1
|
Sagear S, Ballard S. The orbital eccentricity distribution of planets orbiting M dwarfs. Proc Natl Acad Sci U S A 2023; 120:e2217398120. [PMID: 37252955 PMCID: PMC10265968 DOI: 10.1073/pnas.2217398120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/11/2023] [Indexed: 06/01/2023] Open
Abstract
We investigate the underlying distribution of orbital eccentricities for planets around early-to-mid M dwarf host stars. We employ a sample of 163 planets around early- to mid-M dwarfs across 101 systems detected by NASA's Kepler Mission. We constrain the orbital eccentricity for each planet by leveraging the Kepler lightcurve together with a stellar density prior, constructed using metallicity from spectroscopy, Ks magnitude from 2MASS, and stellar parallax from Gaia. Within a Bayesian hierarchical framework, we extract the underlying eccentricity distribution, assuming alternately Rayleigh, half-Gaussian, and Beta functions for both single- and multi-transit systems. We described the eccentricity distribution for apparently single-transiting planetary systems with a Rayleigh distribution with [Formula: see text], and for multitransit systems with [Formula: see text]. The data suggest the possibility of distinct dynamically warmer and cooler subpopulations within the single-transit distribution: The single-transit data prefer a mixture model composed of two distinct Rayleigh distributions with [Formula: see text] and [Formula: see text] over a single Rayleigh distribution, with 7:1 odds. We contextualize our findings within a planet formation framework, by comparing them to analogous results in the literature for planets orbiting FGK stars. By combining our derived eccentricity distribution with other M dwarf demographic constraints, we estimate the underlying eccentricity distribution for the population of early- to mid-M dwarf planets in the local neighborhood.
Collapse
Affiliation(s)
- Sheila Sagear
- Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL32611
| | - Sarah Ballard
- Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL32611
| |
Collapse
|
2
|
Barth P, Carone L, Barnes R, Noack L, Mollière P, Henning T. Magma Ocean Evolution of the TRAPPIST-1 Planets. ASTROBIOLOGY 2021; 21:1325-1349. [PMID: 34314604 DOI: 10.1089/ast.2020.2277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recent observations of the potentially habitable planets TRAPPIST-1 e, f, and g suggest that they possess large water mass fractions of possibly several tens of weight percent of water, even though the host star's activity should drive rapid atmospheric escape. These processes can photolyze water, generating free oxygen and possibly desiccating the planet. After the planets formed, their mantles were likely completely molten with volatiles dissolving and exsolving from the melt. To understand these planets and prepare for future observations, the magma ocean phase of these worlds must be understood. To simulate these planets, we have combined existing models of stellar evolution, atmospheric escape, tidal heating, radiogenic heating, magma-ocean cooling, planetary radiation, and water-oxygen-iron geochemistry. We present MagmOc, a versatile magma-ocean evolution model, validated against the rocky super-Earth GJ 1132b and early Earth. We simulate the coupled magma-ocean atmospheric evolution of TRAPPIST-1 e, f, and g for a range of tidal and radiogenic heating rates, as well as initial water contents between 1 and 100 Earth oceans. We also reanalyze the structures of these planets and find they have water mass fractions of 0-0.23, 0.01-0.21, and 0.11-0.24 for planets e, f, and g, respectively. Our model does not make a strong prediction about the water and oxygen content of the atmosphere of TRAPPIST-1 e at the time of mantle solidification. In contrast, the model predicts that TRAPPIST-1 f and g would have a thick steam atmosphere with a small amount of oxygen at that stage. For all planets that we investigated, we find that only 3-5% of the initial water will be locked in the mantle after the magma ocean solidified.
Collapse
Affiliation(s)
- Patrick Barth
- Centre for Exoplanet Science, University of St Andrews, St Andrews, UK
- SUPA, School of Physics & Astronomy, University of St Andrews, St Andrews, UK
- Max Planck Institute for Astronomy, Heidelberg, Germany
| | | | - Rory Barnes
- Astronomy Department, University of Washington, Seattle, Washington, USA
- NASA Virtual Planetary Laboratory Lead Team, USA
| | - Lena Noack
- Freie Universität Berlin, Institute of Geological Sciences, Berlin, Germany
| | - Paul Mollière
- Max Planck Institute for Astronomy, Heidelberg, Germany
| | | |
Collapse
|
3
|
Kane SR, Ceja AY, Way MJ, Quintana EV. CLIMATE MODELING OF A POTENTIAL EXOVENUS. THE ASTROPHYSICAL JOURNAL 2018; 869:46. [PMID: 30636775 PMCID: PMC6326386 DOI: 10.3847/1538-4357/aaec68] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The planetary mass and radius sensitivity of exoplanet discovery capabilities has reached into the terrestrial regime. The focus of such investigations is to search within the Habitable Zone where a modern Earth-like atmosphere may be a viable comparison. However, the detection bias of the transit and radial velocity methods lies close to the host star where the received flux at the planet may push the atmosphere into a runaway greenhouse state. One such exoplanet discovery, Kepler-1649b, receives a similar flux from its star as modern Venus does from the Sun, and so was categorized as a possible exoVenus. Here we discuss the planetary parameters of Kepler-1649b with relation to Venus to establish its potential as a Venus analog. We utilize the general circulation model ROCKE-3D to simulate the evolution of the surface temperature of Kepler-1649b under various assumptions, including relative atmospheric abundances. We show that in all our simulations the atmospheric model rapidly diverges from temperate surface conditions towards a runaway greenhouse with rapidly escalating surface temperatures. We calculate transmission spectra for the evolved atmosphere and discuss these spectra within the context of the James Webb Space Telescope (JWST) Near-Infrared Spectrograph (NIRSpec) capabilities. We thus demonstrate the detectability of the key atmospheric signatures of possible runaway greenhouse transition states and outline the future prospects of characterizing potential Venus analogs.
