1
|
Palma V, González-Pimentel JL, Jimenez-Morillo NT, Sauro F, Gutiérrez-Patricio S, De la Rosa JM, Tomasi I, Massironi M, Onac BP, Tiago I, González-Pérez JA, Laiz L, Caldeira AT, Cubero B, Miller AZ. Connecting molecular biomarkers, mineralogical composition, and microbial diversity from Mars analog lava tubes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169583. [PMID: 38154629 DOI: 10.1016/j.scitotenv.2023.169583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
Lanzarote (Canary Islands, Spain) is one of the best terrestrial analogs to Martian volcanology. Particularly, Lanzarote lava tubes may offer access to recognizably preserved chemical and morphological biosignatures valuable for astrobiology. By combining microbiological, mineralogical, and organic geochemistry tools, an in-depth characterization of speleothems and associated microbial communities in lava tubes of Lanzarote is provided. The aim is to untangle the underlying factors influencing microbial colonization in Earth's subsurface to gain insight into the possibility of similar subsurface microbial habitats on Mars and to identify biosignatures preserved in lava tubes unequivocally. The microbial communities with relevant representativeness comprise chemoorganotrophic, halophiles, and/or halotolerant bacteria that have evolved as a result of the surrounding oceanic environmental conditions. Many of these bacteria have a fundamental role in reshaping cave deposits due to their carbonatogenic ability, leaving behind an organic record that can provide evidence of past or present life. Based on functional profiling, we infer that Crossiella is involved in fluorapatite precipitation via urea hydrolysis and propose its Ca-rich precipitates as compelling biosignatures valuable for astrobiology. In this sense, analytical pyrolysis, stable isotope analysis, and chemometrics were conducted to characterize the complex organic fraction preserved in the speleothems and find relationships among organic families, microbial taxa, and precipitated minerals. We relate organic compounds with subsurface microbial taxa, showing that organic families drive the microbiota of Lanzarote lava tubes. Our data indicate that bacterial communities are important contributors to biomarker records in volcanic-hosted speleothems. Within them, the lipid fraction primarily consists of low molecular weight n-alkanes, α-alkenes, and branched-alkenes, providing further evidence that microorganisms serve as the origin of organic matter in these formations. The ongoing research in Lanzarote's lava tubes will help develop protocols, routines, and predictive models that could provide guidance on choosing locations and methodologies for searching potential biosignatures on Mars.
Collapse
Affiliation(s)
- Vera Palma
- HERCULES Laboratory, University of Évora, Évora, Portugal
| | | | | | - Francesco Sauro
- Department of Earth Sciences and Environmental Geology, University of Bologna, Italy
| | | | - José M De la Rosa
- Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS-CSIC), Sevilla, Spain
| | - Ilaria Tomasi
- Geosciences Department, University of Padova, Padova, Italy
| | | | - Bogdan P Onac
- Karst Research Group, School of Geosciences, University of South Florida, Tampa, FL, USA; Emil G. Racoviță Institute, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Igor Tiago
- CFE-Center for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - José A González-Pérez
- Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS-CSIC), Sevilla, Spain
| | - Leonila Laiz
- Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS-CSIC), Sevilla, Spain
| | - Ana T Caldeira
- HERCULES Laboratory, University of Évora, Évora, Portugal
| | - Beatriz Cubero
- Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS-CSIC), Sevilla, Spain
| | - Ana Z Miller
- HERCULES Laboratory, University of Évora, Évora, Portugal; Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS-CSIC), Sevilla, Spain.
| |
Collapse
|
2
|
Royle SH, Cropper L, Watson JS, Sinibaldi S, Entwisle M, Sephton MA. Solid-Phase Microextraction for Organic Contamination Control Throughout Assembly and Operational Phases of Space Missions. ASTROBIOLOGY 2023; 23:127-143. [PMID: 36473197 DOI: 10.1089/ast.2021.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Space missions concerned with life detection contain highly sensitive instruments for the detection of organics. Terrestrial contamination can interfere with signals of indigenous organics in samples and has the potential to cause false-positive biosignature detections, which may lead to incorrect suggestions of the presence of life elsewhere in the solar system. This study assessed the capability of solid-phase microextraction (SPME) as a method for monitoring organic contamination encountered by spacecraft hardware during assembly and operation. SPME-gas chromatography-mass spectrometry (SPME-GC-MS) analysis was performed on potential contaminant source materials, which are commonly used in spacecraft construction. The sensitivity of SPME-GC-MS to organics was assessed in the context of contaminants identified in molecular wipes taken from hardware surfaces on the ExoMars Rosalind Franklin rover. SPME was found to be effective at detecting a wide range of common organic contaminants that include aromatic hydrocarbons, aliphatic hydrocarbons, nitrogen-containing compounds, alcohols, and carbonyls. A notable example of correlation of contaminant with source material was the detection of benzenamine compounds in an epoxy adhesive analyzed by SPME-GC-MS and in the ExoMars rover surface wipe samples. The current form of SPME-GC-MS does not enable quantitative evaluation of contaminants, nor is it suitable for the detection of every group of organic molecules relevant to astrobiological contamination concerns, namely large and/or polar molecules such as amino acids. However, it nonetheless represents an effective new monitoring method for rapid, easy identification of organic contaminants commonly present on spacecraft hardware and could thus be utilized in future space missions as part of their contamination control and mitigation protocols.
