1
|
Wang Y, Li Y, Wang L, Chen B, Zhu M, Ma C, Mu C, Tao A, Li S, Luo L, Ma P, Ji S, Lan T. Cinnamaldehyde Suppressed EGF-Induced EMT Process and Inhibits Ovarian Cancer Progression Through PI3K/AKT Pathway. Front Pharmacol 2022; 13:779608. [PMID: 35645793 PMCID: PMC9133335 DOI: 10.3389/fphar.2022.779608] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Ovarian cancer is one of the most common gynecological malignancies in women worldwide with a poor survival rate. Cinnamaldehyde (CA), a bioactive substance isolated from cinnamon bark, is a natural drug and has shown that it can inhibit the progression of other tumors. However, the role of CA in ovarian cancer and its mechanism is poorly understood. In this study, wound healing assays, plate cloning, CCK-8, and transwell assays were used to determine cell proliferation and invasion. Western blot and flow cytometry were used to detect apoptosis levels. Western blot and immunofluorescence were used to detect changes in cellular EMT levels. The Western blot was used to detect levels of the PI3K/AKT signaling pathway. In vivo, we established a subcutaneous transplantation tumor model in nude mice to verify the role of CA in the progression and metastasis of ovarian cancer. Our data showed that in vitro CA was able to inhibit the cell viability of ovarian cancer. The results of scratch assay and transwell assay also showed that CA inhibited the proliferation and invasion ability of A2780 and SKOV3 cells. In addition, CA promoted apoptosis by increasing the expression of cleaved-PARP and cleaved-caspase 3 in ovarian cancer cells. Mechanistically, we found that CA inhibited the EGF-induced PI3K/AKT signaling pathway and reduced the phosphorylation levels of mTOR, PI3K, and AKT. The EGF-induced EMT process was also abolished by CA. The EMT process induced by AKT-specific activator SC79 was also suppressed by CA. Furthermore, in in vivo, CA significantly repressed the progression of ovarian cancer as well as liver metastasis. In all, our results suggest that CA inhibits ovarian cancer progression and metastasis in vivo and in vitro and inhibits EGF-induced EMT processes through the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Yue Wang
- Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, China
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Ying Li
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Liang Wang
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Buze Chen
- Department of Gynecology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Miaolin Zhu
- Department of Pathology, Jiangsu Cancer Hospital, Nanjing, China
| | - Chunyi Ma
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Chunyan Mu
- Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, China
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Aibin Tao
- Division of Cardiology, Department of Medicine, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Shibao Li
- Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, China
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Lan Luo
- Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, China
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Ping Ma
- Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, China
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Shuai Ji
- School of Pharmacology, Xuzhou Medical University, Xuzhou, China
| | - Ting Lan
- Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, China
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
2
|
Sadoughi F, Asemi Z, Hallajzadeh J, Mansournia MA, Yousefi B. Beta-glucans is a potential inhibitor of ovarian cancer: based on molecular and biological aspects. Curr Pharm Biotechnol 2021; 23:1142-1152. [PMID: 34375183 DOI: 10.2174/1389201022666210810090728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 11/22/2022]
Abstract
Ovarian cancer is a lethal type of cancer which is initiated in the ovaries and affects 1 out of every 75 women. Due to the high number of deaths (almost 152,000) related to this cancer, it seems that novel effiecient therapeutic methods are required in this field. Beta-glucans are a type of glucose linear polymers which have proven to have a lot of advantageous activities. Recently, investigations have declared that these polysaccharides have the potential to be used as anti-cancer drugs. These agents are able to affect several mechanisms such as inflammation and apoptosis and that is how cancers are prone to be affected by them. In this review, we attempt to investigate the role of beta-glucans on ovarian cancer. We hope that this paper might give novel insights in the field of ovarian cancer treatment.
Collapse
Affiliation(s)
- Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R., Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R., Iran
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Choi JY, Lee YS, Shim DM, Seo SW. PTCH1 regulates anchorage-independent growth and bone invasion of non-small cell lung cancer cells. Bone 2021; 144:115829. [PMID: 33359005 DOI: 10.1016/j.bone.2020.115829] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 11/30/2022]
Abstract
Acquisition of metastatic potential by cancer cells is related to cancer stemness and anchorage-independent growth. The onset and progression of cancer are known to involve Hedgehog (HH) signaling that is activated by the binding of HH to the Patched 1 (PTCH1) receptor. However, the functions and mechanisms of action of PTCH1 in the context of bone metastasis remain to be elucidated. In this study, lentivirally-delivered shRNA was used to deplete PTCH1 levels, which resulted in the inhibition of spherical colony formation by the human non-small cell lung cancer (NSCLC) cell line; this suggested that PTCH1 promotes anchorage-independent growth. Concordantly, knockdown of PTCH1 resulted in significantly reduced migration and invasion of NSCLC cells; this was accompanied by the downregulation of MMP7 and SOX2. PTCH1 knockdown resulted in decreased bone destruction and osteoclastogenesis in a mouse bone metastasis model. These results indicate that PTCH1 may be an important regulator of bone invasion, and strongly suggest that knockdown of PTCH1 may decrease the anchorage-independent growth and metastatic potential of NSCLC.
