1
|
Boutroux M, Chiarelli A, Ferrari ML, Chesneau O, Clermont D, Betsou F. A Ranking Tool for "Category Killer" Microbial Biobanks. Biopreserv Biobank 2024. [PMID: 38923919 DOI: 10.1089/bio.2024.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024] Open
Abstract
Microbial biobanks preserve and provide microbial bioresources for research, training, and quality control purposes. They ensure the conservation of biodiversity, contribute to taxonomical research, and support scientific advancements. Microbial biobanks can cover a wide range of phylogenetic and metabolic diversity ("category killers") or focus on specific taxonomic, thematic, or disease areas. The strategic decisions about strain selection for certain applications or for the biobank culling necessitate a method to support prioritization and selection. Here, we propose an unbiased scoring approach based on objective parameters to assess, categorize, and assign priorities among samples in stock in a microbial biobank. We describe the concept of this ranking tool and its application to identify high-priority strains for whole genome sequencing with two main goals: (i) genomic characterization of quality control, reference, and type strains; (ii) genome mining for the discovery of natural products, bioactive and antimicrobial molecules, with focus on human diseases. The general concept of the tool can be useful to any biobank and for any ranking or culling needs.
Collapse
Affiliation(s)
- Martin Boutroux
- Institut Pasteur, Université Paris Cité, Biological Resource Center of Institut Pasteur - Project Management Office, Paris, France
| | - Adriana Chiarelli
- Institut Pasteur, Université Paris Cité, Biological Resource Center of Institut Pasteur - Project Management Office, Paris, France
| | - Mariana L Ferrari
- Institut Pasteur, Université Paris Cité, Biological Resource Center of Institut Pasteur - Project Management Office, Paris, France
| | - Olivier Chesneau
- Institut Pasteur, Université Paris Cité, Biological Resource Center of Institut Pasteur - Collection de l'Institut Pasteur, Paris, France
| | - Dominique Clermont
- Institut Pasteur, Université Paris Cité, Biological Resource Center of Institut Pasteur - Collection de l'Institut Pasteur, Paris, France
| | - Fay Betsou
- Institut Pasteur, Université Paris Cité, Biological Resource Center of Institut Pasteur - Project Management Office, Paris, France
| |
Collapse
|
2
|
Philp J. Bioeconomy and net-zero carbon: lessons from Trends in Biotechnology, volume 1, issue 1. Trends Biotechnol 2023; 41:307-322. [PMID: 36272819 DOI: 10.1016/j.tibtech.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/15/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022]
Abstract
Many biotechnology applications tend to be for low production volumes and relatively high-value products such as insulin and vaccines. More difficult to perfect at scale are bioprocesses for high-volume products with lower value, especially if the target product is a reduced chemical such as a solvent or a plastic. Historically, industrial microbiology succeeded under special circumstances when fossil feedstocks were either unavailable or expensive. Inevitably, as these circumstances relaxed, bioprocesses struggled to compete with petrochemistry. Why try to compete? Fossil resources will be phased out in the coming decades in the struggle with climate change. To reach net-zero carbon by 2050 will require all sectors to transition, not only energy and transportation. This may herald a new opportunity for industrial bioprocesses with much better tools.
Collapse
Affiliation(s)
- Jim Philp
- Organization for Economic Cooperation and Development (OECD), Paris, France.
| |
Collapse
|
3
|
Dagher G. Quality matters: International standards for biobanking. Cell Prolif 2022; 55:e13282. [PMID: 35709534 PMCID: PMC9357355 DOI: 10.1111/cpr.13282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/19/2022] [Accepted: 04/10/2022] [Indexed: 11/29/2022] Open
Abstract
Human biospecimens provide the basis for research, leading to a better understanding of human disease biology and discovery of new treatments that are tailored to individual patients with cancer or other common complex diseases. The collection, processing, preservation, storage and providing access to these resources are key activities of biobanks. Biobanks must ensure proper quality of samples and data, ethical and legal compliance as well as transparent and efficient access procedures. The standards for biobanking outlined herein are intended to be implemented in biobanks and to supply researchers with high‐quality samples fitted for an intended use.
