1
|
Schmidt ME, Kizovski TV, Liu Y, Hernandez-Montenegro JD, Tice MM, Treiman AH, Hurowitz JA, Klevang DA, Knight AL, Labrie J, Tosca NJ, VanBommel SJ, Benaroya S, Crumpler LS, Horgan BHN, Morris RV, Simon JI, Udry A, Yanchilina A, Allwood AC, Cable ML, Christian JR, Clark BC, Flannery DT, Heirwegh CM, Henley TLJ, Henneke J, Jones MWM, Orenstein BJ, Herd CDK, Randazzo N, Shuster D, Wadhwa M. Diverse and highly differentiated lava suite in Jezero crater, Mars: Constraints on intracrustal magmatism revealed by Mars 2020 PIXL. SCIENCE ADVANCES 2025; 11:eadr2613. [PMID: 39854469 PMCID: PMC11778241 DOI: 10.1126/sciadv.adr2613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025]
Abstract
The Jezero crater floor features a suite of related, iron-rich lavas that were examined and sampled by the Mars 2020 rover Perseverance, and whose textures, minerals, and compositions were characterized by the Planetary Instrument for X-ray Lithochemistry (PIXL). This suite, known as the Máaz formation (fm), includes dark-toned basaltic/trachy-basaltic rocks with intergrown pyroxene, plagioclase feldspar, and altered olivine and overlying trachy-andesitic lava with reversely zoned plagioclase phenocrysts in a K-rich groundmass. Feldspar thermal disequilibrium textures indicate that they were carried from their crustal staging area. Bulk and mafic minerals have very high FeO and low MgO to FeOtotal ratios, which are partially reproduced by thermodynamic models involving high-degree fractional crystallization of a gabbroic assemblage and possibly also assimilation of iron-rich basement. Together, these in situ constraints on petrogenesis provide a uniquely detailed record of intracrustal processes beneath Jezero crater during a time period not represented by Mars samples to date.
Collapse
Affiliation(s)
- Mariek E. Schmidt
- Department of Earth Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Tanya V. Kizovski
- Department of Earth Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Yang Liu
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | | | - Michael M. Tice
- Department of Geology and Geophysics, Texas A&M University, College Station, TX 77843, USA
| | | | - Joel A. Hurowitz
- Department of Geosciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - David A. Klevang
- Technical University of Denmark, DTU Space, Department of Measurement and Instrumentation, Kongens Lyngby, 2800, Denmark
| | - Abigail L. Knight
- McDonnell Center for the Space Sciences, Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Joshua Labrie
- Department of Earth Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Nicholas J. Tosca
- Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
| | - Scott J. VanBommel
- McDonnell Center for the Space Sciences, Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Sophie Benaroya
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB T6G 2E3, Canada
| | - Larry S. Crumpler
- New Mexico Museum of Natural History and Science, Albuquerque, NM 87104, USA
| | - Briony H. N. Horgan
- Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | | - Arya Udry
- Department of Geosciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Anastasia Yanchilina
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Abigail C. Allwood
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Morgan L. Cable
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - John R. Christian
- McDonnell Center for the Space Sciences, Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | - David T. Flannery
- School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | | | - Thomas L. J. Henley
- Department of Earth Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Jesper Henneke
- Technical University of Denmark, DTU Space, Department of Measurement and Instrumentation, Kongens Lyngby, 2800, Denmark
| | - Michael W. M. Jones
- School of Chemistry and Physics and Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Brendan J. Orenstein
- School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Christopher D. K. Herd
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB T6G 2E3, Canada
| | - Nicholas Randazzo
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB T6G 2E3, Canada
| | - David Shuster
- Department of Earth and Planetary Science, University of California, Berkeley, CA 94720-4767, USA
| | - Meenakshi Wadhwa
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
2
|