Collapse
Affiliation(s)
- Samuel H Royle
- Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| | - Lorcan Cropper
- Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| | - Jonathan S Watson
- Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| | | | | | - Mark A Sephton
- Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
3
|
Absolute Configuration of Aliphatic Hydrocarbon Enantiomers Identified by Gas Chromatography: Theorized Application for Isoprenoid Alkanes and the Search of Molecular Biosignatures on Mars. Symmetry (Basel) 2022. [DOI: 10.3390/sym14020326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Acyclic saturated hydrocarbon enantiomers were resolved by gas chromatography using a β-cyclodextrin-based chiral stationary phase. The stereospecific synthesis of single enantiomers of 4-methyloctane allowed to assign the absolute stereochemical configuration to the resolved enantiomers. Data show that the (S)-4-methyloctane shows higher chromatographic retention as compared to the (R)-4-methyloctane due to stronger van der Waals interactions with the β-cyclodextrin chiral selector. This introductive research presents future prospects for the separation of stereoisomers of larger branched hydrocarbons. We discuss the importance of chiral hydrocarbons, more precisely the stereochemistry of the isoprenoid alkanes pristane and phytane, as potential biosignatures stable on geological timescales. The origins of pristane and phytane in Earth sediments are presented, and we detail the implications for the search of extinct or extant life on Mars. The data presented here will help to systematically investigate the chirality of hydrocarbon enantiomers in biological and nonbiological samples and in samples to be analyzed by the ESA’s ExoMars rover to trace the chiral precursors of life in 2023.
Collapse
|
4
|
Royle SH, Watson JS, Sephton MA. Transformation of Cyanobacterial Biomolecules by Iron Oxides During Flash Pyrolysis: Implications for Mars Life-Detection Missions. ASTROBIOLOGY 2021; 21:1363-1386. [PMID: 34402652 DOI: 10.1089/ast.2020.2428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Answering the question of whether life ever existed on Mars is a key goal of both NASA's and ESA's imminent Mars rover missions. The obfuscatory effects of oxidizing salts, such as perchlorates and sulfates, on organic matter during thermal decomposition analysis techniques are well established. Less well studied are the transformative effects of iron oxides and (oxy)hydroxides, which are present in great abundances in the martian regolith. We examined the products of flash pyrolysis-gas chromatography-mass spectrometry (a technique analogous to the thermal techniques employed by past, current, and future landed Mars missions) which form when the cyanobacteria Arthrospira platensis are heated in the presence of a variety of Mars-relevant iron-bearing minerals. We found that iron oxides/(oxy)hydroxides have transformative effects on the pyrolytic products of cyanobacterial biomolecules. Both the abundance and variety of molecular species detected were decreased as iron substrates transformed biomolecules, by both oxidative and reductive processes, into lower fidelity alkanes, aromatic and aryl-bonded hydrocarbons. Despite the loss of fidelity, a suite that contains mid-length alkanes and polyaromatic hydrocarbons and/or aryl-bonded molecules in iron-rich samples subjected to pyrolysis may allude to the transformation of cyanobacterially derived mid-long chain length fatty acids (particularly unsaturated fatty acids) originally present in the sample. Hematite was found to be the iron oxide with the lowest transformation potential, and because this iron oxide has a high affinity for codeposition of organic matter and preservation over geological timescales, sampling at Mars should target sediments/strata that have undergone a diagenetic history encouraging the dehydration, dihydroxylation, and oxidation of more reactive iron-bearing phases to hematite by looking for (mineralogical) evidence of the activity of oxidizing, acidic/neutral, and either hot or long-lived fluids.
Collapse
Affiliation(s)
- Samuel H Royle
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| | - Jonathan S Watson
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| | - Mark A Sephton
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
5
|
Cassaro A, Pacelli C, Baqué M, de Vera JPP, Böttger U, Botta L, Saladino R, Rabbow E, Onofri S. Fungal Biomarkers Stability in Mars Regolith Analogues after Simulated Space and Mars-like Conditions. J Fungi (Basel) 2021; 7:jof7100859. [PMID: 34682280 PMCID: PMC8540304 DOI: 10.3390/jof7100859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 11/18/2022] Open
Abstract
The discovery of life on other planets and moons in our solar system is one of the most important challenges of this era. The second ExoMars mission will look for traces of extant or extinct life on Mars. The instruments on board the rover will be able to reach samples with eventual biomarkers until 2 m of depth under the planet’s surface. This exploration capacity offers the best chance to detect biomarkers which would be mainly preserved compared to samples on the surface which are directly exposed to harmful environmental conditions. Starting with the studies of the endolithic meristematic black fungus Cryomyces antarcticus, which has proved its high resistance under extreme conditions, we analyzed the stability and the resistance of fungal biomarkers after exposure to simulated space and Mars-like conditions, with Raman and Gas Chromatography–Mass Spectrometry, two of the scientific payload instruments on board the rover.