Collapse
Affiliation(s)
- Georges Dagher
- INSERM, Paris, France.,Stem Cell Lab, Chinese Academy of Sciences, Beijing, China.,Graz Medical University, Graz, Austria.,Milano-Bicocca University, Milan, Italy
| |
Collapse
|
4
|
Park JM, Hong JW, Lee W, Lee BH, You YH. Geographical Isolation and Root-Associated Fungi in the Marine Terrains: A Step Toward Establishing a Strategy for Acquiring Unique Microbial Resources. MYCOBIOLOGY 2021; 49:235-248. [PMID: 36999089 PMCID: PMC10049744 DOI: 10.1080/12298093.2021.1913826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/09/2021] [Accepted: 04/03/2021] [Indexed: 06/14/2023]
Abstract
This study aimed to understand whether the geo-ecological segregation of native plant species affects the root-associated fungal community. Rhizoplane (RP) and rhizosphere (RS) fungal microbiota of Sedum takesimense native to three geographically segregated coastal regions (volcanic ocean islands) were analyzed using culture-independent methods: 568,507 quality sequences, 1399 operational taxonomic units, five phyla, and 181 genera were obtained. Across all regions, significant differences in the phyla distribution and ratio were confirmed. The Chao's richness value was greater for RS than for RP, and this variance coincided with the number of genera. In contrast, the dominance of specific genera in the RS (Simpson value) was lower than the RP at all sites. The taxonomic identity of most fungal species (95%) closely interacting with the common host plant was different. Meanwhile, a considerable number of RP only residing fungal genera were thought to have close interdependency on their host halophyte. Among these, Metarhizium was the sole genus common to all sites. These suggest that the relationship between potential symbiotic fungi and their host halophyte species evolved with a regional dependency, in the same halophyte species, and of the same natural habitat (volcanic islands); further, the fungal community differenced in distinct geographical regions. Importantly, geographical segregation should be accounted for in national culture collections, based on taxonomical uniqueness.
Collapse
Affiliation(s)
- Jong Myong Park
- Water Quality Research Institute, Waterworks Headquarters Incheon Metropolitan City, Incheon, Republic of Korea
- Incheon Metropolitan City Institute of Public Health and Environment, Incheon, Republic of Korea
| | - Ji Won Hong
- Department of Hydrogen and Renewable Energy, Kyungpook National University, Daegu, Republic of Korea
| | - Woong Lee
- Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, Daegu, Republic of Korea
| | - Byoung-Hee Lee
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Young-Hyun You
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, Republic of Korea
| |
Collapse
|
5
|
Shaw C, Brooke C, Hawley E, Connolly MP, Garcia JA, Harmon-Smith M, Shapiro N, Barton M, Tringe SG, Glavina del Rio T, Culley DE, Castenholz R, Hess M. Phototrophic Co-cultures From Extreme Environments: Community Structure and Potential Value for Fundamental and Applied Research. Front Microbiol 2020; 11:572131. [PMID: 33240229 PMCID: PMC7677454 DOI: 10.3389/fmicb.2020.572131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/13/2020] [Indexed: 11/25/2022] Open
Abstract
Cyanobacteria are found in most illuminated environments and are key players in global carbon and nitrogen cycling. Although significant efforts have been made to advance our understanding of this important phylum, still little is known about how members of the cyanobacteria affect and respond to changes in complex biological systems. This lack of knowledge is in part due to our dependence on pure cultures when determining the metabolism and function of a microorganism. We took advantage of the Culture Collection of Microorganisms from Extreme Environments (CCMEE), a collection of more than 1,000 publicly available photosynthetic co-cultures maintained at the Pacific Northwest National Laboratory, and assessed via 16S rRNA amplicon sequencing if samples readily available from public culture collection could be used in the future to generate new insights into the role of microbial communities in global and local carbon and nitrogen cycling. Results from this work support the existing notion that culture depositories in general hold the potential to advance fundamental and applied research. Although it remains to be seen if co-cultures can be used at large scale to infer roles of individual organisms, samples that are publicly available from existing co-cultures depositories, such as the CCMEE, might be an economical starting point for such studies. Access to archived biological samples, without the need for costly field work, might in some circumstances be one of the few remaining ways to advance the field and to generate new insights into the biology of ecosystems that are not easily accessible. The current COVID-19 pandemic, which makes sampling expeditions almost impossible without putting the health of the participating scientists on the line, is a very timely example.