McCubbin FM, Farley KA, Harrington AD, Hutzler A, Smith CL. Mars Sample Return: From collection to curation of samples from a habitable world. Proc Natl Acad Sci U S A 2025; 122:e2404253121. [PMID: 39761397 PMCID: PMC11745348 DOI: 10.1073/pnas.2404253121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025] Open
Abstract
NASA's Mars 2020 mission has initiated collection of samples from Mars' Jezero Crater, which has a wide range of ancient rocks and rock types from lavas to lacustrine sedimentary rocks. The Mars Sample Return (MSR) Campaign, a joint effort between NASA and ESA, aims to bring the Perseverance collection back to Earth for intense scientific investigation. As the first return of samples from a habitable world, there are important challenges to overcome for the successful implementation of the MSR Campaign from the point of sample collection on Mars to the long-term curation of the samples on Earth. In particular, the successful execution of planetary protection protocols adds well-warranted complexity to every step of the process from the two MSR Program flight elements to the ground element at the sample receiving facility (SRF). In this contribution, we describe the architecture of the MSR Campaign, with a focus on infrastructure needs for the curation (i.e., the clean storage, processing, and allocation) of pristine Martian samples. Curation is a science-enabling and planetary protection-enabling activity, and the curation practices described in this contribution for the SRF and any long-term curation facility will enable the sample safety assessment, initial scientific investigations of the samples, and establish the MSR collection as a scientific resource that will enable generations of science and discovery through studies of the returned Mars samples. The planetary protection and curation processes established for MSR will provide critical insights into potential future sample return missions from other habitable worlds like Enceladus and Europa.
Collapse
Affiliation(s)
- Francis M. McCubbin
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX77058
| | - Kenneth A. Farley
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA91109
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
| | - Andrea D. Harrington
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX77058
| | - Aurore Hutzler
- European Space Agency/European Space Research & Technology Centre, Keplerlaan 1, Postbus 299, 2200 AG Noordwijk, The Netherlands
| | - Caroline L. Smith
- Science Group, Natural History Museum, LondonSW7 5BD, United Kingdom
- School of Geographical and Earth Sciences, University of Glasgow, GlasgowG12 8QQ, United Kingdom
| |
Collapse
|
3
|
Zorzano MP, Martínez G, Polkko J, Tamppari LK, Newman C, Savijärvi H, Goreva Y, Viúdez-Moreiras D, Bertrand T, Smith M, Hausrath EM, Siljeström S, Benison K, Bosak T, Czaja AD, Debaille V, Herd CDK, Mayhew L, Sephton MA, Shuster D, Simon JI, Weiss B, Randazzo N, Mandon L, Brown A, Hecht MH, Martínez-Frías J. Present-day thermal and water activity environment of the Mars Sample Return collection. Sci Rep 2024; 14:7175. [PMID: 38532041 DOI: 10.1038/s41598-024-57458-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
The Mars Sample Return mission intends to retrieve a sealed collection of rocks, regolith, and atmosphere sampled from Jezero Crater, Mars, by the NASA Perseverance rover mission. For all life-related research, it is necessary to evaluate water availability in the samples and on Mars. Within the first Martian year, Perseverance has acquired an estimated total mass of 355 g of rocks and regolith, and 38 μmoles of Martian atmospheric gas. Using in-situ observations acquired by the Perseverance rover, we show that the present-day environmental conditions at Jezero allow for the hydration of sulfates, chlorides, and perchlorates and the occasional formation of frost as well as a diurnal atmospheric-surface water exchange of 0.5-10 g water per m2 (assuming a well-mixed atmosphere). At night, when the temperature drops below 190 K, the surface water activity can exceed 0.5, the lowest limit for cell reproduction. During the day, when the temperature is above the cell replication limit of 245 K, water activity is less than 0.02. The environmental conditions at the surface of Jezero Crater, where these samples were acquired, are incompatible with the cell replication limits currently known on Earth.
