1
|
Fifer LM, Wong ML. Quantifying the Potential for Nitrate-Dependent Iron Oxidation on Early Mars: Implications for the Interpretation of Gale Crater Organics. ASTROBIOLOGY 2024; 24:590-603. [PMID: 38805190 DOI: 10.1089/ast.2023.0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Geological evidence and atmospheric and climate models suggest habitable conditions occurred on early Mars, including in a lake in Gale crater. Instruments aboard the Curiosity rover measured organic compounds of unknown provenance in sedimentary mudstones at Gale crater. Additionally, Curiosity measured nitrates in Gale crater sediments, which suggests that nitrate-dependent Fe2+ oxidation (NDFO) may have been a viable metabolism for putative martian life. Here, we perform the first quantitative assessment of an NDFO community that could have existed in an ancient Gale crater lake and quantify the long-term preservation of biological necromass in lakebed mudstones. We find that an NDFO community would have the capacity to produce cell concentrations of up to 106 cells mL-1, which is comparable to microbes in Earth's oceans. However, only a concentration of <104 cells mL-1, due to organisms that inefficiently consume less than 10% of precipitating nitrate, would be consistent with the abundance of organics found at Gale. We also find that meteoritic sources of organics would likely be insufficient as a sole source for the Gale crater organics, which would require a separate source, such as abiotic hydrothermal or atmospheric production or possibly biological production from a slowly turning over chemotrophic community.
Collapse
Affiliation(s)
- Lucas M Fifer
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
- Astrobiology Program, University of Washington, Seattle, Washington, USA
| | - Michael L Wong
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, USA
- NHFP Sagan Fellow, NASA Hubble Fellowship Program, Space Telescope Science Institute, Baltimore, Maryland, USA
- NASA Nexus for Exoplanet System Science, Virtual Planetary Laboratory Team, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Kanaan G, Hoehler TM, Iwahana G, Deming JW. Modeled energetics of bacterial communities in ancient subzero brines. Front Microbiol 2023; 14:1206641. [PMID: 37564288 PMCID: PMC10411740 DOI: 10.3389/fmicb.2023.1206641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023] Open
Abstract
Cryopeg brines are isolated volumes of hypersaline water in subzero permafrost. The cryopeg system at Utqiaġvik, Alaska, is estimated to date back to 40 ka BP or earlier, a remnant of a late Pleistocene Ocean. Surprisingly, the cryopeg brines contain high concentrations of organic carbon, including extracellular polysaccharides, and high densities of bacteria. How can these physiologically extreme, old, and geologically isolated systems support such an ecosystem? This study addresses this question by examining the energetics of the Utqiaġvik cryopeg brine ecosystem. Using literature-derived assumptions and new measurements on archived borehole materials, we first estimated the quantity of organic carbon when the system formed. We then considered two bacterial growth trajectories to calculate the lower and upper bounds of the cell-specific metabolic rate of these communities. These bounds represent the first community estimates of metabolic rate in a subzero hypersaline environment. To assess the plausibility of the different growth trajectories, we developed a model of the organic carbon cycle and applied it to three borehole scenarios. We also used dissolved inorganic carbon and nitrogen measurements to independently estimate the metabolic rate. The model reconstructs the growth trajectory of the microbial community and predicts the present-day cell density and organic carbon content. Model input included measured rates of the in-situ enzymatic conversion of particulate to dissolved organic carbon under subzero brine conditions. A sensitivity analysis of model parameters was performed, revealing an interplay between growth rate, cell-specific metabolic rate, and extracellular enzyme activity. This approach allowed us to identify plausible growth trajectories consistent with the observed bacterial densities in the cryopeg brines. We found that the cell-specific metabolic rate in this system is relatively high compared to marine sediments. We attribute this finding to the need to invest energy in the production of extracellular enzymes, for generating bioavailable carbon from particulate organic carbon, and the production of extracellular polysaccharides for cryoprotection and osmoprotection. These results may be relevant to other isolated systems in the polar regions of Earth and to possible ice-bound brines on worlds such as Europa, Enceladus, and Mars.
