1
|
Kumari S, Islam M, Gupta A. Paper-based multiplex biosensors for inexpensive healthcare diagnostics: a comprehensive review. Biomed Microdevices 2023; 25:17. [PMID: 37133791 DOI: 10.1007/s10544-023-00656-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2023] [Indexed: 05/04/2023]
Abstract
Multiplex detection is a smart and an emerging approach in point-of-care testing as it reduces analysis time and testing cost by detecting multiple analytes or biomarkers simultaneously which are crucial for disease detection at an early stage. Application of inexpensive substrate such as paper has immense potential and matter of research interest in the area of point of care testing for multiplexed analysis as it possesses several unique advantages. This study presents the use of paper, strategies adopted to refine the design created on paper and lateral flow strips to enhance the signal, increase the sensitivity and specificity of multiplexed biosensors. An overview of different multiplexed detection studies performed using biological samples has also been reviewed along with the challenges and advantages offered by multiplexed analysis.
Collapse
Affiliation(s)
- Shrishti Kumari
- Department of Mechanical Engineering, Indian Institute of Technology Jodhpur 342037, Rajasthan, India
| | - Monsur Islam
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Ankur Gupta
- Department of Mechanical Engineering, Indian Institute of Technology Jodhpur 342037, Rajasthan, India.
| |
Collapse
|
2
|
Pohanka M. Immunosensors for Assay of Toxic Biological Warfare Agents. BIOSENSORS 2023; 13:402. [PMID: 36979614 PMCID: PMC10046508 DOI: 10.3390/bios13030402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
An immunosensor for the assay of toxic biological warfare agents is a biosensor suitable for detecting hazardous substances such as aflatoxin, botulinum toxin, ricin, Shiga toxin, and others. The application of immunosensors is used in outdoor assays, point-of-care tests, as a spare method for more expensive devices, and even in the laboratory as a standard analytical method. Some immunosensors, such as automated flow-through analyzers or lateral flow tests, have been successfully commercialized as tools for toxins assay, but the research is ongoing. New devices are being developed, and the use of advanced materials and assay techniques make immunosensors highly competitive analytical devices in the field of toxic biological warfare agents assay. This review summarizes facts about current applications and new trends of immunosensors regarding recent papers in this area.
Collapse
Affiliation(s)
- Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defense, Trebesska 1575, CZ-50001 Hradec Kralove, Czech Republic
| |
Collapse
|
3
|
Multiplex Immunoassay Techniques for On-Site Detection of Security Sensitive Toxins. Toxins (Basel) 2020; 12:toxins12110727. [PMID: 33233770 PMCID: PMC7699850 DOI: 10.3390/toxins12110727] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022] Open
Abstract
Biological toxins are a heterogeneous group of high molecular as well as low molecular weight toxins produced by living organisms. Due to their physical and logistical properties, biological toxins are very attractive to terrorists for use in acts of bioterrorism. Therefore, among the group of biological toxins, several are categorized as security relevant, e.g., botulinum neurotoxins, staphylococcal enterotoxins, abrin, ricin or saxitoxin. Additionally, several security sensitive toxins also play a major role in natural food poisoning outbreaks. For a prompt response to a potential bioterrorist attack using biological toxins, first responders need reliable, easy-to-use and highly sensitive methodologies for on-site detection of the causative agent. Therefore, the aim of this review is to present on-site immunoassay platforms for multiplex detection of biological toxins. Furthermore, we introduce several commercially available detection technologies specialized for mobile or on-site identification of security sensitive toxins.
Collapse
|
4
|
Ozanich RM, Colburn HA, Victry KD, Bartholomew RA, Arce JS, Heredia-Langner A, Jarman K, Kreuzer HW, Bruckner-Lea CJ. Evaluation of PCR Systems for Field Screening of Bacillus anthracis. Health Secur 2017; 15:70-80. [PMID: 28192050 PMCID: PMC5314994 DOI: 10.1089/hs.2016.0043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
There is little published data on the performance of hand-portable polymerase chain reaction (PCR) systems that can be used by first responders to determine if a suspicious powder contains a potential biothreat agent. We evaluated 5 commercially available hand-portable PCR instruments for detection of Bacillus anthracis. We used a cost-effective, statistically based test plan to evaluate systems at performance levels ranging from 0.85-0.95 lower confidence bound (LCB) of the probability of detection (POD) at confidence levels of 80% to 95%. We assessed specificity using purified genomic DNA from 13 B. anthracis strains and 18 Bacillus near neighbors, potential interference with 22 suspicious powders that are commonly encountered in the field by first responders during suspected biothreat incidents, and the potential for PCR inhibition when B. anthracis spores were spiked into these powders. Our results indicate that 3 of the 5 systems achieved 0.95 LCB of the probability of detection with 95% confidence levels at test concentrations of 2,000 genome equivalents/mL (GE/mL), which is comparable to 2,000 spores/mL. This is more than sufficient sensitivity for screening visible suspicious powders. These systems exhibited no false-positive results or PCR inhibition with common suspicious powders and reliably detected B. anthracis spores spiked into these powders, though some issues with assay controls were observed. Our testing approach enables efficient performance testing using a statistically rigorous and cost-effective test plan to generate performance data that allow users to make informed decisions regarding the purchase and use of field biodetection equipment. The authors evaluated 5 commercially available hand-portable PCR instruments for detecting Bacillus anthracis. These systems exhibited no false-positive results or PCR inhibition with common suspicious powders and reliably detected B. anthracis spores spiked into these powders, though some issues with assay controls were observed.