Collapse
Affiliation(s)
- Maria-Paz Zorzano
- Centro de Astrobiología (CAB), CSIC-INTA, 28850, Torrejón de Ardoz, Madrid, Spain.
| | - Germán Martínez
- Lunar and Planetary Institute, Universities Space Research Association, Houston, TX, USA
- University of Michigan, Ann Arbor, MI, USA
| | - Jouni Polkko
- Finnish Meteorological Institute, Helsinki, Finland
| | - Leslie K Tamppari
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA, 91109, USA
| | | | | | - Yulia Goreva
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA, 91109, USA
| | | | - Tanguy Bertrand
- Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique (LESIA), Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Univ. Paris Diderot, Sorbonne, France
| | - Michael Smith
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | | | | | | | - Tanja Bosak
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew D Czaja
- Department of Geosciences, University of Cincinnati, Cincinnati, OH, USA
| | - Vinciane Debaille
- Laboratoire G-Time, Université Libre de Bruxelles, Brussels, Belgium
| | - Christopher D K Herd
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Canada
| | - Lisa Mayhew
- Department of Geological Sciences, University of Colorado Boulder, Boulder, CO, USA
| | - Mark A Sephton
- Department of Earth Science and Engineering, Imperial College London, London, UK
| | | | - Justin I Simon
- Center for Isotope Cosmochemistry and Geochronology, Astromaterials Research and Exploration Science, NASA Johnson Space Center, Houston, TX, USA
| | - Benjamin Weiss
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicolas Randazzo
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Canada
| | - Lucia Mandon
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | | | | | | |
Collapse
|
4
|
Kminek G, Meyer MA, Beaty DW, Carrier BL, Haltigin T, Hays LE. Mars Sample Return (MSR): Planning for Returned Sample Science. ASTROBIOLOGY 2022; 22:S1-S4. [PMID: 34904887 DOI: 10.1089/ast.2021.0198] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
| | - Michael A Meyer
- NASA Headquarters, Mars Sample Return Program, Washington, DC, USA
| | - David W Beaty
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Brandi L Carrier
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | - Lindsay E Hays
- NASA Headquarters, Mars Sample Return Program, Washington, DC, USA
| |
Collapse
|
5
|
Carrier BL, Beaty DW, Hutzler A, Smith AL, Kminek G, Meyer MA, Haltigin T, Hays LE, Agee CB, Busemann H, Cavalazzi B, Cockell CS, Debaille V, Glavin DP, Grady MM, Hauber E, Marty B, McCubbin FM, Pratt LM, Regberg AB, Smith CL, Summons RE, Swindle TD, Tait KT, Tosca NJ, Udry A, Usui T, Velbel MA, Wadhwa M, Westall F, Zorzano MP. Science and Curation Considerations for the Design of a Mars Sample Return (MSR) Sample Receiving Facility (SRF). ASTROBIOLOGY 2022; 22:S217-S237. [PMID: 34904886 DOI: 10.1089/ast.2021.0110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The most important single element of the "ground system" portion of a Mars Sample Return (MSR) Campaign is a facility referred to as the Sample Receiving Facility (SRF), which would need to be designed and equipped to receive the returned spacecraft, extract and open the sealed sample container, extract the samples from the sample tubes, and implement a set of evaluations and analyses of the samples. One of the main findings of the first MSR Sample Planning Group (MSPG, 2019a) states that "The scientific community, for reasons of scientific quality, cost, and timeliness, strongly prefers that as many sample-related investigations as possible be performed in PI-led laboratories outside containment." There are many scientific and technical reasons for this preference, including the ability to utilize advanced and customized instrumentation that may be difficult to reproduce inside in a biocontained facility, and the ability to allow multiple science investigators in different labs to perform similar or complementary analyses to confirm the reproducibility and accuracy of results. It is also reasonable to assume that there will be a desire for the SRF to be as efficient and economical as possible, while still enabling the objectives of MSR to be achieved. For these reasons, MSPG concluded, and MSPG2 agrees, that the SRF should be designed to accommodate only those analytical activities that could not reasonably be done in outside laboratories because they are time- or sterilization-sensitive, are necessary for the Sample Safety Assessment Protocol (SSAP), or are necessary parts of the initial sample characterization process that would allow subsamples to be effectively allocated for investigation. All of this must be accommodated in an SRF, while preserving the scientific value of the samples through maintenance of strict environmental and contamination control standards. Executive Summary The most important single element of the "ground system" portion of a Mars Sample Return (MSR) Campaign is a facility referred to as the Sample Receiving Facility (SRF), which would need to be designed and equipped to enable receipt of the returned spacecraft, extraction and opening of the sealed sample container, extraction of the samples from the sample tubes, and a set of evaluations and analyses of the samples-all under strict protocols of biocontainment and contamination control. Some of the important constraints in the areas of cost and required performance have not yet been set by the necessary governmental sponsors, but it is reasonable to assume there will be a desire for the SRF to be as efficient and economical as is possible, while still enabling the objectives of MSR science to be achieved. Additionally, one of the main findings of MSR Sample Planning Group (MSPG, 2019a) states "The scientific community, for reasons of scientific quality, cost, and timeliness, strongly prefers that as many sample-related investigations as possible be performed in PI-led laboratories outside containment." There are many scientific and technical reasons for this preference, including the ability to utilize advanced and customized instrumentation that may be difficult to reproduce inside a biocontained facility. Another benefit is the ability to enable similar or complementary analyses by multiple science investigators in different laboratories, which would confirm the reproducibility and accuracy of results. For these reasons, the MSPG concluded-and the MSR Science Planning Group Phase 2 (MSPG2) agrees-that the SRF should be designed to accommodate only those analytical activities inside biocontainment that could not reasonably be done in outside laboratories because such activities are time-sensitive, sterilization-sensitive, required by the Sample Safety Assessment Protocol (SSAP), or are necessary parts of the initial sample characterization process that would allow subsamples to be effectively allocated for investigation. All activities within the SRF must be done while preserving the scientific value of the samples through maintenance of strict environmental and contamination control standards. The SRF would need to provide a unique environment that consists of both Biosafety Level 4 (BSL-4) equivalent containment and a very high level of contamination control. The SRF would also need to accommodate the following activities: (1)Receipt of the returned spacecraft, presumably in a sealed shipping container (2)De-integration (i.e., disassembly) and assessment of the returned system, beginning with the spacecraft exterior and ending with accessing and isolating all Mars material (gas, dust, regolith, and rock) (3)Initial sample characterization, leading to development of a sample catalog sufficient to support sample allocation (see Tait et al., 2022) (4)Science investigations necessary to complete the SSAP (see Kminek et al., 2021) (5)Certain science investigations that are both time- and sterilization-sensitive (see Tosca et al., 2022; Velbel et al., 2022) (6)A managed transition to post-SRF activities that would include analysis of samples (either sterilized or not) outside biocontainment and the transfer of some or all samples to one or more uncontained curation facilities The MSPG2 has produced a compilation of potential design requirements for the SRF, based on the list of activities noted above, that can be used in cost and schedule planning. The text of this report is meant to serve as an overview and explanation of these proposed SRF Design Requirements that have been compiled by the MSPG2 SRF Requirements Focus Group (Supplement 1). Summary of Findings FINDING SRF-1: The quality of the science that can be achieved with the MSR samples will be negatively impacted if they are not protected from contamination and inappropriate environmental conditions. A significant amount of SRF infrastructure would therefore be necessary to maintain and monitor appropriate levels of cleanliness, contamination control, and environmental conditions. FINDING SRF-2: Although most MSR sample investigations would take place outside of the SRF, the SRF needs to include significant laboratory capabilities with advanced instruments and associated sample preparation systems to enable the MSR science objectives to be successfully achieved. FINDING SRF-3: Preliminary studies of different operational scenarios should be started as soon as possible to enable analysis of the trade-offs between the cost and size of the SRF and the amount of time needed to prepare the samples for allocation and analysis. FINDING SRF-4: The ability to add additional analytical capabilities within biocontainment should be preserved to address the contingency scenario in which unsterilized material is not cleared to be analyzed outside of biocontainment. If potential evidence of martian life were to be detected in the samples, for example, it would be a high priority to conduct further investigations related to any putative lifeforms, as well as to enable other sterilization-sensitive science investigations to be conducted in biocontainment.