Collapse
Affiliation(s)
- Georges Kanaan
- School of Oceanography and Astrobiology Program, University of Washington, Seattle, WA, United States
| | | | - Go Iwahana
- International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Jody W. Deming
- School of Oceanography and Astrobiology Program, University of Washington, Seattle, WA, United States
| |
Collapse
|
3
|
Using Spatial Data Science in Energy-Related Modeling of Terraforming the Martian Atmosphere. ENERGIES 2022. [DOI: 10.3390/en15144957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This paper proposes a methodology for numerical modeling of terraforming Mars’ atmosphere using high-energy asteroid impact and greenhouse gas production processes. The developed simulation model uses a spatial data science approach to analyze the Global Climate Model of Mars and cellular automata to model the changes in Mars’ atmospheric parameters. The developed model allows estimating the energy required to raise the planet’s temperature by sixty degrees using different variations of the terraforming process. Using a data science approach for spatial big data analysis has enabled successful numerical simulations of global and local atmospheric changes on Mars and an analysis of the energy potential required for this process.
Collapse
|
4
|
Thompson MA, Krissansen-Totton J, Wogan N, Telus M, Fortney JJ. The case and context for atmospheric methane as an exoplanet biosignature. Proc Natl Acad Sci U S A 2022; 119:e2117933119. [PMID: 35353627 PMCID: PMC9168929 DOI: 10.1073/pnas.2117933119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/31/2022] [Indexed: 11/24/2022] Open
Abstract
Methane has been proposed as an exoplanet biosignature. Imminent observations with the James Webb Space Telescope may enable methane detections on potentially habitable exoplanets, so it is essential to assess in what planetary contexts methane is a compelling biosignature. Methane’s short photochemical lifetime in terrestrial planet atmospheres implies that abundant methane requires large replenishment fluxes. While methane can be produced by a variety of abiotic mechanisms such as outgassing, serpentinizing reactions, and impacts, we argue that—in contrast to an Earth-like biosphere—known abiotic processes cannot easily generate atmospheres rich in CH4 and CO2 with limited CO due to the strong redox disequilibrium between CH4 and CO2. Methane is thus more likely to be biogenic for planets with 1) a terrestrial bulk density, high mean-molecular-weight and anoxic atmosphere, and an old host star; 2) an abundance of CH4 that implies surface fluxes exceeding what could be supplied by abiotic processes; and 3) atmospheric CO2 with comparatively little CO.
Collapse
Affiliation(s)
- Maggie A. Thompson
- Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064
| | | | - Nicholas Wogan
- Department of Earth and Space Sciences, University of Washington, Seattle, WA 98195
| | - Myriam Telus
- Department of Earth and Planetary Sciences, University of California, Santa Cruz, CA 95064
| | - Jonathan J. Fortney
- Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064
| |
Collapse
|
5
|
Cowan DA, Ferrari BC, McKay CP. Out of Thin Air? Astrobiology and Atmospheric Chemotrophy. ASTROBIOLOGY 2022; 22:225-232. [PMID: 35025628 PMCID: PMC8861918 DOI: 10.1089/ast.2021.0066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The emerging understanding of microbial trace gas chemotrophy as a metabolic strategy to support energy and carbon acquisition for microbial survival and growth has significant implications in the search for past, and even extant, life beyond Earth. The use of trace gases, including hydrogen and carbon monoxide as substrates for microbial oxidation, potentially offers a viable strategy with which to support life on planetary bodies that possess a suitable atmospheric composition, such as Mars and Titan. Here, we discuss the current state of knowledge of this process and explore its potential in the field of astrobiological exploration.
Collapse
Affiliation(s)
- Don A. Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Address correspondence to: Don A. Cowan, Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Building NW2, Room 3-12, Hatfield Campus, Lynnwood Road, Pretoria 0002, South Africa
| | - Belinda C. Ferrari
- School of Biotechnology and Biomolecular Sciences, Australian Centre for Astrobiology, UNSW Sydney, Randwick, Australia
| | | |
Collapse
|
6
|
Méndez A, Rivera-Valentín EG, Schulze-Makuch D, Filiberto J, Ramírez RM, Wood TE, Dávila A, McKay C, Ceballos KNO, Jusino-Maldonado M, Torres-Santiago NJ, Nery G, Heller R, Byrne PK, Malaska MJ, Nathan E, Simões MF, Antunes A, Martínez-Frías J, Carone L, Izenberg NR, Atri D, Chitty HIC, Nowajewski-Barra P, Rivera-Hernández F, Brown CY, Lynch KL, Catling D, Zuluaga JI, Salazar JF, Chen H, González G, Jagadeesh MK, Haqq-Misra J. Habitability Models for Astrobiology. ASTROBIOLOGY 2021; 21:1017-1027. [PMID: 34382857 DOI: 10.1089/ast.2020.2342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Habitability has been generally defined as the capability of an environment to support life. Ecologists have been using Habitat Suitability Models (HSMs) for more than four decades to study the habitability of Earth from local to global scales. Astrobiologists have been proposing different habitability models for some time, with little integration and consistency among them, being different in function to those used by ecologists. Habitability models are not only used to determine whether environments are habitable, but they also are used to characterize what key factors are responsible for the gradual transition from low to high habitability states. Here we review and compare some of the different models used by ecologists and astrobiologists and suggest how they could be integrated into new habitability standards. Such standards will help improve the comparison and characterization of potentially habitable environments, prioritize target selections, and study correlations between habitability and biosignatures. Habitability models are the foundation of planetary habitability science, and the synergy between ecologists and astrobiologists is necessary to expand our understanding of the habitability of Earth, the Solar System, and extrasolar planets.
