1
|
Baqué M, Backhaus T, Meeßen J, Hanke F, Böttger U, Ramkissoon N, Olsson-Francis K, Baumgärtner M, Billi D, Cassaro A, de la Torre Noetzel R, Demets R, Edwards H, Ehrenfreund P, Elsaesser A, Foing B, Foucher F, Huwe B, Joshi J, Kozyrovska N, Lasch P, Lee N, Leuko S, Onofri S, Ott S, Pacelli C, Rabbow E, Rothschild L, Schulze-Makuch D, Selbmann L, Serrano P, Szewzyk U, Verseux C, Wagner D, Westall F, Zucconi L, de Vera JPP. Biosignature stability in space enables their use for life detection on Mars. SCIENCE ADVANCES 2022; 8:eabn7412. [PMID: 36070383 PMCID: PMC9451166 DOI: 10.1126/sciadv.abn7412] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/20/2022] [Indexed: 06/14/2023]
Abstract
Two rover missions to Mars aim to detect biomolecules as a sign of extinct or extant life with, among other instruments, Raman spectrometers. However, there are many unknowns about the stability of Raman-detectable biomolecules in the martian environment, clouding the interpretation of the results. To quantify Raman-detectable biomolecule stability, we exposed seven biomolecules for 469 days to a simulated martian environment outside the International Space Station. Ultraviolet radiation (UVR) strongly changed the Raman spectra signals, but only minor change was observed when samples were shielded from UVR. These findings provide support for Mars mission operations searching for biosignatures in the subsurface. This experiment demonstrates the detectability of biomolecules by Raman spectroscopy in Mars regolith analogs after space exposure and lays the groundwork for a consolidated space-proven database of spectroscopy biosignatures in targeted environments.
Collapse
Affiliation(s)
- Mickael Baqué
- German Aerospace Center (DLR), Institute of Planetary Research, Planetary Laboratories Department, Rutherfordstr. 2, 12489 Berlin, Germany
| | - Theresa Backhaus
- Heinrich-Heine-Universität (HHU), Institut für Botanik, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Joachim Meeßen
- Heinrich-Heine-Universität (HHU), Institut für Botanik, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Franziska Hanke
- German Aerospace Center (DLR), Institute of Optical Sensor Systems, Rutherfordstr. 2, 12489 Berlin, Germany
| | - Ute Böttger
- German Aerospace Center (DLR), Institute of Optical Sensor Systems, Rutherfordstr. 2, 12489 Berlin, Germany
| | - Nisha Ramkissoon
- AstrobiologyOU, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, MK7 6AA, UK
| | - Karen Olsson-Francis
- AstrobiologyOU, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, MK7 6AA, UK
| | - Michael Baumgärtner
- Microbial Geoecology and Astrobiology, Department of Ecology and Environmental Sciences, Umeå university, Linnaeus väg 6, 901 87 Umeå, Sweden
| | - Daniela Billi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Alessia Cassaro
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
| | - Rosa de la Torre Noetzel
- Departamento de Observación de la Tierra, Instituto Nacional de Técnica Aeroespacial (INTA), Torrejón de Ardoz-28850, Madrid, Spain
| | - René Demets
- European Space Agency (ESA), European Space Research and Technology Centre (ESTEC),, Noordwijk, Netherlands
| | - Howell Edwards
- University of Bradford, University Analytical Centre, Division of Chemical and Forensic Sciences, Raman Spectroscopy Group, West Yorkshire, UK
| | - Pascale Ehrenfreund
- Leiden Observatory, Laboratory Astrophysics, Leiden University, Leiden, Netherlands
- George Washington University, Space Policy Institute, Washington, DC 20052, USA
| | - Andreas Elsaesser
- Freie Universitaet Berlin, Experimental Biophysics and Space Sciences, Institute of Experimental Physics; Arnimallee 14, 14195 Berlin, Germany
| | - Bernard Foing
- Leiden Observatory, Laboratory Astrophysics, Leiden University, Leiden, Netherlands
- Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081-1087, 1081 HV, Amsterdam, Netherlands
| | - Frédéric Foucher
- CNRS Centre de Biophysique Moléculaire, UPR-4301, Rue Charles Sadron, CS80054, 45071 Orléans Cedex 2, France
| | - Björn Huwe
- Biodiversity Research/Systematic Botany, University of Potsdam, Maulbeerallee 1, D-14469 Potsdam, Germany
- Department Technology Assessment and Substance Cycles, Leibniz- Institute for Agriculture Engineering and Bioeconomy, Max-Eyth-Allee 100, D-14469 Potsdam, Germany
| | - Jasmin Joshi
- Institute for Landscape and Open Space, Eastern Switzerland University of Applied Sciences, Seestrasse 10, 8640 Rapperswil, Switzerland
| | - Natalia Kozyrovska
- Institute of Molecular Biology and Genetics of NASU, Acad. Zabolotnoho str.150, 03680, Kyiv Ukraine
| | - Peter Lasch
- Centre for Biological Threats and Special Pathogens (ZBS 6), Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
| | - Natuschka Lee
- Microbial Geoecology and Astrobiology, Department of Ecology and Environmental Sciences, Umeå university, Linnaeus väg 6, 901 87 Umeå, Sweden
| | - Stefan Leuko
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, 51147 Köln, Germany
| | - Silvano Onofri
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
| | - Sieglinde Ott
- Heinrich-Heine-Universität (HHU), Institut für Botanik, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Claudia Pacelli
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
- Research and Science Department, Italian Space Agency (ASI), Via del Politecnico snc, 00133, Rome, Italy
| | - Elke Rabbow
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, 51147 Köln, Germany
| | - Lynn Rothschild
- NASA Ames Research Center, Mail Stop 239-20, P.O. Box 1, Moffett Field, CA 94035-0001, USA
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Dirk Schulze-Makuch
- Technical University Berlin, ZAA, Hardenbergstr. 36, D-10623 Berlin, Germany
- Section Geomicrobiology, German Research Centre for Geosciences (GFZ), Telegrafenberg, 14473 Potsdam, Germany
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), 12587, Stechlin, Germany
| | - Laura Selbmann
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