Collapse
Affiliation(s)
- Brandi L Carrier
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - David W Beaty
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | - Alvin L Smith
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | - Michael A Meyer
- NASA Headquarters, Mars Sample Return Program, Washington, DC, USA
| | | | - Lindsay E Hays
- NASA Headquarters, Mars Sample Return Program, Washington, DC, USA
| | - Carl B Agee
- University of New Mexico, Institute of Meteoritics, Albuquerque, New Mexico, USA
| | - Henner Busemann
- ETH Zürich, Institute of Geochemistry and Petrology, Zürich, Switzerland
| | - Barbara Cavalazzi
- Università di Bologna, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Bologna, Italy
| | - Charles S Cockell
- University of Edinburgh, Centre for Astrobiology, School of Physics and Astronomy, Edinburgh, UK
| | | | - Daniel P Glavin
- NASA Goddard Space Flight Center, Solar System Exploration Division, Greenbelt, Maryland, USA
| | | | - Ernst Hauber
- German Aerospace Center (DLR), Institute of Planetary Research, Berlin, Germany
| | | | - Francis M McCubbin
- NASA Johnson Space Center, Astromaterials Research and Exploration Science Division, Houston, Texas, USA
| | - Lisa M Pratt
- Indiana University Bloomington, Earth and Atmospheric Sciences, Bloomington, Indiana, USA
| | - Aaron B Regberg
- NASA Johnson Space Center, Astromaterials Research and Exploration Science Division, Houston, Texas, USA
| | - Caroline L Smith
- Natural History Museum, Department of Earth Sciences, London, UK
- University of Glasgow, School of Geographical and Earth Sciences, Glasgow, UK
| | - Roger E Summons
- Massachusetts Institute of Technology, Earth, Atmospheric and Planetary Sciences, Cambridge, Massachusetts, USA
| | - Timothy D Swindle
- University of Arizona, Lunar and Planetary Laboratory, Tucson, Arizona, USA
| | - Kimberly T Tait
- Royal Ontario Museum, Department of Natural History, Toronto, Ontario, Canada
| | - Nicholas J Tosca
- University of Cambridge, Department of Earth Sciences, Cambridge, UK
| | - Arya Udry
- University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Tomohiro Usui
- Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Chofu, Tokyo, Japan
| | - Michael A Velbel
- Michigan State University, Earth and Environmental Sciences, East Lansing, Michigan, USA
- Smithsonian Institution, Department of Mineral Sciences, National Museum of Natural History, Washington, DC, USA
| | - Meenakshi Wadhwa
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Arizona State University, Tempe, Arizona, USA
| | - Frances Westall
- Centre National de la Recherche Scientifique (CNRS), Centre de Biophysique Moléculaire, Orléans, France
| | - Maria-Paz Zorzano
- Centro de Astrobiologia (CSIC-INTA), Torrejon de Ardoz, Spain
- University of Aberdeen, Department of Planetary Sciences, School of Geosciences, King's College, Aberdeen, UK
| |
Collapse
|
6
|
Meyer MA, Kminek G, Beaty DW, Carrier BL, Haltigin T, Hays LE, Agree CB, Busemann H, Cavalazzi B, Cockell CS, Debaille V, Glavin DP, Grady MM, Hauber E, Hutzler A, Marty B, McCubbin FM, Pratt LM, Regberg AB, Smith AL, Smith CL, Summons RE, Swindle TD, Tait KT, Tosca NJ, Udry A, Usui T, Velbel MA, Wadhwa M, Westall F, Zorzano MP. Final Report of the Mars Sample Return Science Planning Group 2 (MSPG2). ASTROBIOLOGY 2022; 22:S5-S26. [PMID: 34904888 DOI: 10.1089/ast.2021.0121] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The Mars Sample Return (MSR) Campaign must meet a series of scientific and technical achievements to be successful. While the respective engineering responsibilities to retrieve the samples have been formalized through a Memorandum of Understanding between ESA and NASA, the roles and responsibilities of the scientific elements have yet to be fully defined. In April 2020, ESA and NASA jointly chartered the MSR Science Planning Group 2 (MSPG2) to build upon previous planning efforts in defining 1) an end-to-end MSR Science Program and 2) needed functionalities and design requirements for an MSR Sample Receiving Facility (SRF). The challenges for the first samples brought from another planet include not only maintaining and providing samples in pristine condition for study, but also maintaining biological containment until the samples meet sample safety criteria for distribution outside of biocontainment. The MSPG2 produced six reports outlining 66 findings. Abbreviated versions of the five additional high-level MSPG2 summary findings are: Summary-1. A long-term NASA/ESA MSR Science Program, along with the necessary funding and human resources, will be required to accomplish the end-to-end scientific objectives of MSR. Summary-2. MSR curation would need to be done concurrently with Biosafety Level-4 containment. This would lead to complex first-of-a-kind curation implementations and require further technology development. Summary-3. Most aspects of MSR sample science could, and should, be performed on samples deemed safe in laboratories outside of the SRF. However, other aspects of MSR sample science are both time-sensitive and sterilization-sensitive and would need to be carried out in the SRF. Summary-4. To meet the unique science, curation, and planetary protection needs of MSR, substantial analytical and sample management capabilities would be required in an SRF. Summary-5. Because of the long lead-time for SRF design, construction, and certification, it is important that preparations begin immediately, even if there is delay in the return of samples.