Collapse
Affiliation(s)
- Abel Méndez
- Planetary Habitability Laboratory, University of Puerto Rico at Arecibo, Puerto Rico, USA
| | | | - Dirk Schulze-Makuch
- Center for Astronomy and Astrophysics, Technische Universität Berlin, Berlin, Germany; German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany; Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany
| | | | - Ramses M Ramírez
- University of Central Florida, Department of Physics, Orlando, Florida, USA; Space Science Institute, Boulder, Colorado, USA
| | - Tana E Wood
- USDA Forest Service International Institute of Tropical Forestry, San Juan, Puerto Rico, USA
| | - Alfonso Dávila
- NASA Ames Research Center, Moffett Field, California, USA
| | - Chris McKay
- NASA Ames Research Center, Moffett Field, California, USA
| | - Kevin N Ortiz Ceballos
- Planetary Habitability Laboratory, University of Puerto Rico at Arecibo, Puerto Rico, USA
| | | | | | | | - René Heller
- Max Planck Institute for Solar System Research; Institute for Astrophysics, University of Göttingen, Germany
| | - Paul K Byrne
- North Carolina State University, Raleigh, North Carolina, USA
| | - Michael J Malaska
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Erica Nathan
- Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, Rhode Island, USA
| | - Marta Filipa Simões
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - André Antunes
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Taipa, Macau SAR, China
| | | | | | - Noam R Izenberg
- Johns Hopkins Applied Physics Laboratory, Laurel, Maryland, USA
| | - Dimitra Atri
- Center for Space Science, New York University Abu Dhabi, United Arab Emirates
| | | | | | | | | | - Kennda L Lynch
- Lunar and Planetary Institute, USRA, Houston, Texas, USA
| | | | - Jorge I Zuluaga
- Institute of Physics / FCEN - Universidad de Antioquia, Medellín, Colombia
| | - Juan F Salazar
- GIGA, Escuela Ambiental, Facultad de Ingeniería, Universidad de Antioquia, Medellín, Colombia
| | - Howard Chen
- Northwestern University, Evanston, Illinois, USA
| | - Grizelle González
- USDA Forest Service International Institute of Tropical Forestry, San Juan, Puerto Rico, USA
| | | | - Jacob Haqq-Misra
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| |
Collapse
|
7
|
Clark BC, Kolb VM, Steele A, House CH, Lanza NL, Gasda PJ, VanBommel SJ, Newsom HE, Martínez-Frías J. Origin of Life on Mars: Suitability and Opportunities. Life (Basel) 2021; 11:539. [PMID: 34207658 PMCID: PMC8227854 DOI: 10.3390/life11060539] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
Although the habitability of early Mars is now well established, its suitability for conditions favorable to an independent origin of life (OoL) has been less certain. With continued exploration, evidence has mounted for a widespread diversity of physical and chemical conditions on Mars that mimic those variously hypothesized as settings in which life first arose on Earth. Mars has also provided water, energy sources, CHNOPS elements, critical catalytic transition metal elements, as well as B, Mg, Ca, Na and K, all of which are elements associated with life as we know it. With its highly favorable sulfur abundance and land/ocean ratio, early wet Mars remains a prime candidate for its own OoL, in many respects superior to Earth. The relatively well-preserved ancient surface of planet Mars helps inform the range of possible analogous conditions during the now-obliterated history of early Earth. Continued exploration of Mars also contributes to the understanding of the opportunities for settings enabling an OoL on exoplanets. Favoring geochemical sediment samples for eventual return to Earth will enhance assessments of the likelihood of a Martian OoL.