- Mycological Section, Italian Antarctic National Museum (MNA), 16121 Genoa, Italy
| | - Paloma Serrano
- Section Geomicrobiology, German Research Centre for Geosciences (GFZ), Telegrafenberg, 14473 Potsdam, Germany
- Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute (AWI), Telegrafenberg, 14473 Potsdam, Germany
| | - Ulrich Szewzyk
- Institute of Environmental Technology, Environmental Microbiology, Technical University Berlin, Ernst-Reuter-Platz 1, Berlin, 10587 Berlin, Germany
| | - Cyprien Verseux
- Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, Am Fallturm 2, 28359, Bremen, Germany
| | - Dirk Wagner
- Section Geomicrobiology, German Research Centre for Geosciences (GFZ), Telegrafenberg, 14473 Potsdam, Germany
- Institute of Geosciences, University of Potsdam, Karl-Liebknecht-Str. 24, 14476, Potsdam, Germany
| | - Frances Westall
- CNRS Centre de Biophysique Moléculaire, UPR-4301, Rue Charles Sadron, CS80054, 45071 Orléans Cedex 2, France
| | - Laura Zucconi
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
| | - Jean-Pierre P. de Vera
- German Aerospace Center (DLR), Microgravity User Support Center (MUSC), Linder Höhe, 51147 Köln, Germany
| |
Collapse
|
2
|
Nascimento ELDL, Maia LC, Cáceres MEDS, Lücking R. Phylogenetic structure of lichen metacommunities in Amazonian and Northeast Brazil. Ecol Res 2021. [DOI: 10.1111/1440-1703.12206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
| | - Leonor Costa Maia
- Center of Biosciences, Department of Mycology Federal University of Pernambuco Recife Pernambuco Brazil
| | | | - Robert Lücking
- Botanic Garden and Botanical Museum Freie Universität Berlin Berlin Germany
| |
Collapse
|
3
|
Coleine C, Stajich JE, de Los Ríos A, Selbmann L. Beyond the extremes: Rocks as ultimate refuge for fungi in drylands. Mycologia 2020; 113:108-133. [PMID: 33232202 DOI: 10.1080/00275514.2020.1816761] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In an era of rapid climate change and expansion of desertification, the extremely harsh conditions of drylands are a true challenge for microbial life. Under drought conditions, where most life forms cannot survive, rocks represent the main refuge for life. Indeed, the endolithic habitat provides thermal buffering, physical stability, and protection against incident ultraviolet (UV) radiation and solar radiation and, to some extent, ensures water retention to microorganisms. The study of these highly specialized extreme-tolerant and extremophiles may provide tools for understanding microbial interactions and processes that allow them to keep their metabolic machinery active under conditions of dryness and oligotrophy that are typically incompatible with active life, up to the dry limits for life. Despite lithobiontic communities being studied all over the world, a comprehensive understanding of their ecology, evolution, and adaptation is still nascent. Herein, we survey the fungal component of these microbial ecosystems. We first provide an overview of the main defined groups (i.e., lichen-forming fungi, black fungi, and yeasts) of the most known and studied Antarctic endolithic communities that are almost the only life forms ensuring ecosystem functionality in the ice-free areas of the continent. For each group, we discuss their main traits and their diversity. Then, we focus on the fungal taxonomy and ecology of other worldwide endolithic communities. Finally, we highlight the utmost importance of a global rock survey in order to have a comprehensive view of the diversity, distribution, and functionality of these fungi in drylands, to obtain tools in desert area management, and as early alarm systems to climate change.
Collapse
Affiliation(s)
- Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia , Largo dell'Università snc, 01100, Viterbo, Italy
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California, 900 University Ave , Riverside, California 92521
| | - Asunción de Los Ríos
- Department of Biogeochemistry and Microbial Ecology, Museo Nacional de Ciencias Naturales, Spanish National Resource Council, Madrid, Spain
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia , Largo dell'Università snc, 01100, Viterbo, Italy.,Italian National Antarctic Museum, Mycological Section, Genoa, Italy
| |
Collapse
|
4
|
de la Torre Noetzel R, Ortega García MV, Miller AZ, Bassy O, Granja C, Cubero B, Jordão L, Martínez Frías J, Rabbow E, Backhaus T, Ott S, García Sancho L, de Vera JPP. Lichen Vitality After a Space Flight on Board the EXPOSE-R2 Facility Outside the International Space Station: Results of the Biology and Mars Experiment. ASTROBIOLOGY 2020; 20:583-600. [PMID: 32364796 DOI: 10.1089/ast.2018.1959] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As part of the Biology and Mars Experiment (BIOMEX; ILSRA 2009-0834), samples of the lichen Circinaria gyrosa were placed on the exposure platform EXPOSE-R2, on the International Space Station (ISS) and exposed to space and to a Mars-simulated environment for 18 months (2014-2016) to study: (1) resistance to space and Mars-like conditions and (2) biomarkers for use in future space missions (Exo-Mars). When the experiment returned (June 2016), initial analysis showed rapid recovery of photosystem II activity in the samples exposed exclusively to space vacuum and a Mars-like atmosphere. Significantly reduced recovery levels were observed in Sun-exposed samples, and electron and fluorescence microscopy (transmission electron microscope and field emission scanning electron microscope) data indicated that this was attributable to the combined effects of space radiation and space vacuum, as unirradiated samples exhibited less marked morphological changes compared with Sun-exposed samples. Polymerase chain reaction analyses confirmed that there was DNA damage in lichen exposed to harsh space and Mars-like environmental conditions, with ultraviolet radiation combined with space vacuum causing the most damage. These findings contribute to the characterization of space- and Mars-resistant organisms that are relevant to Mars habitability.
