1
|
MacKenzie SM, Neveu M, Davila AF, Lunine JI, Cable ML, Phillips-Lander CM, Eigenbrode JL, Waite JH, Craft KL, Hofgartner JD, McKay CP, Glein CR, Burton D, Kounaves SP, Mathies RA, Vance SD, Malaska MJ, Gold R, German CR, Soderlund KM, Willis P, Freissinet C, McEwen AS, Brucato JR, de Vera JPP, Hoehler TM, Heldmann J. Science Objectives for Flagship-Class Mission Concepts for the Search for Evidence of Life at Enceladus. ASTROBIOLOGY 2022; 22:685-712. [PMID: 35290745 PMCID: PMC9233532 DOI: 10.1089/ast.2020.2425] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/21/2022] [Indexed: 05/07/2023]
Abstract
Cassini revealed that Saturn's Moon Enceladus hosts a subsurface ocean that meets the accepted criteria for habitability with bio-essential elements and compounds, liquid water, and energy sources available in the environment. Whether these conditions are sufficiently abundant and collocated to support life remains unknown and cannot be determined from Cassini data. However, thanks to the plume of oceanic material emanating from Enceladus' south pole, a new mission to Enceladus could search for evidence of life without having to descend through kilometers of ice. In this article, we outline the science motivations for such a successor to Cassini, choosing the primary science goal to be determining whether Enceladus is inhabited and assuming a resource level equivalent to NASA's Flagship-class missions. We selected a set of potential biosignature measurements that are complementary and orthogonal to build a robust case for any life detection result. This result would be further informed by quantifications of the habitability of the environment through geochemical and geophysical investigations into the ocean and ice shell crust. This study demonstrates that Enceladus' plume offers an unparalleled opportunity for in situ exploration of an Ocean World and that the planetary science and astrobiology community is well equipped to take full advantage of it in the coming decades.
Collapse
Affiliation(s)
| | - Marc Neveu
- Department of Astronomy, University of Maryland, College Park, Maryland, USA
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Alfonso F. Davila
- Division of Space Science and Astrobiology, NASA Ames Research Center, Moffett Field, California, USA
| | - Jonathan I. Lunine
- Department of Astronomy, Cornell University, Ithaca, New York, USA
- Carl Sagan Institute, Cornell University, Ithaca, New York, USA
| | - Morgan L. Cable
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | - Jennifer L. Eigenbrode
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - J. Hunter Waite
- Space Science and Engineering Division, Southwest Research Institute, San Antonio, Texas, USA
| | - Kate L. Craft
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA
| | - Jason D. Hofgartner
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Chris P. McKay
- Division of Space Science and Astrobiology, NASA Ames Research Center, Moffett Field, California, USA
| | - Christopher R. Glein
- Space Science and Engineering Division, Southwest Research Institute, San Antonio, Texas, USA
| | - Dana Burton
- Department of Anthropology, George Washington University, Washington, District of Columbia, USA
| | | | - Richard A. Mathies
- Chemistry Department and Space Sciences Laboratory, University of California, Berkeley, Berkeley, California, USA
| | - Steven D. Vance
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Michael J. Malaska
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Robert Gold
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA
| | - Christopher R. German
- Department of Geology & Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Krista M. Soderlund
- Institute for Geophysics, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Peter Willis
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | - Alfred S. McEwen
- Lunar and Planetary Lab, University of Arizona, Tucson, Arizona, USA
| | | | - Jean-Pierre P. de Vera
- Space Operations and Astronaut Training, MUSC, German Aerospace Center (DLR), Cologne, Germany
| | - Tori M. Hoehler
- Division of Space Science and Astrobiology, NASA Ames Research Center, Moffett Field, California, USA
| | - Jennifer Heldmann
- Division of Space Science and Astrobiology, NASA Ames Research Center, Moffett Field, California, USA
| |
Collapse
|
2
|
Vance SD, Melwani Daswani M. Serpentinite and the search for life beyond Earth. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20180421. [PMID: 31902342 DOI: 10.1098/rsta.2018.0421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
Hydrogen from serpentinization is a source of chemical energy for some life forms on Earth. It is a potential fuel for life in the subsurface of Mars and in the icy ocean worlds in the outer solar system. Serpentinization is also implicated in life's origin. Planetary exploration offers a way to investigate such theories by characterizing and ultimately searching for life in geochemical settings that no longer exist on Earth. At present, much of the current context of serpentinization on other worlds relies on inference from modelling and studies on Earth. While there is evidence from orbital spectral imaging and martian meteorites that serpentinization has occurred on Mars, the extent and duration of that activity has not been constrained. Similarly, ongoing serpentinization might explain hydrogen found in the ocean of Saturn's tiny moon Enceladus, but this raises questions about how long such activity has persisted. Titan's hydrocarbon-rich atmosphere may derive from ancient or present-day serpentinization at the bottom of its ocean. In Europa, volcanism or serpentinization may provide hydrogen as a redox couple to oxygen generated at the moon's surface. We assess the potential extent of serpentinization in the solar system's wet and rocky worlds, assuming that microfracturing from thermal expansion anisotropy sets an upper limit on the percolation depth of surface water into the rocky interiors. In this bulk geophysical model, planetary cooling from radiogenic decay implies the infiltration of water to greater depths through time, continuing to the present. The serpentinization of this newly exposed rock is assessed as a significant source of global hydrogen. Comparing the computed hydrogen and surface-generated oxygen delivered to Europa's ocean reveals redox fluxes similar to Earth's. Planned robotic exploration missions to other worlds can aid in understanding the planetary context of serpentinization, testing the predictions herein. This article is part of a discussion meeting issue 'Serpentinite in the Earth System'.
