1
|
Symeonidou E, Jørgensen UG, Madsen MB, Priemé A. Effects of temperature, chloride and perchlorate salt concentration on the metabolic activity of Deinococcus radiodurans. Extremophiles 2024; 28:34. [PMID: 39044042 PMCID: PMC11266278 DOI: 10.1007/s00792-024-01351-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 07/16/2024] [Indexed: 07/25/2024]
Abstract
The extremophile bacterium Deinococcus radiodurans is characterized by its ability to survive and sustain its activity at high levels of radiation and is considered an organism that might survive in extraterrestrial environments. In the present work, we studied the combined effects of temperature and chlorine-containing salts, with focus on perchlorate salts which have been detected at high concentrations in Martian regolith, on D. radiodurans activity (CO2 production rates) and viability after incubation in liquid cultures for up to 30 days. Reduced CO2 production capacity and viability was observed at high perchlorate concentrations (up to 10% w/v) during incubation at 0 or 25 °C. Both the metabolic activity and viability were reduced as the perchlorate and chloride salt concentration increased and temperature decreased, and an interactive effect of temperature and salt concentration on the metabolic activity was found. These results indicate the ability of D. radiodurans to remain metabolically active and survive in low temperature environments rich in perchlorate.
Collapse
Affiliation(s)
- Eftychia Symeonidou
- Astrophysics and Planetary Science, Niels Bohr Institute, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark
- Center for ExoLife Sciences, (CELS), Niels Bohr Institute, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark
| | - Uffe Gråe Jørgensen
- Astrophysics and Planetary Science, Niels Bohr Institute, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark
- Center for ExoLife Sciences, (CELS), Niels Bohr Institute, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark
| | - Morten Bo Madsen
- Astrophysics and Planetary Science, Niels Bohr Institute, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark
- Center for ExoLife Sciences, (CELS), Niels Bohr Institute, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark
| | - Anders Priemé
- Center for ExoLife Sciences, (CELS), Niels Bohr Institute, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark.
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark.
| |
Collapse
|
2
|
Douchi D, Si Larbi G, Fel B, Bonnanfant M, Louwagie M, Jouhet J, Agnely M, Pouget S, Maréchal E. Dryland Endolithic Chroococcidiopsis and Temperate Fresh Water Synechocystis Have Distinct Membrane Lipid and Photosynthesis Acclimation Strategies upon Desiccation and Temperature Increase. PLANT & CELL PHYSIOLOGY 2024; 65:939-957. [PMID: 37944070 DOI: 10.1093/pcp/pcad139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/26/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
An effect of climate change is the expansion of drylands in temperate regions, predicted to affect microbial biodiversity. Since photosynthetic organisms are at the base of ecosystem's trophic networks, we compared an endolithic desiccation-tolerant Chroococcidiopsis cyanobacteria isolated from gypsum rocks in the Atacama Desert with a freshwater desiccation-sensitive Synechocystis. We sought whether some acclimation traits in response to desiccation and temperature variations were shared, to evaluate the potential of temperate species to possibly become resilient to future arid conditions. When temperature varies, Synechocystis tunes the acyl composition of its lipids, via a homeoviscous acclimation mechanism known to adjust membrane fluidity, whereas no such change occurs in Chroococcidiopsis. Vice versa, a combined study of photosynthesis and pigment content shows that Chroococcidiopsis remodels its photosynthesis components and keeps an optimal photosynthetic capacity at all temperatures, whereas Synechocystis is unable to such adjustment. Upon desiccation on a gypsum surface, Synechocystis is rapidly unable to revive, whereas Chroococcidiopsis is capable to recover after three weeks. Using X-ray diffraction, we found no evidence that Chroococcidiopsis could use water extracted from gypsum crystals in such conditions as a surrogate for missing water. The sulfolipid sulfoquinovosyldiacylglycerol becomes the prominent membrane lipid in both dehydrated cyanobacteria, highlighting an overlooked function for this lipid. Chroococcidiopsis keeps a minimal level of monogalactosyldiacylglycerol, which may be essential for the recovery process. Results support that two independent adaptation strategies have evolved in these species to cope with temperature and desiccation increase and suggest some possible scenarios for microbial biodiversity change triggered by climate change.