Collapse
Affiliation(s)
- Rosa de la Torre Noetzel
- Departamentos de Observación de la Tierra, Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain
| | - Maria Victoria Ortega García
- Departamentos de Sistemas de Defensa NBQ y Materiales Energéticos, Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain
| | - Ana Zélia Miller
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Sevilla, Spain
- HERCULES Laboratory, University of Évora, Évora, Portugal
| | - Olga Bassy
- ISDEFE (ISDEFE as External Consultant for INTA), Madrid, Spain
| | - Carmen Granja
- Departamentos de Sistemas de Defensa NBQ y Materiales Energéticos, Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain
| | - Beatriz Cubero
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Sevilla, Spain
| | - Luisa Jordão
- INSA-Instituto Nacional Saúde Doutor Ricardo Jorge, Lisboa, Portugal
| | | | - Elke Rabbow
- DLR-German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
| | - Theresa Backhaus
- Institute of Botany, Heinrich-Heine-University Duesseldorf (HHU), Duesseldorf, Germany
| | - Sieglinde Ott
- Institute of Botany, Heinrich-Heine-University Duesseldorf (HHU), Duesseldorf, Germany
| | | | - Jean-Pierre Paul de Vera
- DLR-German Aerospace Center, Management and Infrastructure, Astrobiology Laboratories, Berlin, Germany
| |
Collapse
|
5
|
Backhaus T, Meeßen J, Demets R, de Vera JP, Ott S. Characterization of Viability of the Lichen Buellia frigida After 1.5 Years in Space on the International Space Station. ASTROBIOLOGY 2019; 19:233-241. [PMID: 30742495 DOI: 10.1089/ast.2018.1894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The lichen Buellia frigida was exposed to space and simulated Mars analog conditions in the Biology and Mars Experiment (BIOMEX) project operated outside the International Space Station (ISS) for 1.5 years. To determine the effects of the Low Earth Orbit (LEO) conditions on the lichen symbionts, a LIVE/DEAD staining analysis test was performed. After return from the ISS, the lichen symbionts demonstrated mortality rates of up to 100% for the algal symbiont and up to 97.8% for the fungal symbiont. In contrast, the lichen symbiont controls exhibited mortality rates of 10.3% up to 31.9% for the algal symbiont and 14.5% for the fungal symbiont. The results performed in the BIOMEX Mars simulation experiment on the ISS indicate that the potential for survival and the resistance of the lichen B. frigida to LEO conditions are very low. It is unlikely that Mars could be inhabited by this lichen, even for a limited amount of time, or even not habitable planet for the tested lichen symbionts.
Collapse
Affiliation(s)
- Theresa Backhaus
- 1 Institute of Botany, Heinrich Heine University, Duesseldorf, Germany
| | - Joachim Meeßen
- 1 Institute of Botany, Heinrich Heine University, Duesseldorf, Germany
| | - René Demets
- 2 European Space Research and Technology Centre (ESTEC), European Space Agency (ESA), Noordwijk, Netherlands
| | - Jean-Pierre de Vera
- 3 Research Group, Astrobiological Laboratories, Institute of Planetary Research, Management and Infrastructure, German Aerospace Center (DLR), Berlin, Germany
| | - Sieglinde Ott
- 1 Institute of Botany, Heinrich Heine University, Duesseldorf, Germany
| |
Collapse
|
6
|
Onofri S, Selbmann L, Pacelli C, Zucconi L, Rabbow E, de Vera JP. Survival, DNA, and Ultrastructural Integrity of a Cryptoendolithic Antarctic Fungus in Mars and Lunar Rock Analogs Exposed Outside the International Space Station. ASTROBIOLOGY 2019; 19:170-182. [PMID: 30376361 DOI: 10.1089/ast.2017.1728] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The search for life beyond Earth involves investigation into the responses of model organisms to the deleterious effects of space. In the frame of the BIOlogy and Mars Experiment, as part of the European Space Agency (ESA) space mission EXPOSE-R2 in low Earth orbit (LEO), dried colonies of the Antarctic cryptoendolithic black fungus Cryomyces antarcticus CCFEE 515 were grown on martian and lunar analog regolith pellets, and exposed for 16 months to LEO space and simulated Mars-like conditions on the International Space Station. The results demonstrate that C. antarcticus was able to tolerate the combined stress of different extraterrestrial substrates, space, and simulated Mars-like conditions in terms of survival, DNA, and ultrastructural stability. Results offer insights into the habitability of Mars for future exploration missions on Mars. Implications for the detection of biosignatures in extraterrestrial conditions and planetary protection are discussed.