Collapse
Affiliation(s)
- S D Vance
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109-8001, USA
| | - M Melwani Daswani
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109-8001, USA
| |
Collapse
|
3
|
Hurford T, Henning W, Maguire R, Lekic V, Schmerr N, Panning M, Bray V, Manga M, Kattenhorn S, Quick L, Rhoden A. Seismicity on tidally active solid-surface worlds. ICARUS 2019; 338:113466. [PMID: 32905557 PMCID: PMC7473397 DOI: 10.1016/j.icarus.2019.113466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Tidal interactions between planets or stars and the bodies that orbit them dissipate energy in their interiors. The dissipated energy heats the interior and a fraction of that energy will be released as seismic energy. Here we formalize a model to describe the tidally-driven seismic activity on planetary bodies based on tidal dissipation. To constrain the parameters of our model we use the seismic activity of the Moon, driven by tidal dissipation from the Earth-Moon interactions. We then apply this model to predict the amount of seismic energy release and largest seismic events on other moons in our Solar System and exoplanetary bodies. We find that many moons in the Solar System should be more seismically active than the Earth's Moon and many exoplanets should exhibit more seismic activity than the Earth. Finally, we examine how temporal-spatial variations in tidal dissipation manifest as variations in the locations and timing of seismic events on these bodies.
Collapse
Affiliation(s)
- T.A. Hurford
- Planetary Geology, Geophysics and Geochemistry Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - W.G. Henning
- Planetary Geology, Geophysics and Geochemistry Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
- University of Maryland, College Park, MD, USA
| | - R. Maguire
- Department of Geology, University of Maryland, College Park, MD, USA
| | - V. Lekic
- Department of Geology, University of Maryland, College Park, MD, USA
| | - N. Schmerr
- Department of Geology, University of Maryland, College Park, MD, USA
| | - M. Panning
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - V.J. Bray
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - M. Manga
- University of California, Berkeley, CA, USA
| | | | - L.C. Quick
- Planetary Geology, Geophysics and Geochemistry Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - A.R. Rhoden
- Arizona State University, Tempe, AZ, USA
- SouthWest Research Institution, Boulder, CO, USA
| |
Collapse
|
4
|
Vance SD, Barge LM, Cardoso SSS, Cartwright JHE. Self-Assembling Ice Membranes on Europa: Brinicle Properties, Field Examples, and Possible Energetic Systems in Icy Ocean Worlds. ASTROBIOLOGY 2019; 19:685-695. [PMID: 30964322 DOI: 10.1089/ast.2018.1826] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Brinicles are self-assembling tubular ice membrane structures, centimeters to meters in length, found beneath sea ice in the polar regions of Earth. We discuss how the properties of brinicles make them of possible importance for chemistry in cold environments-including that of life's emergence-and we consider their formation in icy ocean worlds. We argue that the non-ice composition of the ice on Europa and Enceladus will vary spatially due to thermodynamic and mechanical properties that serve to separate and fractionate brines and solid materials. The specifics of the composition and dynamics of both the ice and the ocean in these worlds remain poorly constrained. We demonstrate through calculations using FREZCHEM that sulfate likely fractionates out of accreting ice in Europa and Enceladus, and thus that an exogenous origin of sulfate observed on Europa's surface need not preclude additional endogenous sulfate in Europa's ocean. We suggest that, like hydrothermal vents on Earth, brinicles in icy ocean worlds constitute ideal places where ecosystems of organisms might be found.
Collapse
Affiliation(s)
- Steven D Vance
- 1 NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Laura M Barge
- 1 NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Silvana S S Cardoso
- 2 Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Julyan H E Cartwright
- 3 Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, Granada, Spain
- 4 Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Granada, Spain
| |
Collapse
|