Collapse
Affiliation(s)
- Stephen R Kane
- Department of Earth Sciences, University of California, Riverside, CA 92521, USA
| | - Alma Y Ceja
- Department of Earth Sciences, University of California, Riverside, CA 92521, USA
| | - Michael J Way
- NASA Goddard Institute for Space Studies, New York, NY 10025, USA
- Department of Physics and Astronomy, Uppsala University, Uppsala, SE-75120, Sweden
| | | |
Collapse
|
4
|
Abstract
As evident from the nearby examples of Proxima Centauri and TRAPPIST-1, Earth-sized planets in the habitable zone of low-mass stars are common. Here, we focus on such planetary systems and argue that their (oceanic) tides could be more prominent due to stronger tidal forces. We identify the conditions under which tides may exert a significant positive influence on biotic processes including abiogenesis, biological rhythms, nutrient upwelling, and stimulating photosynthesis. We conclude our analysis with the identification of large-scale algal blooms as potential temporal biosignatures in reflectance light curves that can arise indirectly as a consequence of strong tidal forces. Key Words: Tidal effects-Abiogenesis-Biological clocks-Planetary habitability-Temporal biosignatures. Astrobiology 18, 967-982.
Collapse
Affiliation(s)
- Manasvi Lingam
- 1 Harvard-Smithsonian Center for Astrophysics , Cambridge, Massachusetts
- 2 John A. Paulson School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts
| | - Abraham Loeb
- 1 Harvard-Smithsonian Center for Astrophysics , Cambridge, Massachusetts
| |
Collapse
|
5
|
Fujii Y, Angerhausen D, Deitrick R, Domagal-Goldman S, Grenfell JL, Hori Y, Kane SR, Pallé E, Rauer H, Siegler N, Stapelfeldt K, Stevenson KB. Exoplanet Biosignatures: Observational Prospects. ASTROBIOLOGY 2018; 18:739-778. [PMID: 29938537 PMCID: PMC6016572 DOI: 10.1089/ast.2017.1733] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 03/13/2018] [Indexed: 05/04/2023]
Abstract
Exoplanet hunting efforts have revealed the prevalence of exotic worlds with diverse properties, including Earth-sized bodies, which has fueled our endeavor to search for life beyond the Solar System. Accumulating experiences in astrophysical, chemical, and climatological characterization of uninhabitable planets are paving the way to characterization of potentially habitable planets. In this paper, we review our possibilities and limitations in characterizing temperate terrestrial planets with future observational capabilities through the 2030s and beyond, as a basis of a broad range of discussions on how to advance "astrobiology" with exoplanets. We discuss the observability of not only the proposed biosignature candidates themselves but also of more general planetary properties that provide circumstantial evidence, since the evaluation of any biosignature candidate relies on its context. Characterization of temperate Earth-sized planets in the coming years will focus on those around nearby late-type stars. The James Webb Space Telescope (JWST) and later 30-meter-class ground-based telescopes will empower their chemical investigations. Spectroscopic studies of potentially habitable planets around solar-type stars will likely require a designated spacecraft mission for direct imaging, leveraging technologies that are already being developed and tested as part of the Wide Field InfraRed Survey Telescope (WFIRST) mission. Successful initial characterization of a few nearby targets will be an important touchstone toward a more detailed scrutiny and a larger survey that are envisioned beyond 2030. The broad outlook this paper presents may help develop new observational techniques to detect relevant features as well as frameworks to diagnose planets based on the observables. Key Words: Exoplanets-Biosignatures-Characterization-Planetary atmospheres-Planetary surfaces. Astrobiology 18, 739-778.