Collapse
Affiliation(s)
| | - Vera M. Kolb
- Department of Chemistry, University of Wisconsin—Parkside, Kenosha, WI 53141, USA;
| | - Andrew Steele
- Earth and Planetary Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA;
| | - Christopher H. House
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, PA 16807, USA;
| | - Nina L. Lanza
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (N.L.L.); (P.J.G.)
| | - Patrick J. Gasda
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (N.L.L.); (P.J.G.)
| | - Scott J. VanBommel
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA;
| | - Horton E. Newsom
- Institute of Meteoritics, Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 88033, USA;
| | | |
Collapse
|
8
|
Bagnato C, Nadal MS, Tobia D, Raineri M, Vasquez Mansilla M, Winkler EL, Zysler RD, Lima E. Reactive Oxygen Species in Emulated Martian Conditions and Their Effect on the Viability of the Unicellular Alga Scenedesmus dimorphus. ASTROBIOLOGY 2021; 21:692-705. [PMID: 33819428 DOI: 10.1089/ast.2020.2329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Formation of oxygen-based free radicals from photochemical decomposition of hydrogen peroxide (H2O2) on Mars may be a key factor in the potential survival of terrestrial-like organisms on the red planet. Martian conditions that generate reactive oxygen species involve the decomposition of H2O2 at temperatures of around 278 K under relatively high doses of C-band ultraviolet radiation (UVC). This process is further amplified by the presence of iron oxides and perchlorates. Photosynthetic organisms exhibit a number of evolutionary traits that allow them to withstand both oxidative stress and UVC radiation. Here, we examine the effect of free radicals produced by the decomposition of H2O2 under emulated martian conditions on the viability of Scenedesmus dimorphus, a unicellular alga that is resistant to UVC radiation and varying levels of perchlorate and H2O2, both of which are present on Mars. Identification and quantification of free radicals formed under these conditions were performed with Electron Paramagnetic Resonance spectroscopy. These results were correlated with the viability of S. dimorphus, and the formation of oxygen-based free radicals and survival of the alga were found to be strongly dependent on the amount of H2O2 available. For H2O2 amounts close to those present in the rarefied martian environment, the products of these catalytic reactions did not have a significant effect on the algal population growth curve.
Collapse
Affiliation(s)
- Carolina Bagnato
- Instituto de Energía y Desarrollo Sustentable (IEDS), CNEA, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
| | - Marcela S Nadal
- Instituto de Nanociencia y Nanotecnología (INN), CNEA-CONICET, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
- Departamento de Física Médica, Gerencia de Física, CNEA, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
| | - Dina Tobia
- Laboratorio de Resonancias Magnéticas, Gerencia de Física, CNEA, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
| | - Mariana Raineri
- Instituto de Nanociencia y Nanotecnología (INN), CNEA-CONICET, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
- Departamento de Física Médica, Gerencia de Física, CNEA, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
| | - Marcelo Vasquez Mansilla
- Instituto de Nanociencia y Nanotecnología (INN), CNEA-CONICET, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
- Laboratorio de Resonancias Magnéticas, Gerencia de Física, CNEA, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
| | - Elin L Winkler
- Instituto de Nanociencia y Nanotecnología (INN), CNEA-CONICET, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
- Laboratorio de Resonancias Magnéticas, Gerencia de Física, CNEA, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
- Instituto Balseiro, CNEA-Universidad Nacional de Cuyo, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
| | - Roberto D Zysler
- Instituto de Nanociencia y Nanotecnología (INN), CNEA-CONICET, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
- Departamento de Física Médica, Gerencia de Física, CNEA, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
- Laboratorio de Resonancias Magnéticas, Gerencia de Física, CNEA, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
- Instituto Balseiro, CNEA-Universidad Nacional de Cuyo, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
| | - Enio Lima
- Instituto de Nanociencia y Nanotecnología (INN), CNEA-CONICET, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
- Laboratorio de Resonancias Magnéticas, Gerencia de Física, CNEA, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
| |
Collapse
|
9
|
Higgins PM, Cockell CS. A bioenergetic model to predict habitability, biomass and biosignatures in astrobiology and extreme conditions. J R Soc Interface 2020; 17:20200588. [PMID: 33081642 PMCID: PMC7653372 DOI: 10.1098/rsif.2020.0588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/24/2020] [Indexed: 12/23/2022] Open
Abstract
