1
|
Doki MM, Mehta AK, Chakraborty D, Ghangrekar MM, Dubey BK, Alloul A, Moradvandi A, Vlaeminck SE, Lindeboom REF. Recovery of purple non-sulfur bacteria-mediated single-cell protein from domestic wastewater in two-stage treatment using high rate digester and raceway pond. BIORESOURCE TECHNOLOGY 2024; 413:131467. [PMID: 39260730 DOI: 10.1016/j.biortech.2024.131467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/31/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Wastewater resources can be used to produce microbial protein for animal feed or organic fertiliser, conserving food chain resources. This investigation hasemployed thefermented sewage to photoheterotrophically grown purple non-sulfur bacteria (PNSB) in a 2.5 m3 pilot-scaleraceway-pond with infrared light to produce proteinaceous biomass. Fermented sewage with synthetic media consisting of sodium acetate and propionic acids at a surface-to-volume (S/V) ratio of 10 m2/m3 removed 89%, 93%, and 81% of chemical oxygen demand, ammonium nitrogen, and orthophosphate, respectively; whereas respective removal in fermented sewage alone without synthetic media was 73%, 73%, and 72% during batch operation of 120 h. The biomass yield of 0.88-0.95 g CODbiomass /g CODremoved with protein content of 40.3 ± 0.3%-43.9 ± 0.2% w/w was obtained for fermented sewage with synthetic media. The results revealed enhanced possibility of scaling-up the raceway reactor to recover resources from municipal wastewater and enable simultaneous high-rate PNSB single-cell protein production.
Collapse
Affiliation(s)
- Manikanta M Doki
- Department of Civil Engineering, Indian Institute of Technology, Kharagpur, India
| | - Arun Kumar Mehta
- Department of Civil Engineering, Indian Institute of Technology, Kharagpur, India
| | - Debkumar Chakraborty
- Department of Civil Engineering, Indian Institute of Technology, Kharagpur, India; Department of Life Sciences, GITAM School of Science, GITAM, Visakhapatnam 530045, Andhra Pradesh, India
| | - Makarand M Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology, Kharagpur, India; National Institute of Technology Puducherry, Karaikal 609609, India.
| | - Brajesh K Dubey
- Department of Civil Engineering, Indian Institute of Technology, Kharagpur, India
| | - Abbas Alloul
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Ali Moradvandi
- Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9052 Gent, Belgium
| | - Siegfried E Vlaeminck
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium; Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9052 Gent, Belgium
| | - Ralph E F Lindeboom
- Department of Water Management, Faculty of Civil Engineering and Geosciences, Stevinweg 1, 2628 CN Delft, the Netherlands
| |
Collapse
|
2
|
Nickerson CA, McLean RJC, Barrila J, Yang J, Thornhill SG, Banken LL, Porterfield DM, Poste G, Pellis NR, Ott CM. Microbiology of human spaceflight: microbial responses to mechanical forces that impact health and habitat sustainability. Microbiol Mol Biol Rev 2024; 88:e0014423. [PMID: 39158275 PMCID: PMC11426028 DOI: 10.1128/mmbr.00144-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
SUMMARYUnderstanding the dynamic adaptive plasticity of microorganisms has been advanced by studying their responses to extreme environments. Spaceflight research platforms provide a unique opportunity to study microbial characteristics in new extreme adaptational modes, including sustained exposure to reduced forces of gravity and associated low fluid shear force conditions. Under these conditions, unexpected microbial responses occur, including alterations in virulence, antibiotic and stress resistance, biofilm formation, metabolism, motility, and gene expression, which are not observed using conventional experimental approaches. Here, we review biological and physical mechanisms that regulate microbial responses to spaceflight and spaceflight analog environments from both the microbe and host-microbe perspective that are relevant to human health and habitat sustainability. We highlight instrumentation and technology used in spaceflight microbiology experiments, their limitations, and advances necessary to enable next-generation research. As spaceflight experiments are relatively rare, we discuss ground-based analogs that mimic aspects of microbial responses to reduced gravity in spaceflight, including those that reduce mechanical forces of fluid flow over cell surfaces which also simulate conditions encountered by microorganisms during their terrestrial lifecycles. As spaceflight mission durations increase with traditional astronauts and commercial space programs send civilian crews with underlying health conditions, microorganisms will continue to play increasingly critical roles in health and habitat sustainability, thus defining a new dimension of occupational health. The ability of microorganisms to adapt, survive, and evolve in the spaceflight environment is important for future human space endeavors and provides opportunities for innovative biological and technological advances to benefit life on Earth.