Collapse
Affiliation(s)
- Damien Douchi
- Laboratoire de Physiologie Cellulaire et Végétale, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Université Grenoble Alpes, IRIG, CEA-Grenoble, 17 rue des Martyrs, Grenoble 38000, France
| | - Gregory Si Larbi
- Laboratoire de Physiologie Cellulaire et Végétale, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Université Grenoble Alpes, IRIG, CEA-Grenoble, 17 rue des Martyrs, Grenoble 38000, France
| | - Benjamin Fel
- Laboratoire de Physiologie Cellulaire et Végétale, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Université Grenoble Alpes, IRIG, CEA-Grenoble, 17 rue des Martyrs, Grenoble 38000, France
| | - Marlène Bonnanfant
- Laboratoire de Physiologie Cellulaire et Végétale, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Université Grenoble Alpes, IRIG, CEA-Grenoble, 17 rue des Martyrs, Grenoble 38000, France
| | - Mathilde Louwagie
- Laboratoire de Physiologie Cellulaire et Végétale, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Université Grenoble Alpes, IRIG, CEA-Grenoble, 17 rue des Martyrs, Grenoble 38000, France
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Université Grenoble Alpes, IRIG, CEA-Grenoble, 17 rue des Martyrs, Grenoble 38000, France
| | - Mathias Agnely
- Saint Gobain Research Paris, SAINT-GOBAIN, 39 quai Lucien Lefranc, Aubervilliers Cedex 93303, France
| | - Stéphanie Pouget
- Laboratoire Modélisation et Exploration des Matériaux, Université Grenoble Alpes, Commissariat à l'énergie atomique et aux énergies alternatives, IRIG; CEA-Grenoble, 17 rue des Martyrs, Grenoble 38000, France
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Université Grenoble Alpes, IRIG, CEA-Grenoble, 17 rue des Martyrs, Grenoble 38000, France
| |
Collapse
|
3
|
Caro-Astorga J, Meyerowitz JT, Stork DA, Nattermann U, Piszkiewicz S, Vimercati L, Schwendner P, Hocher A, Cockell C, DeBenedictis E. Polyextremophile engineering: a review of organisms that push the limits of life. Front Microbiol 2024; 15:1341701. [PMID: 38903795 PMCID: PMC11188471 DOI: 10.3389/fmicb.2024.1341701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Nature exhibits an enormous diversity of organisms that thrive in extreme environments. From snow algae that reproduce at sub-zero temperatures to radiotrophic fungi that thrive in nuclear radiation at Chernobyl, extreme organisms raise many questions about the limits of life. Is there any environment where life could not "find a way"? Although many individual extremophilic organisms have been identified and studied, there remain outstanding questions about the limits of life and the extent to which extreme properties can be enhanced, combined or transferred to new organisms. In this review, we compile the current knowledge on the bioengineering of extremophile microbes. We summarize what is known about the basic mechanisms of extreme adaptations, compile synthetic biology's efforts to engineer extremophile organisms beyond what is found in nature, and highlight which adaptations can be combined. The basic science of extremophiles can be applied to engineered organisms tailored to specific biomanufacturing needs, such as growth in high temperatures or in the presence of unusual solvents.
Collapse
Affiliation(s)
| | | | - Devon A. Stork
- Pioneer Research Laboratories, San Francisco, CA, United States
| | - Una Nattermann
- Pioneer Research Laboratories, San Francisco, CA, United States
| | | | - Lara Vimercati
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| | | | - Antoine Hocher
- London Institute of Medical Sciences, London, United Kingdom
| | - Charles Cockell
- UK Centre for Astrobiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Erika DeBenedictis
- The Francis Crick Institute, London, United Kingdom
- Pioneer Research Laboratories, San Francisco, CA, United States
| |
Collapse
|
4
|
Wilanowska PA, Rzymski P, Kaczmarek Ł. Long-Term Survivability of Tardigrade Paramacrobiotus experimentalis (Eutardigrada) at Increased Magnesium Perchlorate Levels: Implications for Astrobiological Research. Life (Basel) 2024; 14:335. [PMID: 38541660 PMCID: PMC10971682 DOI: 10.3390/life14030335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 05/26/2024] Open
Abstract
Perchlorate salts, including magnesium perchlorate, are highly toxic compounds that occur on Mars at levels far surpassing those on Earth and pose a significant challenge to the survival of life on this planet. Tardigrades are commonly known for their extraordinary resistance to extreme environmental conditions and are considered model organisms for space and astrobiological research. However, their long-term tolerance to perchlorate salts has not been the subject of any previous studies. Therefore, the present study aimed to assess whether the tardigrade species Paramacrobiotus experimentalis can survive and grow in an environment contaminated with high levels of magnesium perchlorates (0.25-1.0%, 1.5-6.0 mM ClO4- ions). The survival rate of tardigrades decreased with an increase in the concentration of the perchlorate solutions and varied from 83.3% (0.10% concentration) to 20.8% (0.25% concentration) over the course of 56 days of exposure. Tardigrades exposed to 0.15-0.25% magnesium perchlorate revealed significantly decreased body length. Our study indicates that tardigrades can survive and grow in relatively high concentrations of magnesium perchlorates, largely exceeding perchlorate levels observed naturally on Earth, indicating their potential use in Martian experiments.