Collapse
Affiliation(s)
- Yuka Fujii
- NASA Goddard Institute for Space Studies, New York, New York, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro, Tokyo, Japan
| | - Daniel Angerhausen
- CSH Fellow for Exoplanetary Astronomy, Center for Space and Habitability (CSH), Universität Bern, Bern, Switzerland
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Russell Deitrick
- Department of Astronomy, University of Washington, Seattle, Washington, USA
- NASA Astrobiology Institute's Virtual Planetary Laboratory
| | - Shawn Domagal-Goldman
- NASA Astrobiology Institute's Virtual Planetary Laboratory
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - John Lee Grenfell
- Department of Extrasolar Planets and Atmospheres (EPA), Institute of Planetary Research, German Aerospace Centre (DLR), Berlin, Germany
| | - Yasunori Hori
- Astrobiology Center, National Institutes of Natural Sciences (NINS), Mitaka, Tokyo, Japan
| | - Stephen R. Kane
- Department of Earth Sciences, University of California, Riverside, California, USA
| | - Enric Pallé
- Instituto de Astrofísica de Canarias, La Laguna, Tenerife, Spain
- Departamento de Astrofísica, Universidad de La Laguna, Tenerife, Spain
| | - Heike Rauer
- Department of Extrasolar Planets and Atmospheres (EPA), Institute of Planetary Research, German Aerospace Centre (DLR), Berlin, Germany
- Center for Astronomy and Astrophysics, Berlin Institute of Technology, Berlin, Germany
| | - Nicholas Siegler
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- NASA Exoplanet Exploration Office
| | - Karl Stapelfeldt
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- NASA Exoplanet Exploration Office
| | | |
Collapse
|
6
|
Catling DC, Krissansen-Totton J, Kiang NY, Crisp D, Robinson TD, DasSarma S, Rushby AJ, Del Genio A, Bains W, Domagal-Goldman S. Exoplanet Biosignatures: A Framework for Their Assessment. ASTROBIOLOGY 2018; 18:709-738. [PMID: 29676932 PMCID: PMC6049621 DOI: 10.1089/ast.2017.1737] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/05/2017] [Indexed: 05/04/2023]
Abstract
Finding life on exoplanets from telescopic observations is an ultimate goal of exoplanet science. Life produces gases and other substances, such as pigments, which can have distinct spectral or photometric signatures. Whether or not life is found with future data must be expressed with probabilities, requiring a framework of biosignature assessment. We present a framework in which we advocate using biogeochemical "Exo-Earth System" models to simulate potential biosignatures in spectra or photometry. Given actual observations, simulations are used to find the Bayesian likelihoods of those data occurring for scenarios with and without life. The latter includes "false positives" wherein abiotic sources mimic biosignatures. Prior knowledge of factors influencing planetary inhabitation, including previous observations, is combined with the likelihoods to give the Bayesian posterior probability of life existing on a given exoplanet. Four components of observation and analysis are necessary. (1) Characterization of stellar (e.g., age and spectrum) and exoplanetary system properties, including "external" exoplanet parameters (e.g., mass and radius), to determine an exoplanet's suitability for life. (2) Characterization of "internal" exoplanet parameters (e.g., climate) to evaluate habitability. (3) Assessment of potential biosignatures within the environmental context (components 1-2), including corroborating evidence. (4) Exclusion of false positives. We propose that resulting posterior Bayesian probabilities of life's existence map to five confidence levels, ranging from "very likely" (90-100%) to "very unlikely" (<10%) inhabited. Key Words: Bayesian statistics-Biosignatures-Drake equation-Exoplanets-Habitability-Planetary science. Astrobiology 18, 709-738.
Collapse
Affiliation(s)
- David C. Catling
- Astrobiology Program, Department of Earth and Space Sciences, University of Washington, Seattle, Washington
- Virtual Planetary Laboratory, University of Washington, Seattle, Washington
| | - Joshua Krissansen-Totton
- Astrobiology Program, Department of Earth and Space Sciences, University of Washington, Seattle, Washington
- Virtual Planetary Laboratory, University of Washington, Seattle, Washington
| | - Nancy Y. Kiang
- NASA Goddard Institute for Space Studies, New York, New York
| | - David Crisp
- MS 233-200, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Tyler D. Robinson
- Department of Astronomy and Astrophysics, University of California, Santa Cruz, California
| | - Shiladitya DasSarma
- Department of Microbiology and Immunology, School of Medicine, and Institute of Marine and Environmental Technology, University of Maryland, Baltimore, Maryland
| | | | | | - William Bains
- Department of Earth, Atmospheric and Planetary Science, Cambridge, Massachusetts
| | | |
Collapse
|
7
|
|
8
|
Meadows VS, Arney GN, Schwieterman EW, Lustig-Yaeger J, Lincowski AP, Robinson T, Domagal-Goldman SD, Deitrick R, Barnes RK, Fleming DP, Luger R, Driscoll PE, Quinn TR, Crisp D. The Habitability of Proxima Centauri b: Environmental States and Observational Discriminants. ASTROBIOLOGY 2018; 18:133-189. [PMID: 29431479 PMCID: PMC5820795 DOI: 10.1089/ast.2016.1589] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 09/04/2017] [Indexed: 05/21/2023]
Abstract
Proxima Centauri b provides an unprecedented opportunity to understand the evolution and nature of terrestrial planets orbiting M dwarfs. Although Proxima Cen b orbits within its star's habitable zone, multiple plausible evolutionary paths could have generated different environments that may or may not be habitable. Here, we use 1-D coupled climate-photochemical models to generate self-consistent atmospheres for several evolutionary scenarios, including high-O2, high-CO2, and more Earth-like atmospheres, with both oxic and anoxic compositions. We show that these modeled environments can be habitable or uninhabitable at Proxima Cen b's position in the habitable zone. We use radiative transfer models to generate synthetic spectra and thermal phase curves for these simulated environments, and use instrument models to explore our ability to discriminate between possible planetary states. These results are applicable not only to Proxima Cen b but to other terrestrial planets orbiting M dwarfs. Thermal phase curves may provide the first constraint on the existence of an atmosphere. We find that James Webb Space Telescope (JWST) observations longward of 10 μm could characterize atmospheric heat transport and molecular composition. Detection of ocean glint is unlikely with JWST but may be within the reach of larger-aperture telescopes. Direct imaging spectra may detect O4 absorption, which is diagnostic of massive water loss and O2 retention, rather than a photosynthetic biosphere. Similarly, strong CO2 and CO bands at wavelengths shortward of 2.5 μm would indicate a CO2-dominated atmosphere. If the planet is habitable and volatile-rich, direct imaging will be the best means of detecting habitability. Earth-like planets with microbial biospheres may be identified by the presence of CH4-which has a longer atmospheric lifetime under Proxima Centauri's incident UV-and either photosynthetically produced O2 or a hydrocarbon haze layer. Key Words: Planetary habitability and biosignatures-Planetary atmospheres-Exoplanets-Spectroscopic biosignatures-Planetary science-Proxima Centauri b. Astrobiology 18, 133-189.
