1
|
Molavand M, Ebrahimnezhade N, Kiani A, Yousefi B, Nazari A, Majidinia M. Regulation of autophagy by non-coding RNAs in human glioblastoma. Med Oncol 2024; 41:260. [PMID: 39375229 DOI: 10.1007/s12032-024-02513-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/18/2024] [Indexed: 10/09/2024]
Abstract
Glioblastoma, a lethal form of brain cancer, poses substantial challenges in treatment due to its aggressive nature and resistance to standard therapies like radiation and chemotherapy. Autophagy has a crucial role in glioblastoma progression by supporting cellular homeostasis and promoting survival under stressful conditions. Non-coding RNAs (ncRNAs) play diverse biological roles including, gene regulation, chromatin remodeling, and the maintenance of cellular homeostasis. Emerging evidence reveals the intricate regulatory mechanisms of autophagy orchestrated by non-coding RNAs (ncRNAs) in glioblastoma. The diverse roles of these ncRNAs in regulating crucial autophagy-related pathways, including AMPK/mTOR signaling, the PI3K/AKT pathway, Beclin1, and other autophagy-triggering system regulation, sheds light on ncRNAs biological mechanisms in the proliferation, invasion, and therapy response of glioblastoma cells. Furthermore, the clinical implications of targeting ncRNA-regulated autophagy as a promising therapeutic strategy for glioblastoma treatment are in the spotlight of ongoing studies. In this review, we delve into our current understanding of how ncRNAs regulate autophagy in glioblastoma, with a specific focus on microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), and their intricate interplay with therapy response.
Collapse
Affiliation(s)
- Mehran Molavand
- Student Research Commitee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Ebrahimnezhade
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Arash Kiani
- Student Research Commite, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran.
- Molecular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ahmad Nazari
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran.
- Tehran University of Medical Sciences, Tehran, Iran.
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
2
|
Wu X, Shi M, Lian Y, Zhang H. Exosomal circRNAs as promising liquid biopsy biomarkers for glioma. Front Immunol 2023; 14:1039084. [PMID: 37122733 PMCID: PMC10140329 DOI: 10.3389/fimmu.2023.1039084] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/30/2023] [Indexed: 05/02/2023] Open
Abstract
Liquid biopsy strategies enable the noninvasive detection of changes in the levels of circulating biomarkers in body fluid samples, providing an opportunity to diagnose, dynamically monitor, and treat a range of diseases, including cancers. Glioma is among the most common forms of intracranial malignancy, and affected patients exhibit poor prognostic outcomes. As such, diagnosing and treating this disease in its early stages is critical for optimal patient outcomes. Exosomal circular RNAs (circRNAs) are involved in both the onset and progression of glioma. Both the roles of exosomes and methods for their detection have received much attention in recent years and the detection of exosomal circRNAs by liquid biopsy has significant potential for monitoring dynamic changes in glioma. The present review provides an overview of the circulating liquid biopsy biomarkers associated with this cancer type and the potential application of exosomal circRNAs as tools to guide the diagnosis, treatment, and prognostic evaluation of glioma patients during disease progression.
Collapse
Affiliation(s)
- Xiaoke Wu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengmeng Shi
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yajun Lian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Haifeng Zhang, ; Yajun Lian,
| | - Haifeng Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Haifeng Zhang, ; Yajun Lian,
| |
Collapse
|
3
|
Zang B, Ding L, Liu L, Arun Kumar S, Liu W, Zhou C, Duan Y. The immunotherapy advancement targeting malignant blastomas in early childhood. Front Oncol 2023; 13:1015115. [PMID: 36874100 PMCID: PMC9978522 DOI: 10.3389/fonc.2023.1015115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/12/2023] [Indexed: 02/18/2023] Open
Abstract
Malignant blastomas develop relentlessly in all functional body organs inflicting severe health ailments in younger children. Malignant blastomas exhibit diverse clinical characteristics in compliance with their emergence in functional body organs. Surprisingly, neither of these preferred treatment types (surgery, radiotherapy, and chemotherapy) showed promise or were effective in treating malignant blastomas among child patients. N ew, innovative immunotherapeutic procedures including monoclonal antibodies and chimeric-antigen based receptor (CAR) cell therapy, coupled with the clinical study of reliable therapeutic targets and immune regulatory pathways targeting malignant blastomas, have attracted the attention of clinicians recently.