Collapse
Affiliation(s)
- Cheryl A. Nickerson
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | | | - Jennifer Barrila
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | - Jiseon Yang
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | | | - Laura L. Banken
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | - D. Marshall Porterfield
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, Indiana, USA
| | - George Poste
- Complex Adaptive Systems Initiative, Arizona State University, Tempe, Arizona, USA
| | | | - C. Mark Ott
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, Texas, USA
| |
Collapse
|
3
|
Verbeelen T, Fernandez CA, Nguyen TH, Gupta S, Leroy B, Wattiez R, Vlaeminck SE, Leys N, Ganigué R, Mastroleo F. Radiotolerance of N-cycle bacteria and their transcriptomic response to low-dose space-analogue ionizing irradiation. iScience 2024; 27:109596. [PMID: 38638570 PMCID: PMC11024918 DOI: 10.1016/j.isci.2024.109596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/08/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024] Open
Abstract
The advancement of regenerative life support systems (RLSS) is crucial to allow long-distance space travel. Within the Micro-Ecological Life Support System Alternative (MELiSSA), efficient nitrogen recovery from urine and other waste streams is vital to produce liquid fertilizer to feed food and oxygen production in subsequent photoautotrophic processes. This study explores the effects of ionizing radiation on nitrogen cycle bacteria that transform urea to nitrate. In particular, we assess the radiotolerance of Comamonas testosteroni, Nitrosomonas europaea, and Nitrobacter winogradskyi after exposure to acute γ-irradiation. Moreover, a comprehensive whole transcriptome analysis elucidates the effects of spaceflight-analogue low-dose ionizing radiation on the individual axenic strains and on their synthetic community o. This research sheds light on how the spaceflight environment could affect ureolysis and nitrification processes from a transcriptomic perspective.
Collapse
Affiliation(s)
- Tom Verbeelen
- Nuclear Medical Applications (NMA), Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Celia Alvarez Fernandez
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Thanh Huy Nguyen
- Department of Proteomics and Microbiology, University of Mons, Av. Du Champs de Mars 6, 7000 Mons, Belgium
| | - Surya Gupta
- Nuclear Medical Applications (NMA), Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium
| | - Baptiste Leroy
- Department of Proteomics and Microbiology, University of Mons, Av. Du Champs de Mars 6, 7000 Mons, Belgium
| | - Ruddy Wattiez
- Department of Proteomics and Microbiology, University of Mons, Av. Du Champs de Mars 6, 7000 Mons, Belgium
| | - Siegfried E. Vlaeminck
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- Centre for Advanced Process Technology for Urban REsource Recovery (CAPTURE), Frieda Saeysstraat 1, 9052 Ghent, Belgium
| | - Natalie Leys
- Nuclear Medical Applications (NMA), Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium
| | - Ramon Ganigué
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
- Centre for Advanced Process Technology for Urban REsource Recovery (CAPTURE), Frieda Saeysstraat 1, 9052 Ghent, Belgium
| | - Felice Mastroleo
- Nuclear Medical Applications (NMA), Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium
| |
Collapse
|
4
|
Frossard E, Crain G, Giménez de Azcárate Bordóns I, Hirschvogel C, Oberson A, Paille C, Pellegri G, Udert KM. Recycling nutrients from organic waste for growing higher plants in the Micro Ecological Life Support System Alternative (MELiSSA) loop during long-term space missions. LIFE SCIENCES IN SPACE RESEARCH 2024; 40:176-185. [PMID: 38245343 DOI: 10.1016/j.lssr.2023.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 01/22/2024]
Abstract