Collapse
|
5
|
Bartholomew RA, Ozanich RM, Arce JS, Engelmann HE, Heredia-Langner A, Hofstad BA, Hutchison JR, Jarman K, Melville AM, Victry KD, Bruckner-Lea CJ. Evaluation of Immunoassays and General Biological Indicator Tests for Field Screening of Bacillus anthracis and Ricin. Health Secur 2017; 15:81-96. [PMID: 28192054 PMCID: PMC5346815 DOI: 10.1089/hs.2016.0044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There is little published data on the performance of biological indicator tests and immunoassays that could be used by first responders to determine if a suspicious powder contains a potential biothreat agent. We evaluated a range of biological indicator tests, including 3 protein tests, 2 ATP tests, 1 DNA test, and 1 FTIR spectroscopy instrument for their ability to screen suspicious powders for Bacillus anthracis (B. anthracis) spores and ricin. We also evaluated 12 immunoassays (mostly lateral flow immunoassays) for their ability to screen for B. anthracis and ricin. We used a cost-effective, statistically based test plan that allows instruments to be evaluated at performance levels ranging from 0.85 to 0.95 lower confidence bound of the probability of detection at confidence levels of 80% to 95%. We also assessed interference with 22 common suspicious powders encountered in the field. The detection reproducibility for the biological indicators was evaluated at 108B. anthracis spores and 62.5 μg ricin, and the immunoassay detection reproducibility was evaluated at 107 spores/mL (B. anthracis) and 0.1 μg/mL (ricin). Seven out of 12 immunoassays met our most stringent criteria for B. anthracis detection, while 9 out of 12 met our most stringent test criteria for ricin detection. Most of the immunoassays also detected ricin in 3 different crude castor seed preparations. Our testing results varied across products and sample preparations, indicating the importance of reviewing performance data for specific instruments and sample types of interest for the application in order to make informed decisions regarding the selection of biodetection equipment for field use. The authors evaluated a range of biological indicator tests, including 3 protein tests, 2 ATP tests, 1 DNA test, and 1 FTIR spectroscopy instrument for their ability to screen suspicious powders for Bacillus anthracis spores and ricin.
Collapse
|
6
|
Doggett NA, Mukundan H, Lefkowitz EJ, Slezak TR, Chain PS, Morse S, Anderson K, Hodge DR, Pillai S. Culture-Independent Diagnostics for Health Security. Health Secur 2017; 14:122-42. [PMID: 27314653 DOI: 10.1089/hs.2015.0074] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The past decade has seen considerable development in the diagnostic application of nonculture methods, including nucleic acid amplification-based methods and mass spectrometry, for the diagnosis of infectious diseases. The implications of these new culture-independent diagnostic tests (CIDTs) include bypassing the need to culture organisms, thus potentially affecting public health surveillance systems, which continue to use isolates as the basis of their surveillance programs and to assess phenotypic resistance to antimicrobial agents. CIDTs may also affect the way public health practitioners detect and respond to a bioterrorism event. In response to a request from the Department of Homeland Security, Los Alamos National Laboratory and the Centers for Disease Control and Prevention cosponsored a workshop to review the impact of CIDTs on the rapid detection and identification of biothreat agents. Four panel discussions were held that covered nucleic acid amplification-based diagnostics, mass spectrometry, antibody-based diagnostics, and next-generation sequencing. Exploiting the extensive expertise available at this workshop, we identified the key features, benefits, and limitations of the various CIDT methods for providing rapid pathogen identification that are critical to the response and mitigation of a bioterrorism event. After the workshop we conducted a thorough review of the literature, investigating the current state of these 4 culture-independent diagnostic methods. This article combines information from the literature review and the insights obtained at the workshop.
Collapse
|
7
|
[On-site detection of bioterrorism-relevant agents : Rapid detection methods for viruses, bacteria and toxins - capabilities and limitations]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2016; 59:1577-1586. [PMID: 27778086 DOI: 10.1007/s00103-016-2463-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In Europe, besides the threat of terrorist attacks involving conventional methods such as explosive devices and automatic weapons, there is also a potential threat of terrorist groups using non-conventional material like biological agents in the scope of future attacks. Consequently, rapid and reliable detection systems for biological agents are being developed and tested continuously to inform crisis management. For environmental detection, a broad spectrum of different laboratory-based techniques has been developed for relevant biological agents. However for environmental samples, fast and reliable on-site detection methods are desired by first responders for rapid assessment.Based on different functional principles, generic, immunological and nucleic-acid-based on-site detection methods can be distinguished. Those should be facile, fast, sensitive, and specific. However, commercially available kits usually have limited sensitivity and often have not been validated independently. Furthermore in this context, the multitude of relevant biological agents that potentially have to be considered present in complex environmental matrices poses a serious challenge for reliable detection. Therefore, detailed knowledge of the specific scope of applications and the limitations of different analytical systems is necessary to evaluate the results obtained purposefully.The aim of this article is to provide an overview of the analytical principles, benefits and limitations of prevailing on-site environmental detection systems for bioterrorism-relevant viruses, bacteria and toxins. Despite promising developments the informative value of currently available on-site tests is still limited. Thus, expert laboratories have to conduct confirmatory testing.