Collapse
Affiliation(s)
- Paulina Anna Wilanowska
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614 Poznań, Poland;
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 60-806 Poznań, Poland;
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614 Poznań, Poland;
| |
Collapse
|
5
|
Fagliarone C, Fernandez BG, Di Stefano G, Mosca C, Billi D. Insights into the chaotropic tolerance of the desert cyanobacterium Chroococcidiopsis sp. 029 (Chroococcidiopsales, Cyanobacteria). JOURNAL OF PHYCOLOGY 2024; 60:185-194. [PMID: 38156502 DOI: 10.1111/jpy.13414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/21/2023] [Accepted: 11/16/2023] [Indexed: 12/30/2023]
Abstract
The mechanism of perchlorate resistance of the desert cyanobacterium Chroococcidiopsis sp. CCMEE 029 was investigated by assessing whether the pathways associated with its desiccation tolerance might play a role against the destabilizing effects of this chaotropic agent. During 3 weeks of growth in the presence of 2.4 mM perchlorate, an upregulation of trehalose and sucrose biosynthetic pathways was detected. This suggested that in response to the water stress triggered by perchlorate salts, these two compatible solutes play a role in the stabilization of macromolecules and membranes as they do in response to dehydration. During the perchlorate exposure, the production of oxidizing species was observed by using an oxidant-sensing fluorochrome and determining the expression of the antioxidant defense genes, namely superoxide dismutases and catalases, while the presence of oxidative DNA damage was highlighted by the over-expression of genes of the base excision repair. The involvement of desiccation-tolerance mechanisms in the perchlorate resistance of this desert cyanobacterium is interesting since, so far, chaotropic-tolerant bacteria have been identified among halophiles. Hence, it is anticipated that desert microorganisms might possess an unrevealed capability of adapting to perchlorate concentrations exceeding those naturally occurring in dry environments. Furthermore, in the endeavor of supporting future human outposts on Mars, the identified mechanisms might contribute to enhance the perchlorate resistance of microorganisms relevant for biologically driven utilization of the perchlorate-rich soil of the red planet.
Collapse
Affiliation(s)
| | - Beatriz Gallego Fernandez
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- PhD Program in Cellular and Molecular Biology, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Giorgia Di Stefano
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- PhD Program in Cellular and Molecular Biology, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Claudia Mosca
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Daniela Billi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
6
|
Zhang X, Zhang Y, Chen Z, Gu P, Li X, Wang G. Exploring cell aggregation as a defense strategy against perchlorate stress in Chlamydomonas reinhardtii through multi-omics analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167045. [PMID: 37709088 DOI: 10.1016/j.scitotenv.2023.167045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Perchlorate (ClO4-) is a type of novel, widely distributed, and persistent inorganic pollutant. However, the impacts of perchlorate on freshwater algae remain unclear. In this study, the response and defense mechanisms of microalgae (Chlamydomonas reinhardtii) under perchlorate stress were investigated by integrating physiological and biochemical monitoring, transcriptomics, and metabolomics. Weighted gene co-expression network analysis (WGCNA) of transcriptome data was used to analyze the relationship between genes and phenotype and screen the key pathways. C. reinhardtii exhibited aggregate behavior when exposed to 100- and 200-mM perchlorate but was restored to its unicellular lifestyle when transferred to fresh medium. WGCNA results found that the "carbohydrate metabolism" and "lipid metabolism" pathways were closely related to cell aggregation phenotype. The differential expression genes (DEGs) and differentially accumulated metabolites (DAMs) of these pathways were upregulated, indicating that the lipid and carbohydrate metabolisms were enhanced in aggregated cells. Additionally, most genes and metabolites related to phytohormone abscisic acid (ABA) biosynthesis and the mitogen-activated protein kinase (MAPK) signaling pathway were significantly upregulated, indicating their crucial roles in the signal transmission of aggregated cells. Meanwhile, in aggregated cells, extracellular polymeric substances (EPS) and lipid contents increased, photosynthesis activity decreased, and the antioxidant system was activated. These characteristics contributed to C. reinhardtii's improved resistance to perchlorate stress. Above results demonstrated that cell aggregation behavior was the principal defense strategy of C. reinhardtii against perchlorate. Overall, this study sheds new light on the impact mechanisms of perchlorate to aquatic microalgae and provides multi-omics insights into the research of multicellular-like aggregation as an adaptation strategy to abiotic stress. These results are beneficial for assessing the risk of perchlorate in aquatic environments.