Collapse
Affiliation(s)
- Ji-Yoon Choi
- Department of Orthopaedic Surgery, Samsung Medical Center, Sungkyunkwan University, 5 #50, Ilwon-dong, Gangnam-gu, 135-710, Seoul, Republic of Korea
| | - Yun Sun Lee
- Department of Orthopaedic Surgery, Samsung Medical Center, Sungkyunkwan University, 5 #50, Ilwon-dong, Gangnam-gu, 135-710, Seoul, Republic of Korea
| | - Da Mi Shim
- Department of Orthopaedic Surgery, Samsung Medical Center, Sungkyunkwan University, 5 #50, Ilwon-dong, Gangnam-gu, 135-710, Seoul, Republic of Korea
| | - Sung Wook Seo
- Department of Orthopaedic Surgery, Samsung Medical Center, Sungkyunkwan University, 5 #50, Ilwon-dong, Gangnam-gu, 135-710, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Prevalence of pathogenic variants in actionable genes in advanced ovarian cancer: a next-generation sequencing analysis of a nationwide registry study. Eur J Cancer 2020; 141:185-192. [PMID: 33166861 DOI: 10.1016/j.ejca.2020.09.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND We examined the actionable genomic alterations in ovarian cancer by analysing the nationwide registry of next-generation sequencing (NGS) data. METHODS From March 2017 to December 2018, 16,458 patients with cancer underwent NGS testing under the interim coverage programme for NGS provided by the National Health Insurance of Korea. Among these patients, 779 patients had advanced ovarian cancer. Fifty-eight mutations were reported as pathogenic variants, which included likely pathogenic variants, and 55 theoretically actionable genes were analysed. RESULTS The prevalence of pathogenic mutations in the population was 81.5%, whereas 11.6% of the population had neither a pathogenic mutation nor a variant of unknown significance. Common pathogenic mutations shared by at least 3% of the study population were mutations in TP53 (61.5%), BRCA1 (12.2%), PIK3CA (10.4%), KRAS (10.3%), BRCA2 (9.6%) and PTEN (3.7%). BRCA1/2 pathogenic mutations were found in 14.0% (42 of 300, 95% confidence interval = 10-18%) of the patients with TP53 wild-type tumours, comprising approximately one-quarter (25.9%) of the total observed BRCA1/2 pathogen mutations. At least one pathogenic mutation in a theoretically actionable gene was found in 49.2% of patients. Among patients without a BRCA1/2 pathogenic mutation, mutations were frequently observed in KRAS (12.2%), PIK3CA (10.4%) and PTEN (4.2%). PTCH1 mutations were correlated with ATM, NF1, ERBB2 and MTOR mutations (adjusted p = 0.0054, p = 0.0035, p = 0.0010 and p = 0.0003, respectively). CONCLUSIONS Almost half of patients with ovarian cancer could be estimated as theoretical candidates for genomic medicine. Substantial BRCA1/2 pathogenic mutations were observed in patients not harbouring a TP53 mutation.
Collapse
|
5
|
Dong P, Fu H, Chen L, Zhang S, Zhang X, Li H, Wu D, Ji X. PCNP promotes ovarian cancer progression by accelerating β-catenin nuclear accumulation and triggering EMT transition. J Cell Mol Med 2020; 24:8221-8235. [PMID: 32548978 PMCID: PMC7348179 DOI: 10.1111/jcmm.15491] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/13/2020] [Accepted: 05/24/2020] [Indexed: 12/12/2022] Open
Abstract
Ever reports showed that PCNP is associated with human cancers including neuroblastoma and lung cancer. However, the role and underlying molecular mechanism of PCNP in ovarian cancer have not been plenty elucidated. Herein, we first investigated the expression of PCNP in ovarian cancer tissues and cells, the effects of PCNP in ovarian cancer proliferation, apoptosis, migration and invasion, and determined the molecular mechanism of PCNP in ovarian cancer progression. The results indicated that PCNP was significantly overexpressed in human ovarian cancer tissues and cells, and related to poor prognosis in ovarian cancer patients. In addition, we also detected that PCNP promoted ovarian cancer cells growth, migration and invasion, as well as inhibited ovarian cancer cells apoptosis. Mechanistically, PCNP binding to β-catenin promoted β-catenin nuclear translocation and further activated Wnt/β-catenin signalling pathway. Moreover, PCNP regulated the expression of genes involved in EMT and further triggered EMT occurrence. Conclusionally, PCNP may promote ovarian cancer progression through activating Wnt/β-catenin signalling pathway and EMT, acting as a novel and promising target for treating ovarian cancer.
Collapse
Affiliation(s)
- Pengzhen Dong
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Hao Fu
- Huaihe Hospital, Henan University, Kaifeng, China
| | - Lin Chen
- Department of Histology and Embryology, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Shihui Zhang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Xin Zhang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Huimin Li
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,Department of Histology and Embryology, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Dongdong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Stomatology, Henan University, Kaifeng, China
| | - Xinying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,Kaifeng Key Laboratory of Infection and Biological Safety, Henan University College of Medicine, Henan University, Kaifeng, China
| |
Collapse
|