Collapse
Affiliation(s)
- Silvano Onofri
- 1 Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Laura Selbmann
- 1 Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
- 2 Section of Mycology, Italian National Antarctic Museum, Viterbo, Italy
| | - Claudia Pacelli
- 1 Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Laura Zucconi
- 1 Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Elke Rabbow
- 3 Institute of Aerospace Medicine, German Aerospace Centre, Köln, Germany
| | - Jean-Pierre de Vera
- 4 Astrobiological Laboratories, Institute of Planetary Research, Management and Infrastructure, German Aerospace Center (DLR) Berlin, Berlin, Germany
| |
Collapse
|
7
|
Huwe B, Fiedler A, Moritz S, Rabbow E, de Vera JP, Joshi J. Mosses in Low Earth Orbit: Implications for the Limits of Life and the Habitability of Mars. ASTROBIOLOGY 2019; 19:221-232. [PMID: 30742499 DOI: 10.1089/ast.2018.1889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
As a part of the European Space Agency mission "EXPOSE-R2" on the International Space Station (ISS), the BIOMEX (Biology and Mars Experiment) experiment investigates the habitability of Mars and the limits of life. In preparation for the mission, experimental verification tests and scientific verification tests simulating different combinations of abiotic space- and Mars-like conditions were performed to analyze the resistance of a range of model organisms. The simulated abiotic space- and Mars-stressors were extreme temperatures, vacuum, and Mars-like surface ultraviolet (UV) irradiation in different atmospheres. We present for the first time simulated space exposure data of mosses using plantlets of the bryophyte genus Grimmia, which is adapted to high altitudinal extreme abiotic conditions at the Swiss Alps. Our preflight tests showed that severe UVR200-400nm irradiation with the maximal dose of 5 and 6.8 × 105 kJ·m-2, respectively, was the only stressor with a negative impact on the vitality with a 37% (terrestrial atmosphere) or 36% reduction (space- and Mars-like atmospheres) in photosynthetic activity. With every exposure to UVR200-400nm 105 kJ·m-2, the vitality of the bryophytes dropped by 6%. No effect was found, however, by any other stressor. As the mosses were still vital after doses of ultraviolet radiation (UVR) expected during the EXPOSE-R2 mission on ISS, we show that this earliest extant lineage of land plants is highly resistant to extreme abiotic conditions.
Collapse
Affiliation(s)
- Björn Huwe
- 1 Biodiversity Research/Systematic Botany, University of Potsdam, Potsdam, Germany
| | - Annelie Fiedler
- 1 Biodiversity Research/Systematic Botany, University of Potsdam, Potsdam, Germany
| | - Sophie Moritz
- 1 Biodiversity Research/Systematic Botany, University of Potsdam, Potsdam, Germany
| | - Elke Rabbow
- 2 Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Jean Pierre de Vera
- 3 Astrobiological Laboratories, Management and Infrastructure, Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany
| | - Jasmin Joshi
- 1 Biodiversity Research/Systematic Botany, University of Potsdam, Potsdam, Germany
- 4 Institute for Landscape and Open Space, Hochschule für Technik HSR Rapperswil, Rapperswil, Switzerland
| |
Collapse
|
8
|
Pacelli C, Selbmann L, Zucconi L, Coleine C, de Vera JP, Rabbow E, Böttger U, Dadachova E, Onofri S. Responses of the Black Fungus Cryomyces antarcticus to Simulated Mars and Space Conditions on Rock Analogs. ASTROBIOLOGY 2019; 19:209-220. [PMID: 30067087 DOI: 10.1089/ast.2016.1631] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The BIOMEX (BIOlogy and Mars Experiment) is part of the European Space Agency (ESA) space mission EXPOSE-R2 in Low-Earth Orbit, devoted to exposing microorganisms for 1.5 years to space and simulated Mars conditions on the International Space Station. In preparing this mission, dried colonies of the Antarctic cryptoendolithic black fungus Cryomyces antarcticus CCFEE 515, grown on martian and lunar analog regolith pellets, were subjected to several ground-based preflight tests, Experiment Verification Tests, and Science Verification Tests (SVTs) that were performed to verify (i) the resistance of our model organism to space stressors when grown on extraterrestrial rock analogs and (ii) the possibility of detecting biomolecules as potential biosignatures. Here, the results of the SVTs, the last set of experiments, which were performed in ultraviolet radiation combined with simulated space vacuum or simulated martian conditions, are reported. The results demonstrate that C. antarcticus was able to tolerate the conditions of the SVT experiment, regardless of the substratum in which it was grown. DNA maintained high integrity after treatments and was confirmed as a possible biosignature; melanin, which was chosen to be a target for biosignature detection, was unambiguously detected by Raman spectroscopy.