Collapse
Affiliation(s)
- Xianyuan Zhang
- Key Laboratory for Algae Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yixiao Zhang
- Key Laboratory for Algae Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Science, Tibet University, Lasha 850000, China
| | - Zixu Chen
- Key Laboratory for Algae Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peifan Gu
- Key Laboratory for Algae Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyan Li
- Key Laboratory for Algae Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Gaohong Wang
- Key Laboratory for Algae Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Yan H, Jayasanka Senavirathna MDH. Recoverability of Microcystis aeruginosa and Pseudanabaena foetida Exposed to a Year-Long Dark Treatment. Microorganisms 2023; 11:2760. [PMID: 38004771 PMCID: PMC10672943 DOI: 10.3390/microorganisms11112760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Cyanobacteria are a significant primary producer and pioneer species that play a vital role in ecological reconstruction, especially in aquatic environments. Cyanobacteria have excellent recovery capacity from significant stress exposure and are thus suggested as bioreserves, even for space colonization programs. Few studies have been conducted on the recovery capacity after experiencing stress. Long-duration darkness or insufficient light is stressful for photosynthetic species, including cyanobacteria, and can cause chlorosis. Cyanobacterial recovery after extensive exposure to darkness has not yet been studied. In this experiment, Microcystis aeruginosa and Pseudanabaena foetida were subjected to a year-long darkness treatment, and the change in recovery capacity was measured in monthly samples. Cyanobacterial growth, chlorophyll-a concentration, oxidative stress, and photosynthetic capacity were evaluated. It was found that the rapid recovery capacity of the two species remained even after one year of darkness treatment. However, the H2O2 content of recovered samples of both M. aeruginosa and P. foetida experienced significant changes at six-seven months, although the photosynthetic capacity of both cyanobacteria species was maintained within the healthy range. The chlorophyll-a and carotenoid content of the recovered samples also changed with increasing darkness. The results showed that long-term dark treatment had time-dependent effects but different effects on M. aeruginosa and P. foetida. However, both cyanobacteria species can recover rapidly after one year of dark treatment.
Collapse
|
8
|
Cyanobacteria and Algal-Based Biological Life Support System (BLSS) and Planetary Surface Atmospheric Revitalizing Bioreactor Brief Concept Review. Life (Basel) 2023; 13:life13030816. [PMID: 36983971 PMCID: PMC10057978 DOI: 10.3390/life13030816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Exploring austere environments required a reimagining of resource acquisition and utilization. Cyanobacterial in situ resources utilization (ISRU) and biological life support system (BLSS) bioreactors have been proposed to allow crewed space missions to extend beyond the temporal boundaries that current vehicle mass capacities allow. Many cyanobacteria and other microscopic organisms evolved during a period of Earth’s history that was marked by very harsh conditions, requiring robust biochemical systems to ensure survival. Some species work wonderfully in a bioweathering capacity (siderophilic), and others are widely used for their nutritional power (non-siderophilic). Playing to each of their strengths and having them grow and feed off of each other is the basis for the proposed idea for a series of three bioreactors, starting from regolith processing and proceeding to nutritional products, gaseous liberation, and biofuel production. In this paper, we discuss what that three reactor system will look like, with the main emphasis on the nutritional stage.