Collapse
Affiliation(s)
- Victoria S. Meadows
- Astronomy Department, University of Washington, Seattle, Washington
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
| | - Giada N. Arney
- Astronomy Department, University of Washington, Seattle, Washington
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
- Planetary Systems Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland
| | - Edward W. Schwieterman
- Astronomy Department, University of Washington, Seattle, Washington
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
- NASA Postdoctoral Program, Universities Space Research Association, Columbia, Maryland
- Department of Earth Sciences, University of California at Riverside, Riverside, California
| | - Jacob Lustig-Yaeger
- Astronomy Department, University of Washington, Seattle, Washington
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
| | - Andrew P. Lincowski
- Astronomy Department, University of Washington, Seattle, Washington
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
| | - Tyler Robinson
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
- Department of Astronomy and Astrophysics, University of California, Santa Cruz, California
| | - Shawn D. Domagal-Goldman
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
- Planetary Environments Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland
| | - Russell Deitrick
- Astronomy Department, University of Washington, Seattle, Washington
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
| | - Rory K. Barnes
- Astronomy Department, University of Washington, Seattle, Washington
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
| | - David P. Fleming
- Astronomy Department, University of Washington, Seattle, Washington
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
| | - Rodrigo Luger
- Astronomy Department, University of Washington, Seattle, Washington
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
| | - Peter E. Driscoll
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
- Department of Terrestrial Magnetism, Carnegie Institution for Science, Washington, DC
| | - Thomas R. Quinn
- Astronomy Department, University of Washington, Seattle, Washington
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
| | - David Crisp
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| |
Collapse
|
9
|
Shields AL, Barnes R, Agol E, Charnay B, Bitz C, Meadows VS. The Effect of Orbital Configuration on the Possible Climates and Habitability of Kepler-62f. ASTROBIOLOGY 2016; 16:443-64. [PMID: 27176715 PMCID: PMC4900229 DOI: 10.1089/ast.2015.1353] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 02/21/2016] [Indexed: 05/21/2023]
Abstract
UNLABELLED As lower-mass stars often host multiple rocky planets, gravitational interactions among planets can have significant effects on climate and habitability over long timescales. Here we explore a specific case, Kepler-62f (Borucki et al., 2013 ), a potentially habitable planet in a five-planet system with a K2V host star. N-body integrations reveal the stable range of initial eccentricities for Kepler-62f is 0.00 ≤ e ≤ 0.32, absent the effect of additional, undetected planets. We simulate the tidal evolution of Kepler-62f in this range and find that, for certain assumptions, the planet can be locked in a synchronous rotation state. Simulations using the 3-D Laboratoire de Météorologie Dynamique (LMD) Generic global climate model (GCM) indicate that the surface habitability of this planet is sensitive to orbital configuration. With 3 bar of CO2 in its atmosphere, we find that Kepler-62f would only be warm enough for surface liquid water at the upper limit of this eccentricity range, providing it has a high planetary obliquity (between 60° and 90°). A climate similar to that of modern-day Earth is possible for the entire range of stable eccentricities if atmospheric CO2 is increased to 5 bar levels. In a low-CO2 case (Earth-like levels), simulations with version 4 of the Community Climate System Model (CCSM4) GCM and LMD Generic GCM indicate that increases in planetary obliquity and orbital eccentricity coupled with an orbital configuration that places the summer solstice at or near pericenter permit regions of the planet with above-freezing surface temperatures. This may melt ice sheets formed during colder seasons. If Kepler-62f is synchronously rotating and has an ocean, CO2 levels above 3 bar would be required to distribute enough heat to the nightside of the planet to avoid atmospheric freeze-out and permit a large enough region of open water at the planet's substellar point to remain stable. Overall, we find multiple plausible combinations of orbital and atmospheric properties that permit surface liquid water on Kepler-62f. KEY WORDS Extrasolar planets-Habitability-Planetary environments. Astrobiology 16, 443-464.