Space agencies are developing Bioregenerative Life Support Systems (BLSS) in view of upcoming long-term crewed space missions. Most of these BLSS plan to include various crops to produce different types of foods, clean water, and O2 while capturing CO2 from the atmosphere. However, growing these plants will require the appropriate addition of nutrients in forms that are available. As shipping fertilizers from Earth would be too costly, it will be necessary to use waste-derived nutrients. Using the example of the MELiSSA (Micro-Ecological Life Support System Alternative) loop of the European Space Agency, this paper reviews what should be considered so that nutrients recycled from waste streams could be used by plants grown in a hydroponic system. Whereas substantial research has been conducted on nitrogen and phosphorus recovery from human urine, much work remains to be done on recovering nutrients from other liquid and solid organic waste. It is essential to continue to study ways to efficiently remove sodium and chloride from urine and other organic waste to prevent the spread of these elements to the rest of the MELiSSA loop. A full nitrogen balance at habitat level will have to be achieved; on one hand, sufficient N2 will be needed to maintain atmospheric pressure at a proper level and on the other, enough mineral nitrogen will have to be provided to the plants to ensure biomass production. From a plant nutrition point of view, we will need to evaluate whether the flux of nutrients reaching the hydroponic system will enable the production of nutrient solutions able to sustain a wide variety of crops. We will also have to assess the nutrient use efficiency of these crops and how that efficiency might be increased. Techniques and sensors will have to be developed to grow the plants, considering low levels or the total absence of gravity, the limited volume available to plant growth systems, variations in plant needs, the recycling of nutrient solutions, and eventually the ultimate disposal of waste that can no longer be used.
Collapse
Affiliation(s)
- Emmanuel Frossard
- ETH Zurich, Institute of Agricultural Sciences, 8315, Lindau, Switzerland.
| | - Grace Crain
- ETH Zurich, Institute of Agricultural Sciences, 8315, Lindau, Switzerland
| | | | | | - Astrid Oberson
- ETH Zurich, Institute of Agricultural Sciences, 8315, Lindau, Switzerland
| | | | - Geremia Pellegri
- ETH Zurich, Institute of Agricultural Sciences, 8315, Lindau, Switzerland
| | - Kai M Udert
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dubendorf, Switzerland; ETH Zurich, Institute of Environmental Engineering, 8093, Zurich, Switzerland
| |
Collapse
|
5
|
Verbeelen T, Fernandez CA, Nguyen TH, Gupta S, Aarts R, Tabury K, Leroy B, Wattiez R, Vlaeminck SE, Leys N, Ganigué R, Mastroleo F. Whole transcriptome analysis highlights nutrient limitation of nitrogen cycle bacteria in simulated microgravity. NPJ Microgravity 2024; 10:3. [PMID: 38200027 PMCID: PMC10781756 DOI: 10.1038/s41526-024-00345-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
Regenerative life support systems (RLSS) will play a vital role in achieving self-sufficiency during long-distance space travel. Urine conversion into a liquid nitrate-based fertilizer is a key process in most RLSS. This study describes the effects of simulated microgravity (SMG) on Comamonas testosteroni, Nitrosomonas europaea, Nitrobacter winogradskyi and a tripartite culture of the three, in the context of nitrogen recovery for the Micro-Ecological Life Support System Alternative (MELiSSA). Rotary cell culture systems (RCCS) and random positioning machines (RPM) were used as SMG analogues. The transcriptional responses of the cultures were elucidated. For CO2-producing C. testosteroni and the tripartite culture, a PermaLifeTM PL-70 cell culture bag mounted on an in-house 3D-printed holder was applied to eliminate air bubble formation during SMG cultivation. Gene expression changes indicated that the fluid dynamics in SMG caused nutrient and O2 limitation. Genes involved in urea hydrolysis and nitrification were minimally affected, while denitrification-related gene expression was increased. The findings highlight potential challenges for nitrogen recovery in space.