Collapse
|
9
|
Olsson-Francis K, Doran PT, Ilyin V, Raulin F, Rettberg P, Kminek G, Mier MPZ, Coustenis A, Hedman N, Shehhi OA, Ammannito E, Bernardini J, Fujimoto M, Grasset O, Groen F, Hayes A, Gallagher S, Kumar K P, Mustin C, Nakamura A, Seasly E, Suzuki Y, Peng J, Prieto-Ballesteros O, Sinibaldi S, Xu K, Zaitsev M. The COSPAR Planetary Protection Policy for robotic missions to Mars: A review of current scientific knowledge and future perspectives. LIFE SCIENCES IN SPACE RESEARCH 2023; 36:27-35. [PMID: 36682826 DOI: 10.1016/j.lssr.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Planetary protection guidance for martian exploration has become a notable point of discussion over the last decade. This is due to increased scientific interest in the habitability of the red planet with updated techniques, missions becoming more attainable by smaller space agencies, and both the private sector and governments engaging in activities to facilitate commercial opportunities and human-crewed missions. The international standards for planetary protection have been developed through consultation with the scientific community and the space agencies by the Committee on Space Research's (COSPAR) Panel on Planetary Protection, which provides guidance for compliance with the Outer Space Treaty of 1967. In 2021, the Panel evaluated recent scientific data and literature regarding the planetary protection requirements for Mars and the implications of this on the guidelines. In this paper, we discuss the COSPAR Planetary Protection Policy for Mars, review the new scientific findings and discuss the next steps required to enable the next generation of robotic missions to Mars.
Collapse
Affiliation(s)
- Karen Olsson-Francis
- AstrobiologyOU, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, UK.
| | - Peter T Doran
- Department of Geology and Geophysics, Louisiana State, Baton Rouge, Louisiana, USA
| | - Vyacheslav Ilyin
- Institute for Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Francois Raulin
- Univ Paris Est Cr Univ Paris Est Créteil and Université Paris Cité, CNRS, LISA, F-94010 Créteil, France
| | - Petra Rettberg
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Research Group Astrobiology, 51147 Cologne, Germany
| | | | - María-Paz Zorzano Mier
- Centro deAstrobiología (CAB), CSIC-INTA, Carretera de Ajalvir km 4, 28850 Torrejón de Ardoz, Madrid, Spain
| | - Athena Coustenis
- LESIA, Paris Observatory, PSL University, CNRS, Paris University, 92195 Meudon Cedex, France
| | - Niklas Hedman
- Committee, Policy and Legal Affairs Section, Office for Outer Space Affairs, United Nations Office at Vienna, Austria
| | | | | | - James Bernardini
- Office of Safety and Mission Assurance, NASA Headquarters, Washington, DC 20546, USA
| | - Masaki Fujimoto
- Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Kanagawa, Japan
| | | | - Frank Groen
- Office of Safety and Mission Assurance, NASA Headquarters, Washington, DC 20546, USA
| | - Alex Hayes
- Cornell University, Ithaca, NY 14853-6801, USA
| | - Sarah Gallagher
- Institute of Earth and Space Exploration, Western University, London, Ontario, Canada
| | | | | | - Akiko Nakamura
- Department of Earth and Planetary Science, The University of Tokyo,7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Elaine Seasly
- Office of Safety and Mission Assurance, NASA Headquarters, Washington, DC 20546, USA
| | - Yohey Suzuki
- Department of Earth and Planetary Science, The University of Tokyo,7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Jing Peng
- China National Space Administration, Beijing, China
| | - Olga Prieto-Ballesteros
- Centro deAstrobiología (CAB), CSIC-INTA, Carretera de Ajalvir km 4, 28850 Torrejón de Ardoz, Madrid, Spain
| | | | - Kanyan Xu
- Laboratory of Space Microbiology, Shenzhou Space Biotechnology Group, Chinese Academy of Space Technology, Beijing, China
| | - Maxim Zaitsev
- Planetary Physics Dept., Space Research Inst. of Russian Acad. of Sciences, Moscow, Russia
| |
Collapse
|
10
|
Cassaro A, Pacelli C, Onofri S. Survival, metabolic activity, and ultrastructural damages of Antarctic black fungus in perchlorates media. Front Microbiol 2022; 13:992077. [PMID: 36523839 PMCID: PMC9744811 DOI: 10.3389/fmicb.2022.992077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/06/2022] [Indexed: 09/12/2023] Open
Abstract
Evidence from recent Mars landers identified the presence of perchlorates salts at 1 wt % in regolith and their widespread distribution on the Martian surface that has been hypothesized as a critical chemical hazard for putative life forms. However, the hypersaline environment may also potentially preserve life and its biomolecules over geological timescales. The high concentration of natural perchlorates is scarcely reported on Earth. The presence of perchlorates in soil and ice has been recorded in some extreme environments including the McMurdo Dry Valleys in Antarctica, one of the best terrestrial analogues for Mars. In the frame of "Life in space" Italian astrobiology project, the polyextremophilic black fungus Cryomyces antarcticus, a eukaryotic test organism isolated from the Antarctic cryptoendolithic communities, has been tested for its resistance, when grown on different hypersaline substrata. In addition, C. antarcticus was grown on Martian relevant perchlorate medium (0.4 wt% of Mg(ClO4)2 and 0.6 wt% of Ca(ClO4)2) to investigate the possibility for the fungus to survive in Martian environment. Here, the results indicate a good survivability and metabolic activity recovery of the black fungus when grown on four Martian relevant perchlorates. A low percentage of damaged cellular membranes have been found, confirming the ultrastructural investigation.