Collapse
Affiliation(s)
- Aomawa L Shields
- 1 NSF Astronomy and Astrophysics Postdoctoral Fellow, UC President's Postdoctoral Program Fellow, Department of Physics and Astronomy, University of California , Los Angeles, and Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts
| | - Rory Barnes
- 2 Department of Astronomy and Astrobiology Program, University of Washington , Seattle, Washington
| | - Eric Agol
- 2 Department of Astronomy and Astrobiology Program, University of Washington , Seattle, Washington
| | - Benjamin Charnay
- 2 Department of Astronomy and Astrobiology Program, University of Washington , Seattle, Washington
| | - Cecilia Bitz
- 3 Department of Atmospheric Sciences, University of Washington , Seattle, Washington
| | - Victoria S Meadows
- 2 Department of Astronomy and Astrobiology Program, University of Washington , Seattle, Washington
| |
Collapse
|
10
|
Heller R, Pudritz RE. The Search for Extraterrestrial Intelligence in Earth's Solar Transit Zone. ASTROBIOLOGY 2016; 16:259-270. [PMID: 26967201 DOI: 10.1089/ast.2015.1358] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Over the past few years, astronomers have detected thousands of planets and candidate planets by observing their periodic transits in front of their host stars. A related method, called transit spectroscopy, might soon allow studies of the chemical imprints of life in extrasolar planetary atmospheres. Here, we address the reciprocal question, namely, from where is Earth detectable by extrasolar observers using similar methods. We explore Earth's transit zone (ETZ), the projection of a band around Earth's ecliptic onto the celestial plane, where observers can detect Earth transits across the Sun. ETZ is between 0.520° and 0.537° wide due to the noncircular Earth orbit. The restricted Earth transit zone (rETZ), where Earth transits the Sun less than 0.5 solar radii from its center, is about 0.262° wide. We first compile a target list of 45 K and 37 G dwarf stars inside the rETZ and within 1 kpc (about 3260 light-years) using the Hipparcos catalogue. We then greatly enlarge the number of potential targets by constructing an analytic galactic disk model and find that about 10(5) K and G dwarf stars should reside within the rETZ. The ongoing Gaia space mission can potentially discover all G dwarfs among them (several 10(4)) within the next 5 years. Many more potentially habitable planets orbit dim, unknown M stars in ETZ and other stars that traversed ETZ thousands of years ago. If any of these planets host intelligent observers, they could have identified Earth as a habitable, or even as a living, world long ago, and we could be receiving their broadcasts today. The K2 mission, the Allen Telescope Array, the upcoming Square Kilometer Array, or the Green Bank Telescope might detect such deliberate extraterrestrial messages. Ultimately, ETZ would be an ideal region to be monitored by the Breakthrough Listen Initiatives, an upcoming survey that will constitute the most comprehensive search for extraterrestrial intelligence so far.
Collapse
Affiliation(s)
- René Heller
- 1 Max Planck Institute for Solar System Research , Göttingen, Germany
| | - Ralph E Pudritz
- 2 Origins Institute , McMaster University , Hamilton, Canada
- 3 Department of Physics and Astronomy, McMaster University , Hamilton, Canada
- 4 Max Planck Institute for Astronomy , Heidelberg, Germany
| |
Collapse
|
11
|
|
12
|
Driscoll PE, Barnes R. Tidal Heating of Earth-like Exoplanets around M Stars: Thermal, Magnetic, and Orbital Evolutions. ASTROBIOLOGY 2015; 15:739-60. [PMID: 26393398 PMCID: PMC4582693 DOI: 10.1089/ast.2015.1325] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The internal thermal and magnetic evolution of rocky exoplanets is critical to their habitability. We focus on the thermal-orbital evolution of Earth-mass planets around low-mass M stars whose radiative habitable zone overlaps with the "tidal zone," where tidal dissipation is expected to be a significant heat source in the interior. We develop a thermal-orbital evolution model calibrated to Earth that couples tidal dissipation, with a temperature-dependent Maxwell rheology, to orbital circularization and migration. We illustrate thermal-orbital steady states where surface heat flow is balanced by tidal dissipation and cooling can be stalled for billions of years until circularization occurs. Orbital energy dissipated as tidal heat in the interior drives both inward migration and circularization, with a circularization time that is inversely proportional to the dissipation rate. We identify a peak in the internal dissipation rate as the mantle passes through a viscoelastic state at mantle temperatures near 1800 K. Planets orbiting a 0.1 solar-mass star within 0.07 AU circularize before 10 Gyr, independent of initial eccentricity. Once circular, these planets cool monotonically and maintain dynamos similar to that of Earth. Planets forced into eccentric orbits can experience a super-cooling of the core and rapid core solidification, inhibiting dynamo action for planets in the habitable zone. We find that tidal heating is insignificant in the habitable zone around 0.45 (or larger) solar-mass stars because tidal dissipation is a stronger function of orbital distance than stellar mass, and the habitable zone is farther from larger stars. Suppression of the planetary magnetic field exposes the atmosphere to stellar wind erosion and the surface to harmful radiation. In addition to weak magnetic fields, massive melt eruption rates and prolonged magma oceans may render eccentric planets in the habitable zone of low-mass stars inhospitable for life.
