I suggest experimentation with chemical engineering simulators of Hadean Earth to observe and analyze (i) the appearances and phase separations of surface active and polymeric materials as precursors of the first "cell envelopes" (membranes) and (ii) the accumulations, commingling, and co-reactivity of chemicals from atmospheric, oceanic, and terrestrial locations.
Collapse
Affiliation(s)
- Jan Spitzer
- R&D Department, MCP Inc., Charlotte, North Carolina 29262, USA.
| |
Collapse
|
29
|
Stüeken EE, Anderson RE, Bowman JS, Brazelton WJ, Colangelo-Lillis J, Goldman AD, Som SM, Baross JA. Did life originate from a global chemical reactor? GEOBIOLOGY 2013; 11:101-126. [PMID: 23331348 DOI: 10.1111/gbi.12025] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 12/03/2012] [Indexed: 06/01/2023]
Abstract
Many decades of experimental and theoretical research on the origin of life have yielded important discoveries regarding the chemical and physical conditions under which organic compounds can be synthesized and polymerized. However, such conditions often seem mutually exclusive, because they are rarely encountered in a single environmental setting. As such, no convincing models explain how living cells formed from abiotic constituents. Here, we propose a new approach that considers the origin of life within the global context of the Hadean Earth. We review previous ideas and synthesize them in four central hypotheses: (i) Multiple microenvironments contributed to the building blocks of life, and these niches were not necessarily inhabitable by the first organisms; (ii) Mineral catalysts were the backbone of prebiotic reaction networks that led to modern metabolism; (iii) Multiple local and global transport processes were essential for linking reactions occurring in separate locations; (iv) Global diversity and local selection of reactants and products provided mechanisms for the generation of most of the diverse building blocks necessary for life. We conclude that no single environmental setting can offer enough chemical and physical diversity for life to originate. Instead, any plausible model for the origin of life must acknowledge the geological complexity and diversity of the Hadean Earth. Future research may therefore benefit from identifying further linkages between organic precursors, minerals, and fluids in various environmental contexts.
Collapse
Affiliation(s)
- E E Stüeken
- Department of Earth and Space Sciences, University of Washington, Seattle, WA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Bada JL. New insights into prebiotic chemistry from Stanley Miller's spark discharge experiments. Chem Soc Rev 2013; 42:2186-96. [PMID: 23340907 DOI: 10.1039/c3cs35433d] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1953 was a banner year for biological chemistry: The double helix structure of DNA was published by Watson and Crick, Sanger's group announced the first amino acid sequence of a protein (insulin) and the synthesis of key biomolecules using simulated primordial Earth conditions has demonstrated by Miller. Miller's studies in particular transformed the study of the origin of life into a respectable field of inquiry and established the basis of prebiotic chemistry, a field of research that investigates how the components of life as we know it can be formed in a variety of cosmogeochemical environments. In this review, I cover the continued advances in prebiotic syntheses that Miller's pioneering work has inspired. The main focus is on recent state-of-the-art analyses carried out on archived samples of Miller's original experiments, some of which had never before been analyzed, discovered in his laboratory material just before his death in May 2007. One experiment utilized a reducing gas mixture and an apparatus configuration (referred to here as the "volcanic" apparatus) that could represent a water-rich volcanic eruption accompanied by lightning. Another included H(2)S as a component of the reducing gas mixture. Compared to the limited number of amino acids Miller identified, these new analyses have found that over 40 different amino acids and amines were synthesized, demonstrating the potential robust formation of important biologic compounds under possible cosmogeochemical conditions. These experiments are suggested to simulate long-lived volcanic island arc systems, an environment that could have provided a stable environment for some of the processes thought to be involved in chemical evolution and the origin of life. Some of the alternatives to the Miller-based prebiotic synthesis and the "primordial soup" paradigm are evaluated in the context of their relevance under plausible planetary conditions.
Collapse
Affiliation(s)
- Jeffrey L Bada
- Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093-0212, USA.
| |
Collapse
|
31
|
Lambert JF, Jaber M, Georgelin T, Stievano L. A comparative study of the catalysis of peptide bond formation by oxide surfaces. Phys Chem Chem Phys 2013; 15:13371-80. [DOI: 10.1039/c3cp51282g] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Cleaves HJ, Michalkova Scott A, Hill FC, Leszczynski J, Sahai N, Hazen R. Mineral-organic interfacial processes: potential roles in the origins of life. Chem Soc Rev 2012; 41:5502-25. [PMID: 22743683 DOI: 10.1039/c2cs35112a] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Life is believed to have originated on Earth ∼4.4-3.5 Ga ago, via processes in which organic compounds supplied by the environment self-organized, in some geochemical environmental niches, into systems capable of replication with hereditary mutation. This process is generally supposed to have occurred in an aqueous environment and, likely, in the presence of minerals. Mineral surfaces present rich opportunities for heterogeneous catalysis and concentration which may have significantly altered and directed the process of prebiotic organic complexification leading to life. We review here general concepts in prebiotic mineral-organic interfacial processes, as well as recent advances in the study of mineral surface-organic interactions of potential relevance to understanding the origin of life.
