1
|
González-Villén R, Fernández-López ML, Checa-Ros A, Tortosa-Pinto P, Aguado-Rivas R, Garre-Morata L, Acuña-Castroviejo D, Molina-Carballo A. Differences in the Interleukin Profiles in Inattentive ADHD Prepubertal Children Are Probably Related to Conduct Disorder Comorbidity. Biomedicines 2024; 12:1818. [PMID: 39200282 PMCID: PMC11351999 DOI: 10.3390/biomedicines12081818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Inflammatory cytokines are involved in attention deficit hyperactivity disorder (ADHD), a highly prevalent neurodevelopmental disorder. To quantify the baseline levels of pro- and anti-inflammatory cytokines and their changes after methylphenidate (MPH), a total of 31 prepubertal children with ADHD were recruited and subclassified into only two ADHD presentations-ADHD attention deficit (n = 13) or ADHD combined (n = 18). The children were also screened for oppositional defiant conduct disorder (ODCD) and anxiety disorder. Blood samples were drawn at 09:00 and after 4.63 ± 1.87 months of treatment. Four pro-inflammatory cytokines (interleukin-1beta (IL-1β), IL-5, IL-6, tumor necrosis factor-alpha (TNF-α)) and three anti-inflammatory cytokines (IL-4, IL-10, IL-13) were measured using a Luminex® assay. For statistics, a factorial analysis was performed in Stata 15.1. Overall, there were no statistically significant differences in the interleukin (IL) values induced by treatment. When grouped by presentation, the differences were present almost exclusively in ADHD-AD, usually with a profile opposite to that observed in ADHD-C, and with interactions between comorbid factors, with IL-1β (p = 0.01) and IL-13 (p = 0.006) being the ones reaching the greatest statistical significance. These differences are probably related to the ODCD factor, and they disappear after treatment. In conclusion, the changes observed in cytokine levels in prepubertal children only in the ADHD-AD presentation are probably related to comorbidities (specifically ODCD) and are mitigated after treatment.
Collapse
Affiliation(s)
- Raquel González-Villén
- Unit of Pediatric Neurology and Neurodevelopment, Clínico San Cecilio University Hospital, Andalusian Health Service, 18016 Granada, Spain; (R.G.-V.); (P.T.-P.); (R.A.-R.)
| | - María Luisa Fernández-López
- Department of Pediatrics, School of Medicine, University of Granada, 18071 Granada, Spain
- Biohealth Research Institute Granada (ibs. GRANADA), University Hospital of Granada, 18016 Granada, Spain; (L.G.-M.); (D.A.-C.)
| | - Ana Checa-Ros
- Research Group on Cardiorenal and Metabolic Diseases, Department of Medicine and Surgery, Faculty of Health Sciences, Cardenal Herrera-CEU University, CEU Universities, 46115 Valencia, Spain;
| | - Pilar Tortosa-Pinto
- Unit of Pediatric Neurology and Neurodevelopment, Clínico San Cecilio University Hospital, Andalusian Health Service, 18016 Granada, Spain; (R.G.-V.); (P.T.-P.); (R.A.-R.)
| | - Raquel Aguado-Rivas
- Unit of Pediatric Neurology and Neurodevelopment, Clínico San Cecilio University Hospital, Andalusian Health Service, 18016 Granada, Spain; (R.G.-V.); (P.T.-P.); (R.A.-R.)
| | - Laura Garre-Morata
- Biohealth Research Institute Granada (ibs. GRANADA), University Hospital of Granada, 18016 Granada, Spain; (L.G.-M.); (D.A.-C.)
| | - Darío Acuña-Castroviejo
- Biohealth Research Institute Granada (ibs. GRANADA), University Hospital of Granada, 18016 Granada, Spain; (L.G.-M.); (D.A.-C.)
| | - Antonio Molina-Carballo
- Unit of Pediatric Neurology and Neurodevelopment, Clínico San Cecilio University Hospital, Andalusian Health Service, 18016 Granada, Spain; (R.G.-V.); (P.T.-P.); (R.A.-R.)
- Department of Pediatrics, School of Medicine, University of Granada, 18071 Granada, Spain
- Biohealth Research Institute Granada (ibs. GRANADA), University Hospital of Granada, 18016 Granada, Spain; (L.G.-M.); (D.A.-C.)
| |
Collapse
|
2
|
Predescu E, Vaidean T, Rapciuc AM, Sipos R. Metabolomic Markers in Attention-Deficit/Hyperactivity Disorder (ADHD) among Children and Adolescents-A Systematic Review. Int J Mol Sci 2024; 25:4385. [PMID: 38673970 PMCID: PMC11050195 DOI: 10.3390/ijms25084385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Attention-Deficit/Hyperactivity Disorder (ADHD), characterized by clinical diversity, poses diagnostic challenges often reliant on subjective assessments. Metabolomics presents an objective approach, seeking biomarkers for precise diagnosis and targeted interventions. This review synthesizes existing metabolomic insights into ADHD, aiming to reveal biological mechanisms and diagnostic potentials. A thorough PubMed and Web of Knowledge search identified studies exploring blood/urine metabolites in ADHD-diagnosed or psychometrically assessed children and adolescents. Synthesis revealed intricate links between ADHD and altered amino acid metabolism, neurotransmitter dysregulation (especially dopamine and serotonin), oxidative stress, and the kynurenine pathway impacting neurotransmitter homeostasis. Sleep disturbance markers, notably in melatonin metabolism, and stress-induced kynurenine pathway activation emerged. Distinct metabolic signatures, notably in the kynurenine pathway, show promise as potential diagnostic markers. Despite limitations like participant heterogeneity, this review underscores the significance of integrated therapeutic approaches targeting amino acid metabolism, neurotransmitters, and stress pathways. While guiding future research, this overview of the metabolomic findings in ADHD suggests directions for precision diagnostics and personalized ADHD interventions.