Collapse
Affiliation(s)
- P E Driscoll
- Astronomy Department, University of Washington , Seattle, Washington; NASA Astrobiology Institute, Virtual Planetary Laboratory Lead Team
| | - R Barnes
- Astronomy Department, University of Washington , Seattle, Washington; NASA Astrobiology Institute, Virtual Planetary Laboratory Lead Team
| |
Collapse
|
13
|
Luger R, Barnes R. Extreme water loss and abiotic O2 buildup on planets throughout the habitable zones of M dwarfs. ASTROBIOLOGY 2015; 15:119-43. [PMID: 25629240 PMCID: PMC4323125 DOI: 10.1089/ast.2014.1231] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We show that terrestrial planets in the habitable zones of M dwarfs older than ∼1 Gyr could have been in runaway greenhouses for several hundred million years following their formation due to the star's extended pre-main sequence phase, provided they form with abundant surface water. Such prolonged runaway greenhouses can lead to planetary evolution divergent from that of Earth. During this early runaway phase, photolysis of water vapor and hydrogen/oxygen escape to space can lead to the loss of several Earth oceans of water from planets throughout the habitable zone, regardless of whether the escape is energy-limited or diffusion-limited. We find that the amount of water lost scales with the planet mass, since the diffusion-limited hydrogen escape flux is proportional to the planet surface gravity. In addition to undergoing potential desiccation, planets with inefficient oxygen sinks at the surface may build up hundreds to thousands of bar of abiotically produced O2, resulting in potential false positives for life. The amount of O2 that builds up also scales with the planet mass; we find that O2 builds up at a constant rate that is controlled by diffusion: ∼5 bar/Myr on Earth-mass planets and up to ∼25 bar/Myr on super-Earths. As a result, some recently discovered super-Earths in the habitable zone such as GJ 667Cc could have built up as many as 2000 bar of O2 due to the loss of up to 10 Earth oceans of water. The fate of a given planet strongly depends on the extreme ultraviolet flux, the duration of the runaway regime, the initial water content, and the rate at which oxygen is absorbed by the surface. In general, we find that the initial phase of high luminosity may compromise the habitability of many terrestrial planets orbiting low-mass stars.
Collapse
Affiliation(s)
- R Luger
- 1 Astronomy Department, University of Washington , Seattle, Washington
| | | |
Collapse
|
14
|
Luger R, Barnes R, Lopez E, Fortney J, Jackson B, Meadows V. Habitable evaporated cores: transforming mini-Neptunes into super-Earths in the habitable zones of M dwarfs. ASTROBIOLOGY 2015; 15:57-88. [PMID: 25590532 DOI: 10.1089/ast.2014.1215] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We show that photoevaporation of small gaseous exoplanets ("mini-Neptunes") in the habitable zones of M dwarfs can remove several Earth masses of hydrogen and helium from these planets and transform them into potentially habitable worlds. We couple X-ray/extreme ultraviolet (XUV)-driven escape, thermal evolution, tidal evolution, and orbital migration to explore the types of systems that may harbor such "habitable evaporated cores" (HECs). We find that HECs are most likely to form from planets with ∼1 M⊕ solid cores with up to about 50% H/He by mass, though whether or not a given mini-Neptune forms a HEC is highly dependent on the early XUV evolution of the host star. As terrestrial planet formation around M dwarfs by accumulation of local material is likely to form planets that are small and dry, evaporation of small migrating mini-Neptunes could be one of the dominant formation mechanisms for volatile-rich Earths around these stars.
Collapse
Affiliation(s)
- R Luger
- 1 Astronomy Department, University of Washington , Seattle, Washington
| | | | | | | | | | | |
Collapse
|
15
|
Heller R, Williams D, Kipping D, Limbach MA, Turner E, Greenberg R, Sasaki T, Bolmont É, Grasset O, Lewis K, Barnes R, Zuluaga JI. Formation, habitability, and detection of extrasolar moons. ASTROBIOLOGY 2014; 14:798-835. [PMID: 25147963 PMCID: PMC4172466 DOI: 10.1089/ast.2014.1147] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 06/05/2014] [Indexed: 06/03/2023]
Abstract
The diversity and quantity of moons in the Solar System suggest a manifold population of natural satellites exist around extrasolar planets. Of peculiar interest from an astrobiological perspective, the number of sizable moons in the stellar habitable zones may outnumber planets in these circumstellar regions. With technological and theoretical methods now allowing for the detection of sub-Earth-sized extrasolar planets, the first detection of an extrasolar moon appears feasible. In this review, we summarize formation channels of massive exomoons that are potentially detectable with current or near-future instruments. We discuss the orbital effects that govern exomoon evolution, we present a framework to characterize an exomoon's stellar plus planetary illumination as well as its tidal heating, and we address the techniques that have been proposed to search for exomoons. Most notably, we show that natural satellites in the range of 0.1-0.5 Earth mass (i) are potentially habitable, (ii) can form within the circumplanetary debris and gas disk or via capture from a binary, and (iii) are detectable with current technology.