Collapse
Affiliation(s)
- Claire Shaw
- Systems Microbiology and Natural Products Laboratory, University of California, Davis, Davis, CA, United States
| | - Charles Brooke
- Systems Microbiology and Natural Products Laboratory, University of California, Davis, Davis, CA, United States
| | | | - Morgan P. Connolly
- Microbiology Graduate Group, University of California, Davis, Davis, CA, United States
| | - Javier A. Garcia
- Biochemistry, Molecular, Cellular, and Developmental Biology Graduate Group, University of California, Davis, Davis, CA, United States
| | | | - Nicole Shapiro
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Michael Barton
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Susannah G. Tringe
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | | | | | | | - Matthias Hess
- Systems Microbiology and Natural Products Laboratory, University of California, Davis, Davis, CA, United States
| |
Collapse
|
6
|
Park JM, Hong JW, Lee W, Lee BH, You YH. Fungal Clusters and Their Uniqueness in Geographically Segregated Wetlands: A Step Forward to Marsh Conservation for a Wealth of Future Fungal Resources. MYCOBIOLOGY 2020; 48:351-363. [PMID: 33177915 PMCID: PMC7580721 DOI: 10.1080/12298093.2020.1796413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Here, we investigated fungal microbiota in the understory root layer of representative well-conserved geographically segregated natural wetlands in the Korean Peninsula. We obtained 574,143 quality fungal sequences in total from soil samples in three wetlands, which were classified into 563 operational taxonomic units (OTU), 5 phyla, 84 genera. Soil texture, total nitrogen, organic carbon, pH, and electrical conductivity of soil were variable between geographical sites. We found significant differences in fungal phyla distribution and ratio, as well as genera variation and richness between the wetlands. Diversity was greater in the Jangdo islands wetland than in the other sites (Chao richness/Shannon/Simpson's for wetland of the Jangdo islands: 283/6.45/0.97 > wetland of the Mt. Gariwang primeval forest: 169/1.17/0.22 > wetland of the Hanbando geology: 145/4.85/0.91), and this variance corresponded to the confirmed number of fungal genera or OTUs (wetlands of Jangdo islands: 42/283 > of Mt. Gariwang primeval forest: 32/169 > of the Hanbando geology: 25/145). To assess the uniqueness of the understory root layer fungus taxa, we analyzed fungal genera distribution. We found that the percentage of fungal genera common to two or three wetland sites was relatively low at 32.3%, while fungal genera unique to each wetland site was 67.7% of the total number of identified fungal species. The Jangdo island wetland had higher fungal diversity than did the other sites and showed the highest level of uniqueness among fungal genera (Is. Jangdo wetland: 34.5% > wetland of Mt. Gariwang primeval forest: 28.6% > wetland of the Hanbando geology: 16.7%).
Collapse
Affiliation(s)
- Jong Myong Park
- Water Quality Research Institute, Waterworks Headquarters Incheon Metropolitan City, Incheon, Republic of Korea
| | - Ji Won Hong
- Department of Hydrogen and Renewable Energy, Kyungpook National University, Daegu, Republic of Korea
| | - Woong Lee
- Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, Daegu, Republic of Korea
| | - Byoung-Hee Lee
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Young-Hyun You
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, Republic of Korea
- CONTACT Young-Hyun You
| |
Collapse
|
7
|
Abstract
Significant advancements in biotechnology have resulted in the development of numerous fundamental bioprocesses, which have consolidated research and development and industrial progress in the field. These bioprocesses are used in medical therapies, diagnostic and immunization procedures, agriculture, food production, biofuel production, and environmental solutions (to address water-, soil-, and air-related problems), among other areas. The present study is a first approach toward the identification of scientific and technological bioprocess trajectories within the framework of sustainability. The method included a literature search (Scopus), a patent search (Patentscope), and a network analysis for the period from 2010 to 2019. Our results highlight the main technological sectors, countries, institutions, and academic publications that carry out work or publish literature related to sustainability and bioprocesses. The network analysis allowed for the identification of thematic clusters associated with sustainability and bioprocesses, revealing different related scientific topics. Our conclusions confirm that biotechnology is firmly positioned as an emerging knowledge area. Its dynamics, development, and outcomes during the study period reflect a substantial number of studies and technologies focused on the creation of knowledge aimed at improving economic development, environmental protection, and social welfare.