Collapse
Affiliation(s)
- Tom Verbeelen
- Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400, Mol, Belgium
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Celia Alvarez Fernandez
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Thanh Huy Nguyen
- Department of Proteomics and Microbiology, University of Mons, Av. Du Champs de Mars 6, 7000, Mons, Belgium
| | - Surya Gupta
- Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400, Mol, Belgium
| | - Raf Aarts
- Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400, Mol, Belgium
| | - Kevin Tabury
- Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400, Mol, Belgium
| | - Baptiste Leroy
- Department of Proteomics and Microbiology, University of Mons, Av. Du Champs de Mars 6, 7000, Mons, Belgium
| | - Ruddy Wattiez
- Department of Proteomics and Microbiology, University of Mons, Av. Du Champs de Mars 6, 7000, Mons, Belgium
| | - Siegfried E Vlaeminck
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- Centre for Advanced Process Technology for Urban REsource Recovery (CAPTURE), Frieda Saeysstraat 1, 9052, Ghent, Belgium
| | - Natalie Leys
- Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400, Mol, Belgium
| | - Ramon Ganigué
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- Centre for Advanced Process Technology for Urban REsource Recovery (CAPTURE), Frieda Saeysstraat 1, 9052, Ghent, Belgium
| | - Felice Mastroleo
- Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400, Mol, Belgium.
| |
Collapse
|
6
|
Napoli A, Micheletti D, Pindo M, Larger S, Cestaro A, de Vera JP, Billi D. Absence of increased genomic variants in the cyanobacterium Chroococcidiopsis exposed to Mars-like conditions outside the space station. Sci Rep 2022; 12:8437. [PMID: 35589950 PMCID: PMC9120168 DOI: 10.1038/s41598-022-12631-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 05/06/2022] [Indexed: 11/08/2022] Open
Abstract
Despite the increasing interest in using microbial-based technologies to support human space exploration, many unknowns remain not only on bioprocesses but also on microbial survivability and genetic stability under non-Earth conditions. Here the desert cyanobacterium Chroococcidiopsis sp. CCMEE 029 was investigated for robustness of the repair capability of DNA lesions accumulated under Mars-like conditions (UV radiation and atmosphere) simulated in low Earth orbit using the EXPOSE-R2 facility installed outside the International Space Station. Genomic alterations were determined in a space-derivate of Chroococcidiopsis sp. CCMEE 029 obtained upon reactivation on Earth of the space-exposed cells. Comparative analysis of whole-genome sequences showed no increased variant numbers in the space-derivate compared to triplicates of the reference strain maintained on the ground. This result advanced cyanobacteria-based technologies to support human space exploration.
Collapse
Affiliation(s)
- Alessandro Napoli
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica snc, 00133, Rome, Italy
- PhD Program in Cellular and Molecular Biology, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Diego Micheletti
- Edmund Mach Foundation, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Massimo Pindo
- Edmund Mach Foundation, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Simone Larger
- Edmund Mach Foundation, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Alessandro Cestaro
- Edmund Mach Foundation, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Jean-Pierre de Vera
- German Aerospace Center (DLR), Microgravity User Support Center, Linder Höhe, 51147, Cologne, Germany
| | - Daniela Billi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica snc, 00133, Rome, Italy.
| |
Collapse
|
7
|
Verbeelen T, Leys N, Ganigué R, Mastroleo F. Development of Nitrogen Recycling Strategies for Bioregenerative Life Support Systems in Space. Front Microbiol 2021; 12:700810. [PMID: 34721316 PMCID: PMC8548772 DOI: 10.3389/fmicb.2021.700810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/30/2021] [Indexed: 12/03/2022] Open
Abstract
To enable long-distance space travel, the development of a highly efficient and robust system to recover nutrients from waste streams is imperative. The inability of the current physicochemical-based environmental control and life support system (ECLSS) on the ISS to produce food in situ and to recover water and oxygen at high enough efficiencies results in the need for frequent resupply missions from Earth. Therefore, alternative strategies like biologically-based technologies called bioregenerative life support systems (BLSSs) are in development. These systems aim to combine biological and physicochemical processes, which enable in situ water, oxygen, and food production (through the highly efficient recovery of minerals from waste streams). Hence, minimalizing the need for external consumables. One of the BLSS initiatives is the European Space Agency's (ESA) Micro-Ecological Life Support System Alternative (MELiSSA). It has been designed as a five-compartment bioengineered system able to produce fresh food and oxygen and to recycle water. As such, it could sustain the needs of a human crew for long-term space exploration missions. A prerequisite for the self-sufficient nature of MELiSSA is the highly efficient recovery of valuable minerals from waste streams. The produced nutrients can be used as a fertilizer for food production. In this review, we discuss the need to shift from the ECLSS to a BLSS, provide a summary of past and current BLSS programs and their unique approaches to nitrogen recovery and processing of urine waste streams. In addition, compartment III of the MELiSSA loop, which is responsible for nitrogen recovery, is reviewed in-depth. Finally, past, current, and future related ground and space demonstration and the space-related challenges for this technology are considered.