Collapse
Affiliation(s)
- Claudia Pacelli
- 1 Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | - Laura Selbmann
- 1 Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
- 2 Section of Mycology, Italian Antarctic National Museum (MNA), Genoa, Italy
| | - Laura Zucconi
- 1 Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | - Claudia Coleine
- 1 Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | - Jean-Pierre de Vera
- 3 Institute of Planetary Research, German Aerospace Center (DLR) Berlin, Berlin, Germany
| | - Elke Rabbow
- 4 German Aerospace Centre, Institute of Aerospace Medicine (DLR), Köln, Germany
| | - Ute Böttger
- 5 Institute of Optical Sensor Systems, German Aerospace Center (DLR) Berlin, Berlin, Germany
| | - Ekaterina Dadachova
- 6 College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - Silvano Onofri
- 1 Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| |
Collapse
|
9
|
Onofri S, Selbmann L, Pacelli C, de Vera JP, Horneck G, Hallsworth JE, Zucconi L. Integrity of the DNA and Cellular Ultrastructure of Cryptoendolithic Fungi in Space or Mars Conditions: A 1.5-Year Study at the International Space Station. Life (Basel) 2018; 8:E23. [PMID: 29921763 PMCID: PMC6027225 DOI: 10.3390/life8020023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/10/2018] [Accepted: 06/12/2018] [Indexed: 11/17/2022] Open
Abstract
The black fungi Cryomyces antarcticus and Cryomyces minteri are highly melanized and are resilient to cold, ultra-violet, ionizing radiation and other extreme conditions. These microorganisms were isolated from cryptoendolithic microbial communities in the McMurdo Dry Valleys (Antarctica) and studied in Low Earth Orbit (LEO), using the EXPOSE-E facility on the International Space Station (ISS). Previously, it was demonstrated that C. antarcticus and C. minteri survive the hostile conditions of space (vacuum, temperature fluctuations, and the full spectrum of extraterrestrial solar electromagnetic radiation), as well as Mars conditions that were simulated in space for a 1.5-year period. Here, we qualitatively and quantitatively characterize damage to DNA and cellular ultrastructure in desiccated cells of these two species, within the frame of the same experiment. The DNA and cells of C. antarcticus exhibited a higher resistance than those of C. minteri. This is presumably attributable to the thicker (melanized) cell wall of the former. Generally, DNA was readily detected (by PCR) regardless of exposure conditions or fungal species, but the C. minteri DNA had been more-extensively mutated. We discuss the implications for using DNA, when properly shielded, as a biosignature of recently extinct or extant life.
Collapse
Affiliation(s)
- Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy.
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy.
- Italian National Antarctic Museum (MNA), Mycological Section, 16166 Genoa, Italy.
| | - Claudia Pacelli
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy.
| | - Jean Pierre de Vera
- German Aerospace Center (DLR) Berlin, Institute of Planetary Research, Rutherfordstreet 2, 12489 Berlin, Germany.
| | - Gerda Horneck
- German Aerospace Centre, Institute of Aerospace Medicine, Linder Hoehe, D 51170 Köln, Germany.
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast BT9 7BL, UK.
| | - Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy.
| |
Collapse
|
10
|
Leuko S, Bohmeier M, Hanke F, Böettger U, Rabbow E, Parpart A, Rettberg P, de Vera JPP. On the Stability of Deinoxanthin Exposed to Mars Conditions during a Long-Term Space Mission and Implications for Biomarker Detection on Other Planets. Front Microbiol 2017; 8:1680. [PMID: 28966605 PMCID: PMC5605620 DOI: 10.3389/fmicb.2017.01680] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/21/2017] [Indexed: 11/13/2022] Open
Abstract
Outer space, the final frontier, is a hostile and unforgiving place for any form of life as we know it. The unique environment of space allows for a close simulation of Mars surface conditions that cannot be simulated as accurately on the Earth. For this experiment, we tested the resistance of Deinococcus radiodurans to survive exposure to simulated Mars-like conditions in low-Earth orbit for a prolonged period of time as part of the Biology and Mars experiment (BIOMEX) project. Special focus was placed on the integrity of the carotenoid deinoxanthin, which may serve as a potential biomarker to search for remnants of life on other planets. Survival was investigated by evaluating colony forming units, damage inflicted to the 16S rRNA gene by quantitative PCR, and the integrity and detectability of deinoxanthin by Raman spectroscopy. Exposure to space conditions had a strong detrimental effect on the survival of the strains and the 16S rRNA integrity, yet results show that deinoxanthin survives exposure to conditions as they prevail on Mars. Solar radiation is not only strongly detrimental to the survival and 16S rRNA integrity but also to the Raman signal of deinoxanthin. Samples not exposed to solar radiation showed only minuscule signs of deterioration. To test whether deinoxanthin is able to withstand the tested parameters without the protection of the cell, it was extracted from cell homogenate and exposed to high/low temperatures, vacuum, germicidal UV-C radiation, and simulated solar radiation. Results obtained by Raman investigations showed a strong resistance of deinoxanthin against outer space and Mars conditions, with the only exception of the exposure to simulated solar radiation. Therefore, deinoxanthin proved to be a suitable easily detectable biomarker for the search of Earth-like organic pigment-containing life on other planets.