Collapse
|
8
|
Yaguchi A, Franaszek N, O'Neill K, Lee S, Sitepu I, Boundy-Mills K, Blenner M. Identification of oleaginous yeasts that metabolize aromatic compounds. J Ind Microbiol Biotechnol 2020; 47:801-813. [PMID: 32221720 DOI: 10.1007/s10295-020-02269-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/29/2020] [Indexed: 01/02/2023]
Abstract
The valorization of lignin is critical for the economic viability of the bioeconomy. Microbial metabolism is advantageous for handling the myriad of aromatic compounds resulting from lignin chemical or enzymatic depolymerization. Coupling aromatic metabolism to fatty acid biosynthesis makes possible the production of biofuels, oleochemicals, and other fine/bulk chemicals derived from lignin. Our previous work identified Cutaneotrichosporon oleaginosus as a yeast that could accumulate nearly 70% of its dry cell weight as lipids using aromatics as a sole carbon source. Expanding on this, other oleaginous yeast species were investigated for the metabolism of lignin-relevant monoaromatics. Thirty-six oleaginous yeast species from the Phaff yeast collection were screened for growth on several aromatic compounds representing S-, G-, and H- type lignin. The analysis reported in this study suggests that aromatic metabolism is largely segregated to the Cutaenotrichosporon, Trichosporon, and Rhodotorula clades. Each species tested within each clade has different properties with respect to the aromatics metabolized and the concentrations of aromatics tolerated. The combined analysis suggests that Cutaneotrichosporon yeast are the best suited to broad spectrum aromatic metabolism and support its development as a model system for aromatic metabolism in yeast.
Collapse
Affiliation(s)
- Allison Yaguchi
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd, Clemson, SC, 29634, USA
| | - Nicole Franaszek
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd, Clemson, SC, 29634, USA
| | - Kaelyn O'Neill
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd, Clemson, SC, 29634, USA
| | - Stephen Lee
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd, Clemson, SC, 29634, USA
| | - Irnayuli Sitepu
- Phaff Yeast Culture Collection, Food Science and Technology, University of California Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Kyria Boundy-Mills
- Phaff Yeast Culture Collection, Food Science and Technology, University of California Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Mark Blenner
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd, Clemson, SC, 29634, USA.
| |
Collapse
|
9
|
De Vero L, Boniotti MB, Budroni M, Buzzini P, Cassanelli S, Comunian R, Gullo M, Logrieco AF, Mannazzu I, Musumeci R, Perugini I, Perrone G, Pulvirenti A, Romano P, Turchetti B, Varese GC. Preservation, Characterization and Exploitation of Microbial Biodiversity: The Perspective of the Italian Network of Culture Collections. Microorganisms 2019; 7:microorganisms7120685. [PMID: 31842279 PMCID: PMC6956255 DOI: 10.3390/microorganisms7120685] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023] Open
Abstract
Microorganisms represent most of the biodiversity of living organisms in every ecological habitat. They have profound effects on the functioning of any ecosystem, and therefore on the health of our planet and of human beings. Moreover, microorganisms are the main protagonists in food, medical and biotech industries, and have several environmental applications. Accordingly, the characterization and preservation of microbial biodiversity are essential not only for the maintenance of natural ecosystems but also for research purposes and biotechnological exploitation. In this context, culture collections (CCs) and microbial biological resource centres (mBRCs) are crucial for the safeguarding and circulation of biological resources, as well as for the progress of life sciences. This review deals with the expertise and services of CCs, in particular concerning preservation and characterization of microbial resources, by pointing to the advanced approaches applied to investigate a huge reservoir of microorganisms. Data sharing and web services as well as the tight interconnection between CCs and the biotechnological industry are highlighted. In addition, guidelines and regulations related to quality management systems (QMSs), biosafety and biosecurity issues are discussed according to the perspectives of CCs and mBRCs.