Collapse
Affiliation(s)
- Michael A Meyer
- NASA Headquarters, Mars Sample Return Program, Washington, DC, USA
| | | | - David W Beaty
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Brandi L Carrier
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | - Lindsay E Hays
- NASA Headquarters, Mars Sample Return Program, Washington, DC, USA
| | - Carl B Agree
- University of New Mexico, Institute of Meteoritics, Albuquerque, New Mexico, USA
| | - Henner Busemann
- ETH Zürich, Institute of Geochemistry and Petrology, Zürich, Switzerland
| | - Barbara Cavalazzi
- Università di Bologna, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Bologna, Italy
| | - Charles S Cockell
- University of Edinburgh, Centre for Astrobiology, School of Physics and Astronomy, Edinburgh, UK
| | | | - Daniel P Glavin
- NASA Goddard Space Flight Center, Solar System Exploration Division, Greenbelt, Maryland, USA
| | | | - Ernst Hauber
- German Aerospace Center (DLR), Institute of Planetary Research, Berlin, Germany
| | | | | | - Francis M McCubbin
- NASA Johnson Space Center, Astromaterials Research and Exploration Science Division, Houston, Texas, USA
| | - Lisa M Pratt
- Indiana University Bloomington, Earth and Atmospheric Sciences, Bloomington, Indiana, USA
| | - Aaron B Regberg
- NASA Johnson Space Center, Astromaterials Research and Exploration Science Division, Houston, Texas, USA
| | - Alvin L Smith
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Caroline L Smith
- Natural History Museum, Department of Earth Sciences, London, UK
- University of Glasgow, School of Geographical and Earth Sciences, Glasgow, UK
| | - Roger E Summons
- Massachusetts Institute of Technology, Earth, Atmospheric and Planetary Sciences, Cambridge, Massachusetts, USA
| | - Timothy D Swindle
- University of Arizona, Lunar and Planetary Laboratory, Tucson, Arizona, USA
| | - Kimberly T Tait
- Royal Ontario Museum, Natural History, Toronto, Ontario, Canada
| | - Nicholas J Tosca
- University of Cambridge, Department of Earth Sciences, Cambridge, UK
| | - Arya Udry
- University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Tomohiro Usui
- Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Chofu, Tokyo, Japan
| | - Michael A Velbel
- Michigan State University, Earth and Environmental Sciences, East Lansing, Michigan, USA
- Smithsonian Institution, Department of Mineral Sciences, National Museum of Natural History, Washington, DC, USA
| | - Meenakshi Wadhwa
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Arizona State University, Tempe, Arizona, USA
| | - Frances Westall
- Centre National de la Recherche Scientifique (CNRS), Centre de Biophysique Moléculaire, Orléans, France
| | - Maria-Paz Zorzano
- Centro de Astrobiologia (CSIC-INTA), Torrejon de Ardoz, Spain
- University of Aberdeen, Department of Planetary Sciences, School of Geosciences, King's College, Aberdeen, UK
| |
Collapse
|