Collapse
Affiliation(s)
- Alessia Cassaro
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, Viterbo, Italy
| | - Claudia Pacelli
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, Viterbo, Italy
- Human Spaceflight and Scientific Research Unit, Italian Space Agency, via del Politecnico, Rome, Italy
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, Viterbo, Italy
| |
Collapse
|
11
|
Coleine C, Delgado-Baquerizo M. Unearthing terrestrial extreme microbiomes for searching terrestrial-like life in the Solar System. Trends Microbiol 2022; 30:1101-1115. [PMID: 35568658 DOI: 10.1016/j.tim.2022.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/03/2022] [Accepted: 04/11/2022] [Indexed: 01/13/2023]
Abstract
The possibility of life elsewhere in the universe has fascinated humankind for ages. To the best of our knowledge, life, as we know it, is limited to planet Earth; yet current investigation suggests that life might be more common than previously thought. In this review, we explore extreme terrestrial analogue environments in the search for some notable examples of extreme organisms, including overlooked microbial groups such as viruses, fungi, and protists, associated with limits of life on Earth. This knowledge is integral to provide the foundational principles needed to predict what sort of Earth-like organisms we might find in the Solar System and beyond, and to understand the future and origins of life on Earth.
Collapse
Affiliation(s)
- Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy.
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, E-41012, Sevilla, Spain; Unidad Asociada CSIC-UPO (BioFun). Universidad Pablo de Olavide, 41013 Sevilla, Spain.
| |
Collapse
|
12
|
Ramalho TP, Chopin G, Salman L, Baumgartner V, Heinicke C, Verseux C. On the growth dynamics of the cyanobacterium Anabaena sp. PCC 7938 in Martian regolith. NPJ Microgravity 2022; 8:43. [PMID: 36289210 PMCID: PMC9606272 DOI: 10.1038/s41526-022-00240-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/12/2022] [Indexed: 11/08/2022] Open
Abstract
The sustainability of crewed infrastructures on Mars will depend on their abilities to produce consumables on site. These abilities may be supported by diazotrophic, rock-leaching cyanobacteria: from resources naturally available on Mars, they could feed downstream biological processes and lead to the production of oxygen, food, fuels, structural materials, pharmaceuticals and more. The relevance of such a system will be dictated largely by the efficiency of regolith utilization by cyanobacteria. We therefore describe the growth dynamics of Anabaena sp. PCC 7938 as a function of MGS-1 concentration (a simulant of a widespread type of Martian regolith), of perchlorate concentration, and of their combination. To help devise improvement strategies and predict dynamics in regolith of differing composition, we identify the limiting element in MGS-1 - phosphorus - and its concentration-dependent effect on growth. Finally, we show that, while maintaining cyanobacteria and regolith in a single compartment can make the design of cultivation processes challenging, preventing direct physical contact between cells and grains may reduce growth. Overall, we hope for the knowledge gained here to support both the design of cultivation hardware and the modeling of cyanobacterium growth within.
Collapse
Affiliation(s)
- Tiago P Ramalho
- Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, 28359, Bremen, Germany
| | - Guillaume Chopin
- Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, 28359, Bremen, Germany
| | - Lina Salman
- Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, 28359, Bremen, Germany
| | - Vincent Baumgartner
- Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, 28359, Bremen, Germany
| | - Christiane Heinicke
- Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, 28359, Bremen, Germany
| | - Cyprien Verseux
- Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, 28359, Bremen, Germany.