Collapse
Affiliation(s)
- Stefan Leuko
- German Aerospace Center, Research Group "Astrobiology", Radiation Biology Department, Institute of Aerospace MedicineKöln, Germany
| | - Maria Bohmeier
- German Aerospace Center, Research Group "Astrobiology", Radiation Biology Department, Institute of Aerospace MedicineKöln, Germany
| | - Franziska Hanke
- German Aerospace Center, Institute of Optical Sensor SystemsBerlin, Germany
| | - Ute Böettger
- German Aerospace Center, Institute of Optical Sensor SystemsBerlin, Germany
| | - Elke Rabbow
- German Aerospace Center, Research Group "Astrobiology", Radiation Biology Department, Institute of Aerospace MedicineKöln, Germany
| | - Andre Parpart
- German Aerospace Center, Research Group "Astrobiology", Radiation Biology Department, Institute of Aerospace MedicineKöln, Germany
| | - Petra Rettberg
- German Aerospace Center, Research Group "Astrobiology", Radiation Biology Department, Institute of Aerospace MedicineKöln, Germany
| | | |
Collapse
|
11
|
Pacelli C, Selbmann L, Zucconi L, De Vera JP, Rabbow E, Horneck G, de la Torre R, Onofri S. BIOMEX Experiment: Ultrastructural Alterations, Molecular Damage and Survival of the Fungus Cryomyces antarcticus after the Experiment Verification Tests. ORIGINS LIFE EVOL B 2017; 47:187-202. [PMID: 27033201 DOI: 10.1007/s11084-016-9485-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 10/09/2015] [Indexed: 10/22/2022]
Abstract
The search for traces of extinct or extant life in extraterrestrial environments is one of the main goals for astrobiologists; due to their ability to withstand stress producing conditions, extremophiles are perfect candidates for astrobiological studies. The BIOMEX project aims to test the ability of biomolecules and cell components to preserve their stability under space and Mars-like conditions, while at the same time investigating the survival capability of microorganisms. The experiment has been launched into space and is being exposed on the EXPOSE-R2 payload, outside of the International Space Station (ISS) over a time-span of 1.5 years. Along with a number of other extremophilic microorganisms, the Antarctic cryptoendolithic black fungus Cryomyces antarcticus CCFEE 515 has been included in the experiment. Before launch, dried colonies grown on Lunar and Martian regolith analogues were exposed to vacuum, irradiation and temperature cycles in ground based experiments (EVT1 and EVT2). Cultural and molecular tests revealed that the fungus survived on rock analogues under space and simulated Martian conditions, showing only slight ultra-structural and molecular damage.
Collapse
Affiliation(s)
- Claudia Pacelli
- Department of Ecological and Biological Science (DEB), University of Tuscia, L.go dell'Università snc, 01100, Viterbo, Italy
| | - Laura Selbmann
- Department of Ecological and Biological Science (DEB), University of Tuscia, L.go dell'Università snc, 01100, Viterbo, Italy.
| | - Laura Zucconi
- Department of Ecological and Biological Science (DEB), University of Tuscia, L.go dell'Università snc, 01100, Viterbo, Italy
| | - Jean-Pierre De Vera
- German Aerospace Center (DLR) Berlin, Institute of Planetary Research, Rutherfordstr. 2, 12489, Berlin, Germany
| | - Elke Rabbow
- German Aerospace Centre, Institute of Aerospace Medicine, Linder Hoehe, D 51170, Köln, Germany
| | - Gerda Horneck
- German Aerospace Centre, Institute of Aerospace Medicine, Linder Hoehe, D 51170, Köln, Germany
| | - Rosa de la Torre
- Department of Earth Observation, INTA - National Institute of Aerospace Technique, Madrid, Spain
| | - Silvano Onofri
- Department of Ecological and Biological Science (DEB), University of Tuscia, L.go dell'Università snc, 01100, Viterbo, Italy
| |
Collapse
|
12
|
Podolich O, Zaets I, Kukharenko O, Orlovska I, Reva O, Khirunenko L, Sosnin M, Haidak A, Shpylova S, Rabbow E, Skoryk M, Kremenskoy M, Demets R, Kozyrovska N, de Vera JP. Kombucha Multimicrobial Community under Simulated Spaceflight and Martian Conditions. ASTROBIOLOGY 2017; 17:459-469. [PMID: 28520475 DOI: 10.1089/ast.2016.1480] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Kombucha microbial community (KMC) produces a cellulose-based biopolymer of industrial importance and a probiotic beverage. KMC-derived cellulose-based pellicle film is known as a highly adaptive microbial macrocolony-a stratified community of prokaryotes and eukaryotes. In the framework of the multipurpose international astrobiological project "BIOlogy and Mars Experiment (BIOMEX)," which aims to study the vitality of prokaryotic and eukaryotic organisms and the stability of selected biomarkers in low Earth orbit and in a Mars-like environment, a cellulose polymer structural integrity will be assessed as a biomarker and biotechnological nanomaterial. In a preflight assessment program for BIOMEX, the mineralized bacterial cellulose did not exhibit significant changes in the structure under all types of tests. KMC members that inhabit the cellulose-based pellicle exhibited a high survival rate; however, the survival capacity depended on a variety of stressors such as the vacuum of space, a Mars-like atmosphere, UVC radiation, and temperature fluctuations. The critical limiting factor for microbial survival was high-dose UV irradiation. In the tests that simulated a 1-year mission of exposure outside the International Space Station, the core populations of bacteria and yeasts survived and provided protection against UV; however, the microbial density of the populations overall was reduced, which was revealed by implementation of culture-dependent and culture-independent methods. Reduction of microbial richness was also associated with a lower accumulation of chemical elements in the cellulose-based pellicle film, produced by microbiota that survived in the post-test experiments, as compared to untreated cultures that populated the film. Key Words: BIOlogy and Mars Experiment (BIOMEX)-Kombucha multimicrobial community-Biosignature-Biofilm-Bacterial cellulose. Astrobiology 17, 459-469.