Collapse
Affiliation(s)
- René Heller
- Origins Institute, Department of Physics and Astronomy, McMaster University, Hamilton, Canada
| | - Darren Williams
- The Behrend College School of Science, Penn State Erie, Erie, Pennsylvania, USA
| | - David Kipping
- Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA
| | - Mary Anne Limbach
- Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey, USA
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey, USA
| | - Edwin Turner
- Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey, USA
- The Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo, Kashiwa, Japan
| | - Richard Greenberg
- Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona, USA
| | | | - Émeline Bolmont
- Université de Bordeaux, LAB, UMR 5804, Floirac, France
- CNRS, LAB, UMR 5804, Floirac, France
| | - Olivier Grasset
- Planetology and Geodynamics, University of Nantes, CNRS, Nantes, France
| | - Karen Lewis
- Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo, Japan
| | - Rory Barnes
- Astronomy Department, University of Washington, Seattle, Washington, USA
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
| | - Jorge I. Zuluaga
- FACom—Instituto de Física—FCEN, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
16
|
Bolmont E, Raymond SN, von Paris P, Selsis F, Hersant F, Quintana EV, Barclay T. FORMATION, TIDAL EVOLUTION, AND HABITABILITY OF THE KEPLER-186 SYSTEM. ACTA ACUST UNITED AC 2014. [DOI: 10.1088/0004-637x/793/1/3] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
17
|
Young PA, Desch SJ, Anbar AD, Barnes R, Hinkel NR, Kopparapu R, Madhusudhan N, Monga N, Pagano MD, Riner MA, Scannapieco E, Shim SH, Truitt A. Astrobiological stoichiometry. ASTROBIOLOGY 2014; 14:603-626. [PMID: 25014611 DOI: 10.1089/ast.2014.1143] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Chemical composition affects virtually all aspects of astrobiology, from stellar astrophysics to molecular biology. We present a synopsis of the research results presented at the "Stellar Stoichiometry" Workshop Without Walls hosted at Arizona State University April 11-12, 2013, under the auspices of the NASA Astrobiology Institute. The results focus on the measurement of chemical abundances and the effects of composition on processes from stellar to planetary scales. Of particular interest were the scientific connections between processes in these normally disparate fields. Measuring the abundances of elements in stars and giant and terrestrial planets poses substantial difficulties in technique and interpretation. One of the motivations for this conference was the fact that determinations of the abundance of a given element in a single star by different groups can differ by more than their quoted errors. The problems affecting the reliability of abundance estimations and their inherent limitations are discussed. When these problems are taken into consideration, self-consistent surveys of stellar abundances show that there is still substantial variation (factors of ∼ 2) in the ratios of common elements (e.g., C, O, Na, Al, Mg, Si, Ca) important in rock-forming minerals, atmospheres, and biology. We consider how abundance variations arise through injection of supernova nucleosynthesis products into star-forming material and through photoevaporation of protoplanetary disks. The effects of composition on stellar evolution are substantial, and coupled with planetary atmosphere models can result in predicted habitable zone extents that vary by many tens of percent. Variations in the bulk composition of planets can affect rates of radiogenic heating and substantially change the mineralogy of planetary interiors, affecting properties such as convection and energy transport.
Collapse
Affiliation(s)
- Patrick A Young
- 1 School of Earth and Space Exploration, Arizona State University , Tempe, Arizona
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Setting the stage for habitable planets. Life (Basel) 2014; 4:35-65. [PMID: 25370028 PMCID: PMC4187148 DOI: 10.3390/life4010035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 02/10/2014] [Accepted: 02/17/2014] [Indexed: 11/17/2022] Open
Abstract
Our understanding of the processes that are relevant to the formation and maintenance of habitable planetary systems is advancing at a rapid pace, both from observation and theory. The present review focuses on recent research that bears on this topic and includes discussions of processes occurring in astrophysical, geophysical and climatic contexts, as well as the temporal evolution of planetary habitability. Special attention is given to recent observations of exoplanets and their host stars and the theories proposed to explain the observed trends. Recent theories about the early evolution of the Solar System and how they relate to its habitability are also summarized. Unresolved issues requiring additional research are pointed out, and a framework is provided for estimating the number of habitable planets in the Universe.
Collapse
|
19
|
Abstract
To be habitable, a world (planet or moon) does not need to be located in the stellar habitable zone (HZ), and worlds in the HZ are not necessarily habitable. Here, we illustrate how tidal heating can render terrestrial or icy worlds habitable beyond the stellar HZ. Scientists have developed a language that neglects the possible existence of worlds that offer more benign environments to life than Earth does. We call these objects "superhabitable" and discuss in which contexts this term could be used, that is to say, which worlds tend to be more habitable than Earth. In an appendix, we show why the principle of mediocracy cannot be used to logically explain why Earth should be a particularly habitable planet or why other inhabited worlds should be Earth-like. Superhabitable worlds must be considered for future follow-up observations of signs of extraterrestrial life. Considering a range of physical effects, we conclude that they will tend to be slightly older and more massive than Earth and that their host stars will likely be K dwarfs. This makes Alpha Centauri B, which is a member of the closest stellar system to the Sun and is supposed to host an Earth-mass planet, an ideal target for searches for a superhabitable world.