Collapse
|
8
|
Stern D, Pauly D, Zydek M, Müller C, Avondet MA, Worbs S, Lisdat F, Dorner MB, Dorner BG. Simultaneous differentiation and quantification of ricin and agglutinin by an antibody-sandwich surface plasmon resonance sensor. Biosens Bioelectron 2016; 78:111-117. [DOI: 10.1016/j.bios.2015.11.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/23/2015] [Accepted: 11/08/2015] [Indexed: 01/26/2023]
|
9
|
An International Proficiency Test to Detect, Identify and Quantify Ricin in Complex Matrices. Toxins (Basel) 2015; 7:4987-5010. [PMID: 26703726 PMCID: PMC4690109 DOI: 10.3390/toxins7124859] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/08/2015] [Accepted: 11/16/2015] [Indexed: 12/14/2022] Open
Abstract
While natural intoxications with seeds of Ricinus communis (R. communis) have long been known, the toxic protein ricin contained in the seeds is of major concern since it attracts attention of those intending criminal, terroristic and military misuse. In order to harmonize detection capabilities in expert laboratories, an international proficiency test was organized that aimed at identifying good analytical practices (qualitative measurements) and determining a consensus concentration on a highly pure ricin reference material (quantitative measurements). Sample materials included highly pure ricin as well as the related R. communis agglutinin (RCA120) spiked into buffer, milk and meat extract; additionally, an organic fertilizer naturally contaminated with R. communis shred was investigated in the proficiency test. The qualitative results showed that either a suitable combination of immunological, mass spectrometry (MS)-based and functional approaches or sophisticated MS-based approaches alone successfully allowed the detection and identification of ricin in all samples. In terms of quantification, it was possible to determine a consensus concentration of the highly pure ricin reference material. The results provide a basis for further steps in quality assurance and improve biopreparedness in expert laboratories worldwide.
Collapse
|
10
|
Simon S, Worbs S, Avondet MA, Tracz DM, Dano J, Schmidt L, Volland H, Dorner BG, Corbett CR. Recommended Immunological Assays to Screen for Ricin-Containing Samples. Toxins (Basel) 2015; 7:4967-86. [PMID: 26703725 PMCID: PMC4690108 DOI: 10.3390/toxins7124858] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/04/2015] [Accepted: 11/04/2015] [Indexed: 01/20/2023] Open
Abstract
Ricin, a toxin from the plant Ricinus communis, is one of the most toxic biological agents known. Due to its availability, toxicity, ease of production and absence of curative treatments, ricin has been classified by the Centers for Disease Control and Prevention (CDC) as category B biological weapon and it is scheduled as a List 1 compound in the Chemical Weapons Convention. An international proficiency test (PT) was conducted to evaluate detection and quantification capabilities of 17 expert laboratories. In this exercise one goal was to analyse the laboratories’ capacity to detect and differentiate ricin and the less toxic, but highly homologuous protein R. communis agglutinin (RCA120). Six analytical strategies are presented in this paper based on immunological assays (four immunoenzymatic assays and two immunochromatographic tests). Using these immunological methods “dangerous” samples containing ricin and/or RCA120 were successfully identified. Based on different antibodies used the detection and quantification of ricin and RCA120 was successful. The ricin PT highlighted the performance of different immunological approaches that are exemplarily recommended for highly sensitive and precise quantification of ricin.
Collapse
Affiliation(s)
- Stéphanie Simon
- CEA Saclay, Institute of Biology and Technologies of Saclay, Laboratory for Immunoanalytical Researches, Gif-sur-Yvette 91191 cedex, France.
| | - Sylvia Worbs
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany.
| | - Marc-André Avondet
- Federal Department of Defence, Civil Protection and Sport-SPIEZ Laboratory, Spiez 3700, Switzerland.
| | - Dobryan M Tracz
- Bacteriology & Enteric Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada,Winnipeg, MB R3E 3R2, Canada.
| | - Julie Dano
- CEA Saclay, Institute of Biology and Technologies of Saclay, Laboratory for Immunoanalytical Researches, Gif-sur-Yvette 91191 cedex, France.
| | - Lisa Schmidt
- Bacteriology & Enteric Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada,Winnipeg, MB R3E 3R2, Canada.
| | - Hervé Volland
- CEA Saclay, Institute of Biology and Technologies of Saclay, Laboratory for Immunoanalytical Researches, Gif-sur-Yvette 91191 cedex, France.
| | - Brigitte G Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany.
| | - Cindi R Corbett
- Bacteriology & Enteric Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada,Winnipeg, MB R3E 3R2, Canada.
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|