1
|
Marin-Marin L, Miró-Padilla A, Costumero V. Structural But Not Functional Connectivity Differences within Default Mode Network Indicate Conversion to Dementia. J Alzheimers Dis 2023; 91:1483-1494. [PMID: 36641666 DOI: 10.3233/jad-220603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Malfunctioning of the default mode network (DMN) has been consistently related to mild cognitive impairment (MCI) and Alzheimer's disease (AD). However, evidence on differences in this network between MCI converters (MCI-c) and non-converters (MCI-nc), which could mark progression to AD, is still inconsistent. OBJECTIVE To multimodally investigate the DMN in the AD continuum. METHODS We measured gray matter (GM) volume, white matter (WM) integrity, and functional connectivity (FC) at rest in healthy elderly controls, MCI-c, MCI-nc, and AD patients, matched on sociodemographic variables. RESULTS Significant differences between AD patients and controls were found in the structure of most of the regions of the DMN. MCI-c only differed from MCI-nc in GM volume of the left parahippocampus and bilateral hippocampi and middle frontal gyri, as well as in WM integrity of the parahippocampal cingulum connecting the left hippocampus and precuneus. We found significant correlations between integrity in some of those regions and global neuropsychological status, as well as an excellent discrimination ability between converters and non-converters for the sum of GM volume of left parahippocampus, bilateral hippocampi, and middle frontal gyri, and WM integrity of left parahippocampal cingulum. However, we found no significant differences in FC. CONCLUSION These results further support the relationship between abnormalities in the DMN and AD, and suggest that structural measures could be more accurate than resting-state estimates as markers of conversion from MCI to AD.
Collapse
Affiliation(s)
- Lidón Marin-Marin
- Neuropsychology and Functional Neuroimaging Group, Department of Basic and Clinical Psychology and Psychobiology, University Jaume I, Castelló, Spain
| | - Anna Miró-Padilla
- Neuropsychology and Functional Neuroimaging Group, Department of Basic and Clinical Psychology and Psychobiology, University Jaume I, Castelló, Spain
| | - Víctor Costumero
- Neuropsychology and Functional Neuroimaging Group, Department of Basic and Clinical Psychology and Psychobiology, University Jaume I, Castelló, Spain
| |
Collapse
|
2
|
Stone DB, Ryman SG, Hartman AP, Wertz CJ, Vakhtin AA. Specific White Matter Tracts and Diffusion Properties Predict Conversion From Mild Cognitive Impairment to Alzheimer's Disease. Front Aging Neurosci 2021; 13:711579. [PMID: 34366830 PMCID: PMC8343075 DOI: 10.3389/fnagi.2021.711579] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/28/2021] [Indexed: 11/24/2022] Open
Abstract
Identifying biomarkers that can assess the risk of developing Alzheimer's Disease (AD) remains a significant challenge. In this study, we investigated the integrity levels of brain white matter in 34 patients with mild cognitive impairment (MCI) who later converted to AD and 53 stable MCI patients. We used diffusion tensor imaging (DTI) and automated fiber quantification to obtain the diffusion properties of 20 major white matter tracts. To identify which tracts and diffusion measures are most relevant to AD conversion, we used support vector machines (SVMs) to classify the AD conversion and non-conversion MCI patients based on the diffusion properties of each tract individually. We found that diffusivity measures from seven white matter tracts were predictive of AD conversion with axial diffusivity being the most predictive diffusion measure. Additional analyses revealed that white matter changes in the central and parahippocampal terminal regions of the right cingulate hippocampal bundle, central regions of the right inferior frontal occipital fasciculus, and posterior and anterior regions of the left inferior longitudinal fasciculus were the best predictors of conversion from MCI to AD. An SVM based on these white matter tract regions achieved an accuracy of 0.75. These findings provide additional potential biomarkers of AD risk in MCI patients.