Collapse
Affiliation(s)
- O Podolich
- 1 Institute of Molecular Biology & Genetics of NASU , Kyiv, Ukraine
| | - I Zaets
- 1 Institute of Molecular Biology & Genetics of NASU , Kyiv, Ukraine
| | - O Kukharenko
- 1 Institute of Molecular Biology & Genetics of NASU , Kyiv, Ukraine
| | - I Orlovska
- 1 Institute of Molecular Biology & Genetics of NASU , Kyiv, Ukraine
| | - O Reva
- 2 Pretoria University , Bioinformatics Center, Pretoria, South Africa
| | | | - M Sosnin
- 3 Institute of Physics of NASU , Kyiv, Ukraine
| | - A Haidak
- 1 Institute of Molecular Biology & Genetics of NASU , Kyiv, Ukraine
| | - S Shpylova
- 1 Institute of Molecular Biology & Genetics of NASU , Kyiv, Ukraine
| | - E Rabbow
- 4 Radiation Biology Department, Institute of Aerospace Medicine , German Aerospace Center (DLR), Cologne, Germany
| | - M Skoryk
- 5 NanoMedTech LLC , Kyiv, Ukraine
| | | | - R Demets
- 6 ESA/ESTEC , Noordwijk, the Netherlands
| | - N Kozyrovska
- 1 Institute of Molecular Biology & Genetics of NASU , Kyiv, Ukraine
| | - J-P de Vera
- 7 Institute of Planetary Research , German Aerospace Center (DLR), Berlin, Germany
| |
Collapse
|
13
|
de la Torre R, Miller AZ, Cubero B, Martín-Cerezo ML, Raguse M, Meeßen J. The Effect of High-Dose Ionizing Radiation on the Astrobiological Model Lichen Circinaria gyrosa. ASTROBIOLOGY 2017; 17:145-153. [PMID: 28206822 DOI: 10.1089/ast.2015.1454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The lichen Circinaria gyrosa is an astrobiological model defined by its high capacity of resistance to space conditions and to a simulated martian environment. Therefore, it became part of the currently operated BIOMEX experiment on board the International Space Station and the recent STARLIFE campaign to study the effects of four types of space-relevant ionizing radiation. The samples were irradiated with helium and iron ions at doses up to 2 kGy, with X-rays at doses up to 5 kGy and with γ rays at doses from 6 to 113 kGy. Results on C. gyrosa's resistance to simulated space ionizing radiation and its post-irradiation viability were obtained by (i) chlorophyll a fluorescence of photosystem II (PSII), (ii) epifluorescence microscopy, (iii) confocal laser scanning microscopy (CLSM), and (iv) field emission scanning electron microscopy (FESEM). Results of photosynthetic activity and epifluorescence show no significant changes up to a dose of 1 kGy (helium ions), 2 kGy (iron ions), 5 kGy (X-rays)-the maximum doses applied for those radiation qualities-as well as a dose of 6 kGy of γ irradiation, which was the lowest dose applied for this low linear energy transfer (LET) radiation. Significant damage in a dose-related manner was observed only at much higher doses of γ irradiation (up to 113 kGy). These data corroborate the findings of the parallel STARLIFE studies on the effects of ionizing radiation on the lichen Circinaria gyrosa, its isolated photobiont, and the lichen Xanthoria elegans. Key Words: Simulated space ionizing radiation-Gamma rays-Extremotolerance-Lichens-Circinaria gyrosa-Photosynthetic activity. Astrobiology 17, 145-153.
Collapse
Affiliation(s)
- Rosa de la Torre
- 1 Departamento de Observación de la Tierra, Instituto Nacional de Técnica Aeroespacial (INTA) , Madrid, Spain
| | - Ana Zélia Miller
- 2 Instituto de Recursos Naturales y Agrobiología de Sevilla-CSIC , Sevilla, Spain
| | - Beatriz Cubero
- 2 Instituto de Recursos Naturales y Agrobiología de Sevilla-CSIC , Sevilla, Spain
| | - M Luisa Martín-Cerezo
- 1 Departamento de Observación de la Tierra, Instituto Nacional de Técnica Aeroespacial (INTA) , Madrid, Spain
| | - Marina Raguse
- 3 Radiation Biology Department, Institute of Aerospace Medicine , German Aerospace Center (DLR), Cologne, Germany
| | - Joachim Meeßen
- 4 Institute of Botany, Heinrich-Heine-University (HHU) , Düsseldorf, Germany
| |
Collapse
|
14
|
Brandt A, Meeßen J, Jänicke RU, Raguse M, Ott S. Simulated Space Radiation: Impact of Four Different Types of High-Dose Ionizing Radiation on the Lichen Xanthoria elegans. ASTROBIOLOGY 2017; 17:136-144. [PMID: 28206821 DOI: 10.1089/ast.2015.1455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This study addresses the viability of the lichen Xanthoria elegans after high-dose ionizing irradiation in the frame of the STARLIFE campaign. The first set of experiments was intended to resemble several types of galactic cosmic radiation (GCR) as present beyond the magnetic shield of Earth. In the second set of experiments, γ radiation up to 113 kGy was applied to test the limit of lichen resistance to ionizing radiation. Entire thalli of Xanthoria elegans were irradiated in the anhydrobiotic state. After STARLIFE 1, the metabolic activity of both symbionts was quantified by live/dead staining with confocal laser scanning microscopy. The photosynthetic activity was measured after the respective irradiation to assess the ability of the symbiotic green algae to restore photosynthesis after irradiation. The STARLIFE campaign complements the results of the LIFE experiments at the EXPOSE-E facility on the International Space Station by testing the model organism Xanthoria elegans on its resistance to hazardous radiation that might be accumulated during long-term space exposure. In addition, the photosynthetic activity of metabolically active lichen was investigated after X-ray irradiation up to 100 Gy (3.3 Gy/min). Since previous astrobiological experiments were mostly performed with anhydrobiotic lichen, these experiments will broaden our knowledge on the correlation of physiological state and astrobiological stressors. Key Words: Astrobiology-Extremotolerance-Gamma rays-Ionizing radiation-Lichens-Viability. Astrobiology 17, 136-144.