Collapse
Affiliation(s)
- Bolun Zang
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Luyue Ding
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Linlin Liu
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Senthil Arun Kumar
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Wei Liu
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Chongchen Zhou
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yongtao Duan
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Frosina G. Most recent update of preclinical and clinical data on radioresistance and radiosensitivity of high-grade gliomas-a radiation oncologist's perspective. Strahlenther Onkol 2023; 199:1-21. [PMID: 36445383 DOI: 10.1007/s00066-022-02020-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/09/2022] [Indexed: 12/03/2022]
Abstract
PURPOSE This review article discusses the studies concerning advances in radiotherapy of high-grade gliomas published in the second half of 2021. METHODS A literature search was performed in PubMed using the terms ("gliom* and radio*") and time limits 1 July 2021-31 December 2021. The articles were then manually selected for relevance to the analyzed topics. RESULTS Considerable progress has been made in the preclinical field on the mechanisms of radioresistance and radiosensitization of high-grade gliomas (HGG). However, fewer early-phase (I/II) clinical trials have been performed and, of the latter, even fewer have produced results that justify moving to phase III. In the 6‑month period under consideration, no studies were published that would lead to a change in clinical practice and the overall survival (OS) of patients remained similar to that of 2005, the year in which it increased significantly for the last time thanks to introduction of the alkylating agent temozolomide. CONCLUSION After 17 years of stalemate in improving the OS of patients with HGG, an in-depth analysis of the causes should be carried out in order to identify whether the research efforts conducted so far, including in the radiotherapeutic field, have been the most effective or require improvement. In our opinion, in addition to the therapeutic difficulties related to the biology of HGG tumors (e.g., high infiltrating capacity, multiple resistance mechanisms, blood-brain barrier), some public research policy choices may also play a role, especially in consideration of the limited interest of the pharmaceutical industry in the field of rare cancers.
Collapse
Affiliation(s)
- Guido Frosina
- Mutagenesis & Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genova, Italy.
| |
Collapse
|
5
|
Rezakhani L, Fekri K, Rostaminasab G, Rahmati S. Exosomes: special nano-therapeutic carrier for cancers, overview on anticancer drugs. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:31. [PMID: 36460860 DOI: 10.1007/s12032-022-01887-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/07/2022] [Indexed: 12/04/2022]
Abstract
Chemotherapy drugs are the first line of cancer treatment, but problems such as low intratumoral delivery, poor bioavailability, and off-site toxicity must be addressed. Cancer-specific drug delivery techniques could improve the therapeutic outcome in terms of patient survival. The current study investigated the loading of chemotherapy drugs loaded into exosomes for cancer treatment. Exosomes are the smallest extracellular vesicles found in body fluids and can be used to transfer information by moving biomolecules from cell to cell. This makes them useful as carriers. As the membranes of these nanoparticles are similar to cell membranes, they can be easily transported to carry different components. As most chemotherapy drugs are not easily soluble in liquid, loading them into exosomes can be a suitable solution to this problem. This cancer treatment could avert the injection of high doses of drugs and provide a more appropriate release mechanism.
Collapse
Affiliation(s)
- Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kiavash Fekri
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Gelavizh Rostaminasab
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shima Rahmati
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
6
|
Mafi A, Rahmati A, Babaei Aghdam Z, Salami R, Salami M, Vakili O, Aghadavod E. Recent insights into the microRNA-dependent modulation of gliomas from pathogenesis to diagnosis and treatment. Cell Mol Biol Lett 2022; 27:65. [PMID: 35922753 PMCID: PMC9347108 DOI: 10.1186/s11658-022-00354-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/22/2022] [Indexed: 11/11/2022] Open
Abstract
Gliomas are the most lethal primary brain tumors in adults. These highly invasive tumors have poor 5-year survival for patients. Gliomas are principally characterized by rapid diffusion as well as high levels of cellular heterogeneity. However, to date, the exact pathogenic mechanisms, contributing to gliomas remain ambiguous. MicroRNAs (miRNAs), as small noncoding RNAs of about 20 nucleotides in length, are known as chief modulators of different biological processes at both transcriptional and posttranscriptional levels. More recently, it has been revealed that these noncoding RNA molecules have essential roles in tumorigenesis and progression of multiple cancers, including gliomas. Interestingly, miRNAs are able to modulate diverse cancer-related processes such as cell proliferation and apoptosis, invasion and migration, differentiation and stemness, angiogenesis, and drug resistance; thus, impaired miRNAs may result in deterioration of gliomas. Additionally, miRNAs can be secreted into cerebrospinal fluid (CSF), as well as the bloodstream, and transported between normal and tumor cells freely or by exosomes, converting them into potential diagnostic and/or prognostic biomarkers for gliomas. They would also be great therapeutic agents, especially if they could cross the blood–brain barrier (BBB). Accordingly, in the current review, the contribution of miRNAs to glioma pathogenesis is first discussed, then their glioma-related diagnostic/prognostic and therapeutic potential is highlighted briefly.
Collapse
Affiliation(s)
- Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atefe Rahmati
- Department of Hematology and Blood Banking, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Basic Science, Neyshabur University of Medical Science, Neyshabur, Iran
| | - Zahra Babaei Aghdam
- Imaging Sciences Research Group, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raziyeh Salami
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Marziyeh Salami
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Esmat Aghadavod
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran. .,Department of Clinical Biochemistry, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|