In order to grow, reproduce and evolve life requires a supply of energy and nutrients. Astrobiology has the challenge of studying life on Earth in environments which are poorly characterized or extreme, usually both, and predicting the habitability of extraterrestrial environments. We have developed a general astrobiological model for assessing the energetic and nutrient availability of poorly characterized environments to predict their potential biological productivity. NutMEG (nutrients, maintenance, energy and growth) can be used to estimate how much biomass an environment could host, and how that life might affect the local chemistry. It requires only an overall catabolic reaction and some knowledge of the local environment to begin making estimations, with many more customizable parameters, such as microbial adaptation. In this study, the model was configured to replicate laboratory data on the growth of methanogens. It was used to predict the effect of temperature and energy/nutrient limitation on their microbial growth rates, total biomass levels, and total biosignature production in laboratory-like conditions to explore how it could be applied to astrobiological problems. As temperature rises from 280 to 330 K, NutMEG predicts exponential drops in final biomass ([Formula: see text]) and total methane production ([Formula: see text]) despite an increase in peak growth rates ([Formula: see text]) for a typical methanogen in ideal conditions. This is caused by the increasing cost of microbial maintenance diverting energy away from growth processes. Restricting energy and nutrients exacerbates this trend. With minimal assumptions NutMEG can reliably replicate microbial growth behaviour, but better understanding of the synthesis and maintenance costs life must overcome in different extremes is required to improve its results further. NutMEG can help us assess the theoretical habitability of extraterrestrial environments and predict potential biomass and biosignature production, for example on exoplanets using minimum input parameters to guide observations.
Collapse
Affiliation(s)
- P. M. Higgins
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - C. S. Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
10
|
When is Chemical Disequilibrium in Earth-like Planetary Atmospheres a Biosignature versus an Anti-biosignature? Disequilibria from Dead to Living Worlds. ACTA ACUST UNITED AC 2020. [DOI: 10.3847/1538-4357/ab7b81] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Fujita K, Kurosawa K, Genda H, Hyodo R, Matsuyama S, Yamagishi A, Mikouchi T, Niihara T. Assessment of the probability of microbial contamination for sample return from Martian moons I: Departure of microbes from Martian surface. LIFE SCIENCES IN SPACE RESEARCH 2019; 23:73-84. [PMID: 31791608 DOI: 10.1016/j.lssr.2019.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 05/26/2023]
Abstract
Potential microbial contamination of Martian moons, Phobos and Deimos, which can be brought about by transportation of Mars ejecta produced by meteoroid impacts on the Martian surface, has been comprehensively assessed in a statistical approach, based on the most probable history of recent major gigantic meteoroid collisions on the Martian surface. This article is the first part of our study to assess potential microbial density in Mars ejecta departing from the Martian atmosphere, as a source of the second part (Kurosawa et al., 2019) where statistical analysis of microbial contamination probability is conducted. Potential microbial density on the Martian surface as the source of microorganisms was estimated by analogy to the terrestrial areas having the similar arid and cold environments, from which a probabilistic function was deduced as the asymptotic limit. Microbial survival rate during hypervelocity meteoroid collisions was estimated by numerical analysis of impact phenomena with and without taking internal friction and plastic deformation of the colliding meteoroid and the target ground into consideration. Trajectory calculations of departing ejecta through the Martian atmosphere were conducted with taking account of aerodynamic deceleration and heating by the aid of computational fluid dynamic analysis. It is found that Mars ejecta smaller than 0.03 m in diameter hardly reach the Phobos orbit due to aerodynamic deceleration, or mostly sterilized due to significant aerodynamic heating even though they can reach the Phobos orbit and beyond. Finally, the baseline dataset of microbial density in Mars ejecta departing for Martian moons has been presented for the second part of our study.
Collapse
Affiliation(s)
- Kazuhisa Fujita
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, Japan.
| | - Kosuke Kurosawa
- Planetary Exploration Research Center, Chiba Institute of Technology, 2-17-1, Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Hidenori Genda
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Ryuki Hyodo
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Shingo Matsuyama
- Aeronautical Technology Directorate, Japan Aerospace Exploration Agency, 7-44-1, Jindaijihigasi-machi, Chofu, Tokyo 182-8522, Japan
| | - Akihiko Yamagishi
- Department of Applied Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Takashi Mikouchi
- The University Museum, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takafumi Niihara
- Department of Systems Innovation, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|