Collapse
Affiliation(s)
- René Heller
- 1 Department of Physics and Astronomy, McMaster University , Hamilton, Ontario, Canada
| | | |
Collapse
|
20
|
Rushby AJ, Claire MW, Osborn H, Watson AJ. Habitable zone lifetimes of exoplanets around main sequence stars. ASTROBIOLOGY 2013; 13:833-849. [PMID: 24047111 DOI: 10.1089/ast.2012.0938] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The potential habitability of newly discovered exoplanets is initially assessed by determining whether their orbits fall within the circumstellar habitable zone of their star. However, the habitable zone (HZ) is not static in time or space, and its boundaries migrate outward at a rate proportional to the increase in luminosity of a star undergoing stellar evolution, possibly including or excluding planets over the course of the star's main sequence lifetime. We describe the time that a planet spends within the HZ as its "habitable zone lifetime." The HZ lifetime of a planet has strong astrobiological implications and is especially important when considering the evolution of complex life, which is likely to require a longer residence time within the HZ. Here, we present results from a simple model built to investigate the evolution of the "classic" HZ over time, while also providing estimates for the evolution of stellar luminosity over time in order to develop a "hybrid" HZ model. These models return estimates for the HZ lifetimes of Earth and 7 confirmed HZ exoplanets and 27 unconfirmed Kepler candidates. The HZ lifetime for Earth ranges between 6.29 and 7.79×10⁹ years (Gyr). The 7 exoplanets fall in a range between ∼1 and 54.72 Gyr, while the 27 Kepler candidate planets' HZ lifetimes range between 0.43 and 18.8 Gyr. Our results show that exoplanet HD 85512b is no longer within the HZ, assuming it has an Earth analog atmosphere. The HZ lifetime should be considered in future models of planetary habitability as setting an upper limit on the lifetime of any potential exoplanetary biosphere, and also for identifying planets of high astrobiological potential for continued observational or modeling campaigns.
Collapse
Affiliation(s)
- Andrew J Rushby
- 1 School of Environmental Sciences, University of East Anglia , Norwich, UK
| | | | | | | |
Collapse
|
21
|
Barnes R, Heller R. Habitable planets around white and brown dwarfs: the perils of a cooling primary. ASTROBIOLOGY 2013; 13:279-91. [PMID: 23537137 PMCID: PMC3612282 DOI: 10.1089/ast.2012.0867] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
White and brown dwarfs are astrophysical objects that are bright enough to support an insolation habitable zone (IHZ). Unlike hydrogen-burning stars, they cool and become less luminous with time; hence their IHZ moves in with time. The inner edge of the IHZ is defined as the orbital radius at which a planet may enter a moist or runaway greenhouse, phenomena that can remove a planet's surface water forever. Thus, as the IHZ moves in, planets that enter it may no longer have any water and are still uninhabitable. Additionally, the close proximity of the IHZ to the primary leads to concern that tidal heating may also be strong enough to trigger a runaway greenhouse, even for orbital eccentricities as small as 10(-6). Water loss occurs due to photolyzation by UV photons in the planetary stratosphere, followed by hydrogen escape. Young white dwarfs emit a large amount of these photons, as their surface temperatures are over 10(4) K. The situation is less clear for brown dwarfs, as observational data do not constrain their early activity and UV emission very well. Nonetheless, both types of planets are at risk of never achieving habitable conditions, but planets orbiting white dwarfs may be less likely to sustain life than those orbiting brown dwarfs. We consider the future habitability of the planet candidates KOI 55.01 and 55.02 in these terms and find they are unlikely to become habitable.
Collapse
Affiliation(s)
- Rory Barnes
- Astronomy Department, University of Washington, Seattle, Washington 98195, USA.
| | | |
Collapse
|
22
|
Heller R, Barnes R. Exomoon habitability constrained by illumination and tidal heating. ASTROBIOLOGY 2013; 13:18-46. [PMID: 23305357 PMCID: PMC3549631 DOI: 10.1089/ast.2012.0859] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The detection of moons orbiting extrasolar planets ("exomoons") has now become feasible. Once they are discovered in the circumstellar habitable zone, questions about their habitability will emerge. Exomoons are likely to be tidally locked to their planet and hence experience days much shorter than their orbital period around the star and have seasons, all of which works in favor of habitability. These satellites can receive more illumination per area than their host planets, as the planet reflects stellar light and emits thermal photons. On the contrary, eclipses can significantly alter local climates on exomoons by reducing stellar illumination. In addition to radiative heating, tidal heating can be very large on exomoons, possibly even large enough for sterilization. We identify combinations of physical and orbital parameters for which radiative and tidal heating are strong enough to trigger a runaway greenhouse. By analogy with the circumstellar habitable zone, these constraints define a circumplanetary "habitable edge." We apply our model to hypothetical moons around the recently discovered exoplanet Kepler-22b and the giant planet candidate KOI211.01 and describe, for the first time, the orbits of habitable exomoons. If either planet hosted a satellite at a distance greater than 10 planetary radii, then this could indicate the presence of a habitable moon.
Collapse
Affiliation(s)
- René Heller
- Leibniz-Institute for Astrophysics Potsdam (AIP), Potsdam, Germany
| | - Rory Barnes
- Astronomy Department, University of Washington, Seattle, Washington, USA
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
| |
Collapse
|