Collapse
Affiliation(s)
- Luciana De Vero
- Unimore Microbial Culture Collection, Department of Life Sciences, University of Modena and Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy; (S.C.); (M.G.); (A.P.)
- Correspondence: ; Tel.: +39-0522-522-057
| | - Maria Beatrice Boniotti
- Biobank of Veterinary Resources, Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, via Bianchi 9, 25124 Brescia, Italy;
| | - Marilena Budroni
- Department of Agricultural Science, University of Sassari, viale Italia 39, 07100 Sassari, Italy; (M.B.); (I.M.)
| | - Pietro Buzzini
- Department of Agriculture, Food and Environmental Science, University of Perugia, borgo XX Giugno, 74, I-06121 Perugia, Italy; (P.B.); (B.T.)
| | - Stefano Cassanelli
- Unimore Microbial Culture Collection, Department of Life Sciences, University of Modena and Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy; (S.C.); (M.G.); (A.P.)
| | - Roberta Comunian
- Agris Sardegna, Agenzia regionale per la ricerca in agricoltura, Loc. Bonassai, km 18.600 SS291, 07100 Sassari, Italy;
| | - Maria Gullo
- Unimore Microbial Culture Collection, Department of Life Sciences, University of Modena and Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy; (S.C.); (M.G.); (A.P.)
| | - Antonio F. Logrieco
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy; (A.F.L.); (G.P.)
| | - Ilaria Mannazzu
- Department of Agricultural Science, University of Sassari, viale Italia 39, 07100 Sassari, Italy; (M.B.); (I.M.)
| | - Rosario Musumeci
- MicroMiB Culture Collection, Department of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy;
| | - Iolanda Perugini
- Department of Life Sciences and Systems Biology, University of Turin, viale Mattioli, 25, 10125 Torino, Italy; (I.P.); (G.C.V.)
| | - Giancarlo Perrone
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy; (A.F.L.); (G.P.)
| | - Andrea Pulvirenti
- Unimore Microbial Culture Collection, Department of Life Sciences, University of Modena and Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy; (S.C.); (M.G.); (A.P.)
| | - Paolo Romano
- Mass Spectrometry and Proteomics, Scientific Direction, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy;
| | - Benedetta Turchetti
- Department of Agriculture, Food and Environmental Science, University of Perugia, borgo XX Giugno, 74, I-06121 Perugia, Italy; (P.B.); (B.T.)
| | - Giovanna Cristina Varese
- Department of Life Sciences and Systems Biology, University of Turin, viale Mattioli, 25, 10125 Torino, Italy; (I.P.); (G.C.V.)
| |
Collapse
|
10
|
Becker P, Bosschaerts M, Chaerle P, Daniel HM, Hellemans A, Olbrechts A, Rigouts L, Wilmotte A, Hendrickx M. Public Microbial Resource Centers: Key Hubs for Findable, Accessible, Interoperable, and Reusable (FAIR) Microorganisms and Genetic Materials. Appl Environ Microbiol 2019; 85:e01444-19. [PMID: 31471301 PMCID: PMC6803313 DOI: 10.1128/aem.01444-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In the context of open science, the availability of research materials is essential for knowledge accumulation and to maximize the impact of scientific research. In microbiology, microbial domain biological resource centers (mBRCs) have long-standing experience in preserving and distributing authenticated microbial strains and genetic materials (e.g., recombinant plasmids and DNA libraries) to support new discoveries and follow-on studies. These culture collections play a central role in the conservation of microbial biodiversity and have expertise in cultivation, characterization, and taxonomy of microorganisms. Information associated with preserved biological resources is recorded in databases and is accessible through online catalogues. Legal expertise developed by mBRCs guarantees end users the traceability and legality of the acquired material, notably with respect to the Nagoya Protocol. However, awareness of the advantages of depositing biological materials in professional repositories remains low, and the necessity of securing strains and genetic resources for future research must be emphasized. This review describes the unique position of mBRCs in microbiology and molecular biology through their history, evolving roles, expertise, services, challenges, and international collaborations. It also calls for an increased deposit of strains and genetic resources, a responsibility shared by scientists, funding agencies, and publishers. Journal policies requesting a deposit during submission of a manuscript represent one of the measures to make more biological materials available to the broader community, hence fully releasing their potential and improving openness and reproducibility in scientific research.