Collapse
Affiliation(s)
- Alessia Cassaro
- Department of Ecological and Biological Sciences, University of Tuscia, Largo Dell’Università snc, 01100 Viterbo, Italy; (A.C.); (L.B.); (R.S.); (S.O.)
| | - Claudia Pacelli
- Department of Ecological and Biological Sciences, University of Tuscia, Largo Dell’Università snc, 01100 Viterbo, Italy; (A.C.); (L.B.); (R.S.); (S.O.)
- Italian Space Agency, Via del Politecnico snc, 00133 Rome, Italy
- Correspondence: ; Tel.: +39-068567466
| | - Mickael Baqué
- German Aerospace Center (DLR), Planetary Laboratories Department, Institute of Planetary Research, Ruthefordstraße 2, 12489 Berlin, Germany;
| | - Jean-Pierre Paul de Vera
- MUSC, German Aerospace Center (DLR), Space Operations and Astronaut Training, 51147 Köln, Germany;
| | - Ute Böttger
- German Aerospace Center (DLR), Institute of Optical Sensor Systems, 12489 Berlin, Germany;
| | - Lorenzo Botta
- Department of Ecological and Biological Sciences, University of Tuscia, Largo Dell’Università snc, 01100 Viterbo, Italy; (A.C.); (L.B.); (R.S.); (S.O.)
| | - Raffaele Saladino
- Department of Ecological and Biological Sciences, University of Tuscia, Largo Dell’Università snc, 01100 Viterbo, Italy; (A.C.); (L.B.); (R.S.); (S.O.)
| | - Elke Rabbow
- Radiation Biology Division, Institute of Aerospace Medicine, DLR, Linder Höhe, 51147 Köln, Germany;
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Largo Dell’Università snc, 01100 Viterbo, Italy; (A.C.); (L.B.); (R.S.); (S.O.)
| |
Collapse
|
6
|
Royle SH, Tan JSW, Watson JS, Sephton MA. Pyrolysis of Carboxylic Acids in the Presence of Iron Oxides: Implications for Life Detection on Missions to Mars. ASTROBIOLOGY 2021; 21:673-691. [PMID: 33635150 DOI: 10.1089/ast.2020.2226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The search for, and characterization of, organic matter on Mars is central to efforts in identifying habitable environments and detecting evidence of life in the martian surface and near surface. Iron oxides are ubiquitous in the martian regolith and are known to be associated with the deposition and preservation of organic matter in certain terrestrial environments, thus iron oxide-rich sediments are potential targets for life-detection missions. The most frequently used protocol for martian organic matter characterization (also planned for use on ExoMars) has been thermal extraction for the transfer of organic matter to gas chromatography-mass spectrometry (GC-MS) detectors. For the effective use of thermal extraction for martian samples, it is necessary to explore how potential biomarker organic molecules evolve during this process in the presence of iron oxides. We have thermally decomposed iron oxides simultaneously with (z)-octadec-9-enoic and n-octadecanoic acids and analyzed the products through pyrolysis-GC-MS. We found that the thermally driven dehydration, reduction, and recrystallization of iron oxides transformed fatty acids. Overall detectability of products greatly reduced, molecular diversity decreased, unsaturated products decreased, and aromatization increased. The severity of this effect increased as reduction potential of the iron oxide and inferred free radical formation increased. Of the iron oxides tested hematite showed the least transformative effects, followed by magnetite, goethite, then ferrihydrite. It was possible to identify the saturation state of the parent carboxylic acid at high (0.5 wt %) concentrations by the distribution of n-alkylbenzenes in the pyrolysis products. When selecting life-detection targets on Mars, localities where hematite is the dominant iron oxide could be targeted preferentially, otherwise thermal analysis of carboxylic acids, or similar biomarker molecules, will lead to enhanced polymerization, aromatization, and breakdown, which will in turn reduce the fidelity of the original biomarker, similar to changes normally observed during thermal maturation.
Collapse
Affiliation(s)
- Samuel H Royle
- Department of Earth Science and Engineering, Impacts and Astromaterials Research Centre, Imperial College London, London, United Kingdom
| | - Jonathan S W Tan
- Department of Earth Science and Engineering, Impacts and Astromaterials Research Centre, Imperial College London, London, United Kingdom
| | - Jonathan S Watson
- Department of Earth Science and Engineering, Impacts and Astromaterials Research Centre, Imperial College London, London, United Kingdom
| | - Mark A Sephton
- Department of Earth Science and Engineering, Impacts and Astromaterials Research Centre, Imperial College London, London, United Kingdom
| |
Collapse
|