Collapse
Affiliation(s)
- Annette Brandt
- 1 Institute of Botany, Heinrich-Heine-University (HHU) , Düsseldorf, Germany
| | - Joachim Meeßen
- 1 Institute of Botany, Heinrich-Heine-University (HHU) , Düsseldorf, Germany
| | - Reiner U Jänicke
- 2 Laboratory of Molecular Radiooncology, University of Düsseldorf , Düsseldorf, Germany
| | - Marina Raguse
- 3 Space Microbiology Research Group, Radiation Biology Department, Institute of Aerospace Medicine , German Aerospace Center (DLR), Cologne, Germany
| | - Sieglinde Ott
- 1 Institute of Botany, Heinrich-Heine-University (HHU) , Düsseldorf, Germany
| |
Collapse
|
15
|
Meeßen J, Backhaus T, Brandt A, Raguse M, Böttger U, de Vera JP, de la Torre R. The Effect of High-Dose Ionizing Radiation on the Isolated Photobiont of the Astrobiological Model Lichen Circinaria gyrosa. ASTROBIOLOGY 2017; 17:154-162. [PMID: 28206823 DOI: 10.1089/ast.2015.1453] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Lichen symbioses between fungi and algae represent successful life strategies to colonize the most extreme terrestrial habitats. Consequently, space exposure and simulation experiments have demonstrated lichens' high capacity for survival, and thus, they have become models in astrobiological research with which to discern the limits and limitations of terrestrial life. In a series of ground-based irradiation experiments, the STARLIFE campaign investigated the resistance of astrobiological model organisms to galactic cosmic radiation, which is one of the lethal stressors of extraterrestrial environments. Since previous studies have identified that the alga is the more sensitive lichen symbiont, we chose the isolated photobiont Trebouxia sp. of the astrobiological model Circinaria gyrosa as a subject in the campaign. Therein, γ radiation was used to exemplify the deleterious effects of low linear energy transfer (LET) ionizing radiation at extremely high doses up to 113 kGy in the context of astrobiology. The effects were analyzed by chlorophyll a fluorescence of photosystem II (PSII), cultivation assays, live/dead staining and confocal laser scanning microscopy (CLSM), and Raman laser spectroscopy (RLS). The results demonstrate dose-dependent impairment of photosynthesis, the cessation of cell proliferation, cellular damage, a decrease in metabolic activity, and degradation of photosynthetic pigments. While previous investigations on other extraterrestrial stressors have demonstrated a high potential of resistance, results of this study reveal the limits of photobiont resistance to ionizing radiation and characterize γ radiation-induced damages. This study also supports parallel STARLIFE studies on the lichens Circinaria gyrosa and Xanthoria elegans, both of which harbor a Trebouxia sp. photobiont. Key Words: Astrobiology-Gamma rays-Extremotolerance-Ionizing radiation-Lichens-Photobiont. Astrobiology 17, 154-162.
Collapse
Affiliation(s)
- Joachim Meeßen
- 1 Institute of Botany, Heinrich-Heine-University (HHU) , Düsseldorf, Germany
| | - Theresa Backhaus
- 1 Institute of Botany, Heinrich-Heine-University (HHU) , Düsseldorf, Germany
| | - Annette Brandt
- 1 Institute of Botany, Heinrich-Heine-University (HHU) , Düsseldorf, Germany
| | - Marina Raguse
- 2 Space Microbiology Research Group, Radiation Biology Department, Institute of Aerospace Medicine , German Aerospace Center (DLR), Cologne, Germany
| | - Ute Böttger
- 3 Institute of Optical Sensor Systems , German Aerospace Center (DLR), Berlin, Germany
| | - Jean-Pierre de Vera
- 4 Institute of Planetary Research , German Aerospace Center (DLR), Berlin, Germany
| | - Rosa de la Torre
- 5 Departamento de Observación de la Tierra, Instituto Nacional de Técnica Aeroespacial (INTA) , Madrid, Spain
| |
Collapse
|
16
|
Extreme dehydration observed in Antarctic Turgidosculum complicatulum and in Prasiola crispa. Extremophiles 2016; 21:331-343. [PMID: 28000023 DOI: 10.1007/s00792-016-0905-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 12/03/2016] [Indexed: 10/20/2022]
Abstract
Gaseous phase hydration effect of extremely dehydrated thallus of the Antarctic lichenized fungus Turgidosculum complicatulum and of green alga Prasiola crispa was observed using hydration kinetics, sorption isotherm, 1H-NMR spectroscopy and relaxometry. Three bound water fractions were distinguished: (1) very tightly bound water, (2) tightly bound water and (3) a loosely bound water fraction detected at higher levels of hydration. Sorption isotherm was sigmoidal in form and well fitted using Dent model. The relative mass of water saturating primary water binding sites was ΔM/m 0 = 0.055 for T. complicatulum and ΔM/m 0 = 0.131 for P. crispa. 1H-NMR free induction decays (FIDs) for T. complicatulum and for P. crispa were superpositions of a solid signal component, and one averaged liquid signal component for P. crispa thallus ([Formula: see text] ≈ 80 µs) or two liquid signal components coming from a tightly bound ([Formula: see text]≈ 71 µs) and from a loosely bound water fraction ([Formula: see text]≈ 278 µs) for T. complicatulum. 1H-NMR spectra recorded for T. complicatulum and for P. crispa thalli revealed one averaged mobile proton signal component L. The total liquid signal component expressed in units of solid (L 1 + L 2)/S suggests the presence of water soluble fraction in T. complicatulum thallus.
Collapse
|