Collapse
Affiliation(s)
- Tom Verbeelen
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Natalie Leys
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Ramon Ganigué
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Centre for Advanced Process Technology for Urban REsource Recovery (CAPTURE), Ghent, Belgium
| | - Felice Mastroleo
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| |
Collapse
|
8
|
Góes-Neto A, Kukharenko O, Orlovska I, Podolich O, Imchen M, Kumavath R, Kato RB, de Carvalho DS, Tiwari S, Brenig B, Azevedo V, Reva O, de Vera JPP, Kozyrovska N, Barh D. Shotgun metagenomic analysis of kombucha mutualistic community exposed to Mars-like environment outside the International Space Station. Environ Microbiol 2021; 23:3727-3742. [PMID: 33476085 DOI: 10.1111/1462-2920.15405] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/08/2021] [Accepted: 01/18/2021] [Indexed: 12/28/2022]
Abstract
Kombucha is a multispecies microbial ecosystem mainly composed of acetic acid bacteria and osmophilic acid-tolerant yeasts, which is used to produce a probiotic drink. Furthermore, Kombucha Mutualistic Community (KMC) has been recently proposed to be used during long space missions as both a living functional fermented product to improve astronauts' health and an efficient source of bacterial nanocellulose. In this study, we compared KMC structure and functions before and after samples were exposed to the space/Mars-like environment outside the International Space Station in order to investigate the changes related to their re-adaptation to Earth-like conditions by shotgun metagenomics, using both diversity and functional analyses of Community Ecology and Complex Networks approach. Our study revealed that the long-term exposure to space/Mars-like conditions on low Earth orbit may disorganize the KMC to such extent that it will not restore the initial community structure; however, KMC core microorganisms of the community were maintained. Nonetheless, there were no significant differences in the community functions, meaning that the KMC communities are ecologically resilient. Therefore, despite the extremely harsh conditions, key KMC species revived and provided the community with the genetic background needed to survive long periods of time under extraterrestrial conditions.
Collapse
Affiliation(s)
- Aristóteles Góes-Neto
- Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Av. Antonio Carlos, 6627, Pampulha, Belo Horizonte, MG, Brazil
| | - Olga Kukharenko
- Institute of Molecular Biology and Genetics of NASU, Acad. Zabolotnoho str., 150, Kyiv, 03680, Ukraine
| | - Iryna Orlovska
- Institute of Molecular Biology and Genetics of NASU, Acad. Zabolotnoho str., 150, Kyiv, 03680, Ukraine
| | - Olga Podolich
- Institute of Molecular Biology and Genetics of NASU, Acad. Zabolotnoho str., 150, Kyiv, 03680, Ukraine
| | - Madangchanok Imchen
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Padannakkad P.O., Kasaragod, Kerala, 671320, India
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Padannakkad P.O., Kasaragod, Kerala, 671320, India
| | - Rodrigo Bentes Kato
- Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Av. Antonio Carlos, 6627, Pampulha, Belo Horizonte, MG, Brazil
| | - Daniel Santana de Carvalho
- Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Av. Antonio Carlos, 6627, Pampulha, Belo Horizonte, MG, Brazil
| | - Sandeep Tiwari
- Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Av. Antonio Carlos, 6627, Pampulha, Belo Horizonte, MG, Brazil
| | - Bertram Brenig
- Institute of Veterinary Medicine, Burckhardtweg, University of Göttingen, Göttingen, Germany
| | - Vasco Azevedo
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Padannakkad P.O., Kasaragod, Kerala, 671320, India
| | - Oleg Reva
- Centre for Bioinformatics and Computational Biology, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | | | - Natalia Kozyrovska
- Institute of Molecular Biology and Genetics of NASU, Acad. Zabolotnoho str., 150, Kyiv, 03680, Ukraine
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, West Bengal, India
| |
Collapse
|