Collapse
|
3
|
Mao Y, Liao Z, Liu X, Li T, Hu J, Le D, Pei Y, Sun W, Lin J, Qiu Y, Zhu J, Chen Y, Qi C, Su H, Yu E. Disrupted balance of long and short-range functional connectivity density in Alzheimer's disease (AD) and mild cognitive impairment (MCI) patients: a resting-state fMRI study. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:65. [PMID: 33553358 PMCID: PMC7859805 DOI: 10.21037/atm-20-7019] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Background Alzheimer’s disease (AD) is an age-progressive neurodegenerative disorder that affects cognitive function. There have been several functional connectivity (FC) strengths; however, FC density needs more development in AD. Therefore, this study wanted to determine the alternations in resting-state functional connectivity density (FCD) induced by Alzheimer’s and mild cognitive impairment (MCI). Methods One hundred and eleven AD patients, 29 MCI patients, and 73 healthy controls (age- and sex-matched) were recruited and assessed using resting-state functional magnetic resonance imaging (MRI) scanning. The ultra-fast graph theory called FCD mapping was used to calculate the voxel-wise short- and long-range FCD values of the brain. We performed voxel-based between-group comparisons of FCD values to show the cerebral regions with significant FCD alterations. We performed Pearson’s correlation analyses between aberrant functional connectivity densities and several clinical variables with adjustment for age and sex. Results Patients with cognition decline showed significantly abnormal long-range FCD in the cerebellum crus I, right insula, left inferior frontal gyrus, left superior frontal gyrus, left inferior frontal gyrus, and right middle frontal gyrus. The short-range FCD changed in the cerebellum crus I, left inferior frontal gyrus, left superior occipital gyrus, and right middle frontal gyrus. The long- and short-range functional connectivity in the left inferior frontal gyrus was positively correlated with Mini-mental State Examination (MMSE) scores. Conclusions FCD in the identified regions reflects mechanism and compensation for loss of cognitive function. These findings could improve the pathology of AD and MCI and supply a neuroimaging marker for AD and MCI.
Collapse
Affiliation(s)
- Yanping Mao
- Department of Clinical Psychology, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Zhengluan Liao
- Department of Psychiatry, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xiaozheng Liu
- Department of Radiology of the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ting Li
- Medical Department, Qingdao University, Qingdao, China
| | - Jiaojiao Hu
- Department of Clinical Psychology, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Dansheng Le
- The Second school of Medical, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yangliu Pei
- Graduate Department, Bengbu Medical College, Bengbu, China
| | - Wangdi Sun
- The Second school of Medical, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jixin Lin
- Department of Internal Medicine, Shengsi County People's Hospital, Zhoushan, China
| | - Yaju Qiu
- Department of Psychiatry, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Junpeng Zhu
- Department of Psychiatry, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yan Chen
- Department of Psychiatry, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Chang Qi
- Department of Psychiatry, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Heng Su
- Department of Psychiatry, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Enyan Yu
- Department of Clinical Psychology, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
4
|
Du L, Zhao Z, Xu B, Gao W, Liu X, Chen Y, Wang Y, Liu J, Liu B, Sun S, Ma G, Gao J. Anisotropy of Anomalous Diffusion Improves the Accuracy of Differentiating and Grading Alzheimer's Disease Using Novel Fractional Motion Model. Front Aging Neurosci 2020; 12:602510. [PMID: 33328977 PMCID: PMC7710869 DOI: 10.3389/fnagi.2020.602510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/19/2020] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose: Recent evidence shows that the fractional motion (FM) model may be a more appropriate model for describing the complex diffusion process of water in brain tissue and has shown to be beneficial in clinical applications of Alzheimer's disease (AD). However, the FM model averaged the anomalous diffusion parameter values, which omitted the impacts of anisotropy. This study aimed to investigate the potential feasibility of anisotropy of anomalous diffusion using the FM model for distinguishing and grading AD patients. Methods: Twenty-four patients with AD and 11 matched healthy controls were recruited, diffusion MRI was obtained from all participants and analyzed using the FM model. Generalized fractional anisotropy (gFA), an anisotropy metric, was introduced and the gFA values of FM-related parameters, Noah exponent (α) and the Hurst exponent (H), were calculated and compared between the healthy group and AD group and between the mild AD group and moderate AD group. The receiver-operating characteristic (ROC) analysis and the multivariate logistic regression analysis were used to assess the diagnostic performances of the anisotropy values and the directionally averaged values. Results: The gFA(α) and gFA(H) values of the moderate AD group were higher than those of the mild AD group in left hippocampus. The gFA(α) value of the moderate AD group was significantly higher than that of the healthy control group in both the left and right hippocampus. The gFA(ADC) values of the moderate AD group were significantly lower than those of the mild AD group and healthy control group in the right hippocampus. Compared with the gFA(α), gFA(H), α, and H, the ROC analysis showed larger areas under the curves for combination of α + gFA(α) and the combination of H + gFA(H) in differentiating the mild AD and moderate AD groups, and larger area under the curves for combination of α + gFA(α) in differentiating the healthy controls and AD groups. Conclusion: The anisotropy of anomalous diffusion could significantly differentiate and grade patients with AD, and the diagnostic performance was improved when the anisotropy metric was combined with commonly used directionally averaged values. The utility of anisotropic anomalous diffusion may provide novel insights to profoundly understand the neuropathology of AD.