Collapse
Affiliation(s)
- H James Cleaves
- Blue Marble Space Institute of Science, Washington, DC 20016, USA
| | | | | | | | | | | |
Collapse
|
33
|
Menor-Salván C, Marín-Yaseli MR. Prebiotic chemistry in eutectic solutions at the water-ice matrix. Chem Soc Rev 2012; 41:5404-15. [PMID: 22660387 DOI: 10.1039/c2cs35060b] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A crystalline ice matrix at subzero temperatures can maintain a liquid phase where organic solutes and salts concentrate to form eutectic solutions. This concentration effect converts the confined reactant solutions in the ice matrix, sometimes making condensation and polymerisation reactions occur more favourably. These reactions occur at significantly high rates from a prebiotic chemistry standpoint, and the labile products can be protected from degradation. The experimental study of the synthesis of nitrogen heterocycles at the ice-water system showed the efficiency of this scenario and could explain the origin of nucleobases in the inner Solar System bodies, including meteorites and extra-terrestrial ices, and on the early Earth. The same conditions can also favour the condensation of monomers to form ribonucleic acid and peptides. Together with the synthesis of these monomers, the ice world (i.e., the chemical evolution in the range between the freezing point of water and the limit of stability of liquid brines, 273 to 210 K) is an under-explored experimental model in prebiotic chemistry.
Collapse
Affiliation(s)
- César Menor-Salván
- Centro de Astrobiología (INTA-CSIC), INTA, E-28850 Torrejón de Ardoz, Spain.
| | | |
Collapse
|
34
|
Bernhardt HS, Tate WP. Primordial soup or vinaigrette: did the RNA world evolve at acidic pH? Biol Direct 2012; 7:4. [PMID: 22264281 PMCID: PMC3372908 DOI: 10.1186/1745-6150-7-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 01/20/2012] [Indexed: 01/08/2023] Open
Abstract
Background The RNA world concept has wide, though certainly not unanimous, support within the origin-of-life scientific community. One view is that life may have emerged as early as the Hadean Eon 4.3-3.8 billion years ago with an atmosphere of high CO2 producing an acidic ocean of the order of pH 3.5-6. Compatible with this scenario is the intriguing proposal that life arose within alkaline (pH 9-11) deep-sea hydrothermal vents like those of the 'Lost City', with the interface with the acidic ocean creating a proton gradient sufficient to drive the first metabolism. However, RNA is most stable at pH 4-5 and is unstable at alkaline pH, raising the possibility that RNA may have first arisen in the acidic ocean itself (possibly near an acidic hydrothermal vent), acidic volcanic lake or comet pond. As the Hadean Eon progressed, the ocean pH is inferred to have gradually risen to near neutral as atmospheric CO2 levels decreased. Presentation of the hypothesis We propose that RNA is well suited for a world evolving at acidic pH. This is supported by the enhanced stability at acidic pH of not only the RNA phosphodiester bond but also of the aminoacyl-(t)RNA and peptide bonds. Examples of in vitro-selected ribozymes with activities at acid pH have recently been documented. The subsequent transition to a DNA genome could have been partly driven by the gradual rise in ocean pH, since DNA has greater stability than RNA at alkaline pH, but not at acidic pH. Testing the hypothesis We have proposed mechanisms for two key RNA world activities that are compatible with an acidic milieu: (i) non-enzymatic RNA replication of a hemi-protonated cytosine-rich oligonucleotide, and (ii) specific aminoacylation of tRNA/hairpins through triple helix interactions between the helical aminoacyl stem and a single-stranded aminoacylating ribozyme. Implications of the hypothesis Our hypothesis casts doubt on the hypothesis that RNA evolved in the vicinity of alkaline hydrothermal vents. The ability of RNA to form protonated base pairs and triples at acidic pH suggests that standard base pairing may not have been a dominant requirement of the early RNA world.
Collapse
|
35
|
Cockell CS, Cady SL, McLoughlin N. Introduction. Volcanism and astrobiology: life on earth and beyond. ASTROBIOLOGY 2011; 11:583-584. [PMID: 21895441 DOI: 10.1089/ast.2011.8080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Affiliation(s)
- Charles S Cockell
- UK Centre for Astrobiology, SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|