Collapse
Affiliation(s)
- Elena Predescu
- Department of Neuroscience, Psychiatry and Pediatric Psychiatry, “Iuliu Hatieganu” University of Medicine and Pharmacy, 57 Republicii Street, 400489 Cluj-Napoca, Romania;
| | - Tudor Vaidean
- Clinic of Pediatric Psychiatry and Addiction, Clinical Emergency Hospital for Children, 57 Republicii Street, 400489 Cluj-Napoca, Romania;
| | - Andreea-Marlena Rapciuc
- Clinical Department of Nephrology, County Emergency Clinical Hospital Cluj, 3-5 Clinicilor Street, 400006 Cluj-Napoca, Romania;
| | - Roxana Sipos
- Department of Neuroscience, Psychiatry and Pediatric Psychiatry, “Iuliu Hatieganu” University of Medicine and Pharmacy, 57 Republicii Street, 400489 Cluj-Napoca, Romania;
| |
Collapse
|
3
|
Is S100B Involved in Attention-Deficit/Hyperactivity Disorder (ADHD)? Comparisons with Controls and Changes Following a Triple Therapy Containing Methylphenidate, Melatonin and ω-3 PUFAs. Nutrients 2023; 15:nu15030712. [PMID: 36771418 PMCID: PMC9919946 DOI: 10.3390/nu15030712] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Increasing evidence supports a neuroinflammatory basis in ADHD damaging glial function and thereby altering dopaminergic (DA) neurotransmission. Previous studies focusing on the S100B protein as a marker of glial function have shown contradictory results. We conducted a clinical trial to investigate differences in S100B levels between ADHD patients and controls, as well as observe gradual changes in S100B concentrations after a triple therapy (TT) containing methylphenidate (MPH), melatonin (aMT) and omega-3 fatty acids (ω-3 PUFAs). METHODS 62 medication-naïve children with ADHD (ADHD-G) and 65 healthy controls (C-G) were recruited. Serum S100B was measured at baseline (T0) in ADHD-G/C-G, and three (T3) and six months (T6) after starting TT in the ADHD-G, together with attention scores. RESULTS A significant increase in S100B was observed in the ADHD-G vs. C-G. In the ADHD-G, significantly higher S100B values were observed for comparisons between T0-T3 and between T0-T6, accompanied by a significant improvement in attention scores for the same timepoint comparisons. No significant differences were found for S100B between T3-T6. CONCLUSION Our results agree with the hypothesis of glial damage in ADHD. Further studies on the link between DA and S100B are required to explain the transient increase in S100B following TT.
Collapse
|
4
|
"The quantitative determination of indolic microbial tryptophan metabolites in human and rodent samples: A systematic review". J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1186:123008. [PMID: 34735972 DOI: 10.1016/j.jchromb.2021.123008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/18/2021] [Indexed: 02/08/2023]
Abstract
Concentrations reported for indolic microbial metabolites of tryptophan in human and rodent brain, cerebrospinal fluid, plasma, saliva and feces were compiled and discussed. A systematic review of the literature was accomplished by key word searches of Pubmed, Google Scholar and the Human Metabolome Data Base (HMDB), and by searching bibliographies of identified publications including prior reviews. The review was prompted by the increasing appreciation of the physiological importance of the indolic compounds in human health and disease. The compounds included were indoleacetic acid (IAA), indole propionic acid (IPA), indoleacrylic acid (IACR), indolelactic acid (ILA) indolepyruvic acid (IPY), indoleacetaldehyde (IAALD), indolealdehyde (IALD), tryptamine (TAM), indole (IND) and skatole (SKT). The undertaking aimed to vet and compare existing reports, to resolve apparent discrepancies, to draw biological inferences from the consideration of multiple analytes across sample types, to survey the analytical methodologies used, and to point out areas in need of greater attention.
Collapse
|
5
|
Methylphenidate ameliorates the homeostatic balance between levels of kynurenines in ADHD children. Psychiatry Res 2021; 303:114060. [PMID: 34175711 DOI: 10.1016/j.psychres.2021.114060] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 06/11/2021] [Indexed: 12/25/2022]
Abstract
The kynurenine pathway of tryptophan metabolism has been involved in ADHD We quantified basal levels and daily fluctuations of tryptophan and several kynurenine metabolites, as well as their changes after treatment with methylphenidate (MPH). A total of 179 children were recruited, grouped into ADHD (n = 130) and healthy controls (CG,n = 49). Blood samples were drawn at 20:00 and 09:00 h and only in the ADHD group after 4.63±2.3 months of treatment. Nocturnal urine was collected between both draws. Factorial analysis (Stata12.0) was performed with Groups, Time, Hour of Day and Depressive Symptoms (DS) as factors. MPH significantly increased plasma Kynurenic acid (2.4 ± 1.03/2.78±1.3 ng/mL; baseline/post-treatment, morning; z = 1.96,p<0.05) and Xanthurenic acid (2.39±0.95/2.88±1.19 ng/mL; baseline/post, morning; z = 2.7,p<0.007) levels, both with higher values in the evening. In DS+ patients, MPH caused a pronounced decrease in evening Anthranilic acid [3.08±5.02/ 1.82±1.46 ng/mL, z = 2.68,p = 0.0074] until matching values to other subgroups. In urine, MPH decreased the excretion of both Nicotinamide and Quinolinic acids, but only in the DS- subgroup. The kynurenine pathway may participate in the highly clinical favorable response to MPH. The observed changes could be considered as protective (i.e. increased plasma kynurenic acid vs. decreased quinolinic acid excretion) based on the knowledge of its physiological homeostatic functions.
Collapse
|