Collapse
Affiliation(s)
- Lei Du
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zifang Zhao
- Department of Anesthesiology, Peking University First Hospital, Peking University, Beijing, China
| | - Boyan Xu
- Beijing Intelligent Brain Cloud Inc., Beijing, China
| | - Wenwen Gao
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Xiuxiu Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Yue Chen
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Yige Wang
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Jian Liu
- Department of Ultrasound Diagnosis, China-Japan Friendship Hospital, Beijing, China
| | - Bing Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Shilong Sun
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiahong Gao
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,McGovern Institute for Brain Research, Peking University, Beijing, China
| |
Collapse
|
5
|
Müller T, Payton NM, Kalpouzos G, Jessen F, Grande G, Bäckman L, Laukka EJ. Cognitive, Genetic, Brain Volume, and Diffusion Tensor Imaging Markers as Early Indicators of Dementia. J Alzheimers Dis 2020; 77:1443-1453. [PMID: 32925047 PMCID: PMC7683082 DOI: 10.3233/jad-200445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Although associated with dementia and cognitive impairment, microstructural white matter integrity is a rarely used marker of preclinical dementia. OBJECTIVE We aimed to evaluate the individual and combined effects of multiple markers, with special focus on microstructural white matter integrity, in detecting individuals with increased dementia risk. METHODS A dementia-free subsample (n = 212, mean age = 71.33 years) included in the population-based Swedish National Study on Aging and Care (SNAC-K) underwent magnetic resonance imaging (T1-weighted, fluid-attenuated inversion recovery, diffusion tensor imaging), neuropsychological testing (perceptual speed, episodic memory, semantic memory, letter and category fluency), and genotyping (APOE). Incident dementia was assessed during six years of follow-up. RESULTS A global model (global cognition, APOE, total brain tissue volume: AUC = 0.920) rendered the highest predictive value for future dementia. Of the models based on specific markers, white matter integrity of the forceps major tract was included in the most predictive model, in combination with perceptual speed and hippocampal volume (AUC = 0.911). CONCLUSION Assessment of microstructural white matter integrity may improve the early detection of dementia, although the added benefit in this study was relatively small.
Collapse
Affiliation(s)
- Theresa Müller
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany
| | - Nicola M. Payton
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Grégoria Kalpouzos
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Frank Jessen
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Giulia Grande
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Lars Bäckman
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Erika J. Laukka
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
- Stockholm Gerontology Research Center, Stockholm, Sweden
| |
Collapse
|
6
|
Ferrari BL, Neto GDCC, Nucci MP, Mamani JB, Lacerda SS, Felício AC, Amaro E, Gamarra LF. The accuracy of hippocampal volumetry and glucose metabolism for the diagnosis of patients with suspected Alzheimer's disease, using automatic quantitative clinical tools. Medicine (Baltimore) 2019; 98:e17824. [PMID: 31702636 PMCID: PMC6855664 DOI: 10.1097/md.0000000000017824] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The hippocampus is one of the earliest sites involved in the pathology of Alzheimer's disease (AD). Therefore, we specifically investigated the sensitivity and specificity of hippocampal volume and glucose metabolism in patients being evaluated for AD, using automated quantitative tools (NeuroQuant - magnetic resonance imaging [MRI] and Scenium - positron emission tomography [PET]) and clinical evaluation.This retrospective study included adult patients over the age of 45 years with suspected AD, who had undergone fluorodeoxyglucose positron emission tomography-computed tomography (FDG-PET-CT) and MRI. FDG-PET-CT images were analyzed both qualitatively and quantitatively. In quantitative volumetric MRI analysis, the percentage of the total intracranial volume of each brain region, as well as the total hippocampal volume, were considered in comparison to an age-adjusted percentile. The remaining brain regions were compared between groups according to the final diagnosis.Thirty-eight patients were included in this study. After a mean follow-up period of 23 ± 11 months, the final diagnosis for 16 patients was AD or high-risk mild cognitive impairment (MCI). Out of the 16 patients, 8 patients were women, and the average age of all patients was 69.38 ± 10.98 years. Among the remaining 22 patients enrolled in the study, 14 were women, and the average age was 67.50 ± 11.60 years; a diagnosis of AD was initially excluded, but the patients may have low-risk MCI. Qualitative FDG-PET-CT analysis showed greater accuracy (0.87), sensitivity (0.76), and negative predictive value (0.77), when compared to quantitative PET analysis, hippocampal MRI volumetry, and specificity. The positive predictive value of FDG-PET-CT was similar to the MRI value.The performance of FDG-PET-CT qualitative analysis was significantly more effective compared to MRI volumetry. At least in part, this observation could corroborate the sequential hypothesis of AD pathophysiology, which posits that functional changes (synaptic dysfunction) precede structural changes (atrophy).
Collapse
Affiliation(s)
| | | | - Mariana Penteado Nucci
- LIM44, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|