| |
Collapse
|
13
|
Selection of Anabaena sp. PCC 7938 as a Cyanobacterium Model for Biological ISRU on Mars. Appl Environ Microbiol 2022; 88:e0059422. [PMID: 35862672 PMCID: PMC9361815 DOI: 10.1128/aem.00594-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Crewed missions to Mars are expected to take place in the coming decades. After short-term stays, a permanent presence will be desirable to enable a wealth of scientific discoveries. This will require providing crews with life-support consumables in amounts that are too large to be imported from Earth. Part of these consumables could be produced on site with bioprocesses, but the feedstock should not have to be imported. A solution under consideration lies in using diazotrophic, rock-weathering cyanobacteria as primary producers: fed with materials naturally available on site, they would provide the nutrients required by other organisms. This concept has recently gained momentum but progress is slowed by a lack of consistency across contributing teams, and notably of a shared model organism. With the hope to address this issue, we present the work performed to select our current model. We started with preselected strains from the Nostocaceae family. After sequencing the genome of Anabaena sp. PCC 7938-the only one not yet available-we compared the strains' genomic data to determine their relatedness and provide insights into their physiology. We then assessed and compared relevant features: chiefly, their abilities to utilize nutrients from Martian regolith, their resistance to perchlorates (toxic compounds present in the regolith), and their suitability as feedstock for secondary producers (here a heterotrophic bacterium and a higher plant). This led to the selection of Anabaena sp. PCC 7938, which we propose as a model cyanobacterium for the development of bioprocesses based on Mars's natural resources. IMPORTANCE The sustainability of crewed missions to Mars could be increased by biotechnologies which are connected to resources available on site via primary producers: diazotrophic, rock-leaching cyanobacteria. Indeed, this could greatly reduce the mass of payloads to be imported from Earth. The concept is gaining momentum but progress is hindered by a lack of consistency across research teams. We consequently describe the selection process that led to the choice of our model strain, demonstrate its relevance to the field, and propose it as a shared model organism. We expect this contribution to support the development of cyanobacterium-based biotechnologies on Mars.
Collapse
|
14
|
Heinz J, Doellinger J, Maus D, Schneider A, Lasch P, Grossart HP, Schulze-Makuch D. Perchlorate-Specific Proteomic Stress Responses of Debaryomyces hansenii Could Enable Microbial Survival in Martian Brines. Environ Microbiol 2022; 24:5051-5065. [PMID: 35920032 DOI: 10.1111/1462-2920.16152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022]
Abstract
If life exists on Mars, it would face several challenges including the presence of perchlorates, which destabilize biomacromolecules by inducing chaotropic stress. However, little is known about perchlorate toxicity for microorganism on the cellular level. Here we present the first proteomic investigation on the perchlorate-specific stress responses of the halotolerant yeast Debaryomyces hansenii and compare these to generally known salt stress adaptations. We found that the responses to NaCl and NaClO4 -induced stresses share many common metabolic features, e.g., signaling pathways, elevated energy metabolism, or osmolyte biosynthesis. Nevertheless, several new perchlorate-specific stress responses could be identified, such as protein glycosylation and cell wall remodulations, presumably in order to stabilize protein structures and the cell envelope. These stress responses would also be relevant for life on Mars, which - given the environmental conditions - likely developed chaotropic defense strategies such as stabilized confirmations of biomacromolecules and the formation of cell clusters. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jacob Heinz
- Center for Astronomy and Astrophysics, RG Astrobiology, Technische Universität Berlin, Berlin, Germany
| | - Joerg Doellinger
- Robert Koch-Institute, Centre for Biological Threats and Special Pathogens, Proteomics and Spectroscopy (ZBS6), Berlin, Germany
| | - Deborah Maus
- Robert Koch-Institute, Metabolism of Microbial Pathogens (NG2), Berlin, Germany
| | - Andy Schneider
- Robert Koch-Institute, Centre for Biological Threats and Special Pathogens, Proteomics and Spectroscopy (ZBS6), Berlin, Germany
| | - Peter Lasch
- Robert Koch-Institute, Centre for Biological Threats and Special Pathogens, Proteomics and Spectroscopy (ZBS6), Berlin, Germany
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), 16775 Stechlin, Germany.,Institute for Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Dirk Schulze-Makuch
- Center for Astronomy and Astrophysics, RG Astrobiology, Technische Universität Berlin, Berlin, Germany.,Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), 16775 Stechlin, Germany.,GFZ German Research Center for Geosciences, Section Geomicrobiology, Potsdam, Germany.,School of the Environment, Washington State University, Pullman, Washington, USA
| |
Collapse
|