Collapse
Affiliation(s)
- P Becker
- BCCM/IHEM Fungi Collection, Mycology and Aerobiology, Sciensano, Brussels, Belgium
| | - M Bosschaerts
- BCCM Coordination Cell, Belgian Science Policy, Brussels, Belgium
| | - P Chaerle
- BCCM/DCG Diatoms Collection, Ghent University, Ghent, Belgium
| | - H-M Daniel
- BCCM/MUCL, Mycothèque de l'Université Catholique de Louvain, Earth and Life Institute, Mycology Laboratory, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - A Hellemans
- BCCM/LMG Bacteria Collection, Laboratory of Microbiology, Faculty of Science, Ghent University, Ghent, Belgium
| | - A Olbrechts
- BCCM/GeneCorner Plasmid Collection, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - L Rigouts
- BCCM/ITM Mycobacteria Collection, Institute of Tropical Medicine, Antwerp, Belgium
| | - A Wilmotte
- BCCM/ULC Cyanobacteria Collection, InBios-Centre for Protein Engineering, Université de Liège, Liège, Belgium
| | - M Hendrickx
- BCCM/IHEM Fungi Collection, Mycology and Aerobiology, Sciensano, Brussels, Belgium
| |
Collapse
|
11
|
Kongsholm NCH, Christensen ST, Hermann JR, Larsen LA, Minssen T, Pedersen LB, Rajam N, Tommerup N, Tupasela A, Schovsbo J. Challenges for the Sustainability of University-Run Biobanks. Biopreserv Biobank 2018; 16:312-321. [DOI: 10.1089/bio.2018.0054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
| | - Søren Tvorup Christensen
- Section of Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Janne Rothmar Hermann
- Center for Advanced Studies in Biomedical Innovation Law (CeBIL), University of Copenhagen, Copenhagen, Denmark
| | - Lars Allan Larsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Timo Minssen
- Center for Advanced Studies in Biomedical Innovation Law (CeBIL), University of Copenhagen, Copenhagen, Denmark
| | - Lotte Bang Pedersen
- Section of Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Neethu Rajam
- Center for Information and Innovation Law (CIIR), University of Copenhagen, Copenhagen, Denmark
| | - Niels Tommerup
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Aaro Tupasela
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Schovsbo
- Center for Information and Innovation Law (CIIR), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
McCluskey K, Barker KB, Barton HA, Boundy-Mills K, Brown DR, Coddington JA, Cook K, Desmeth P, Geiser D, Glaeser JA, Greene S, Kang S, Lomas MW, Melcher U, Miller SE, Nobles DR, Owens KJ, Reichman JH, da Silva M, Wertz J, Whitworth C, Smith D. The U.S. Culture Collection Network Responding to the Requirements of the Nagoya Protocol on Access and Benefit Sharing. mBio 2017; 8:e00982-17. [PMID: 28811341 PMCID: PMC5559631 DOI: 10.1128/mbio.00982-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The U.S. Culture Collection Network held a meeting to share information about how culture collections are responding to the requirements of the recently enacted Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of Benefits Arising from their Utilization to the Convention on Biological Diversity (CBD). The meeting included representatives of many culture collections and other biological collections, the U.S. Department of State, U.S. Department of Agriculture, Secretariat of the CBD, interested scientific societies, and collection groups, including Scientific Collections International and the Global Genome Biodiversity Network. The participants learned about the policies of the United States and other countries regarding access to genetic resources, the definition of genetic resources, and the status of historical materials and genetic sequence information. Key topics included what constitutes access and how the CBD Access and Benefit-Sharing Clearing-House can help guide researchers through the process of obtaining Prior Informed Consent on Mutually Agreed Terms. U.S. scientists and their international collaborators are required to follow the regulations of other countries when working with microbes originally isolated outside the United States, and the local regulations required by the Nagoya Protocol vary by the country of origin of the genetic resource. Managers of diverse living collections in the United States described their holdings and their efforts to provide access to genetic resources. This meeting laid the foundation for cooperation in establishing a set of standard operating procedures for U.S. and international culture collections in response to the Nagoya Protocol.
Collapse
Affiliation(s)
- Kevin McCluskey
- Fungal Genetic Stock Center, Department of Plant Pathology, Kansas State University, Manhattan, Kansas, USA
| | - Katharine B Barker
- National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Hazel A Barton
- Department of Biology, University of Akron, Akron, Ohio, USA
| | - Kyria Boundy-Mills
- Phaff Yeast Culture Collection, Food Science, University of California, Davis, Davis, California, USA
| | - Daniel R Brown
- Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Jonathan A Coddington
- Global Genome Initiative, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Kevin Cook
- Bloomington Drosophila Stock Center, Department of Biology, Indiana University, Bloomington, Indiana, USA
| | | | - David Geiser
- The Fusarium Research Center, Penn State University, State College, Pennsylvania, USA
| | - Jessie A Glaeser
- U.S. Forest Service, Northern Research Station, Center for Forest Mycology Research, Madison, Wisconsin, USA
| | - Stephanie Greene
- USDA National Laboratory for Genetic Resources Preservation, Fort Collins, Colorado, USA
| | - Seogchan Kang
- Penn State University, State College, Pennsylvania, USA
| | - Michael W Lomas
- National Center for Marine Algae and Microbiota, East Boothbay Harbor, Maine, USA
| | | | | | | | | | | | | | - John Wertz
- E. coli Stock Center, Yale University, New Haven, Connecticut, USA
| | - Cale Whitworth
- Bloomington Drosophila Stock Center, Department of Biology, Indiana University Bloomington, Indiana, USA
| | | |
Collapse
|
13
|
McCluskey K, Boundy-Mills K, Dye G, Ehmke E, Gunnell GF, Kiaris H, Polihronakis Richmond M, Yoder AD, Zeigler DR, Zehr S, Grotewold E. The challenges faced by living stock collections in the USA. eLife 2017; 6. [PMID: 28266913 PMCID: PMC5376150 DOI: 10.7554/elife.24611] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/06/2017] [Indexed: 12/16/2022] Open
Abstract
Many discoveries in the life sciences have been made using material from living stock collections. These collections provide a uniform and stable supply of living organisms and related materials that enhance the reproducibility of research and minimize the need for repetitive calibration. While collections differ in many ways, they all require expertise in maintaining living organisms and good logistical systems for keeping track of stocks and fulfilling requests for specimens. Here, we review some of the contributions made by living stock collections to research across all branches of the tree of life, and outline the challenges they face. DOI:http://dx.doi.org/10.7554/eLife.24611.001
Collapse
Affiliation(s)
- Kevin McCluskey
- Department of Plant Pathology, Fungal Genetics Stock Center, Kansas State University, Manhattan, United States
| | - Kyria Boundy-Mills
- Phaff Yeast Culture Collection, Food Science and Technology, University of California, Davis, Davis, United States
| | - Greg Dye
- Duke Lemur Center, Duke University, Durham, United States
| | - Erin Ehmke
- Duke Lemur Center, Duke University, Durham, United States
| | | | - Hippokratis Kiaris
- Department of Drug Discovery and Biomedical Sciences and Peromyscus Genetic Stock Center, University of South Carolina, Columbia, United States
| | | | - Anne D Yoder
- Duke Lemur Center, Duke University, Durham, United States
| | - Daniel R Zeigler
- Bacillus Genetics Stock Center, The Ohio State University, Columbus, United States
| | - Sarah Zehr
- Duke Lemur Center, Duke University, Durham, United States
| | - Erich Grotewold
- Arabidopsis Biological Resource Center, The Ohio State University, Columbus, United States
| |
Collapse
|