1
|
Glanzner WG, de Macedo MP, Gutierrez K, Bordignon V. Enhancement of Chromatin and Epigenetic Reprogramming in Porcine SCNT Embryos—Progresses and Perspectives. Front Cell Dev Biol 2022; 10:940197. [PMID: 35898400 PMCID: PMC9309298 DOI: 10.3389/fcell.2022.940197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Over the last 25 years, cloned animals have been produced by transferring somatic cell nuclei into enucleated oocytes (SCNT) in more than 20 mammalian species. Among domestic animals, pigs are likely the leading species in the number of clones produced by SCNT. The greater interest in pig cloning has two main reasons, its relevance for food production and as its use as a suitable model in biomedical applications. Recognized progress in animal cloning has been attained over time, but the overall efficiency of SCNT in pigs remains very low, based on the rate of healthy, live born piglets following embryo transfer. Accumulating evidence from studies in mice and other species indicate that new strategies for promoting chromatin and epigenetic reprogramming may represent the beginning of a new era for pig cloning.
Collapse
|
2
|
An Q, Peng W, Cheng Y, Lu Z, Zhou C, Zhang Y, Su J. Melatonin supplementation during in vitro maturation of oocyte enhances subsequent development of bovine cloned embryos. J Cell Physiol 2019; 234:17370-17381. [DOI: 10.1002/jcp.28357] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/27/2019] [Accepted: 01/30/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Quanli An
- Department of Basic Veterinary Sciences Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Ministry of Agriculture Yangling Shaanxi China
| | - Wei Peng
- Department of Basic Veterinary Sciences Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Ministry of Agriculture Yangling Shaanxi China
| | - Yuyao Cheng
- Department of Basic Veterinary Sciences Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Ministry of Agriculture Yangling Shaanxi China
| | - Zhenzhen Lu
- Department of Basic Veterinary Sciences Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Ministry of Agriculture Yangling Shaanxi China
| | - Chuan Zhou
- Department of Basic Veterinary Sciences Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Ministry of Agriculture Yangling Shaanxi China
| | - Yong Zhang
- Department of Basic Veterinary Sciences Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Ministry of Agriculture Yangling Shaanxi China
| | - Jianmin Su
- Department of Basic Veterinary Sciences Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Ministry of Agriculture Yangling Shaanxi China
| |
Collapse
|
3
|
Zhou C, Wang Y, Zhang J, Su J, An Q, Liu X, Zhang M, Wang Y, Liu J, Zhang Y. H3K27me3 is an epigenetic barrier while KDM6A overexpression improves nuclear reprogramming efficiency. FASEB J 2019; 33:4638-4652. [PMID: 30673507 DOI: 10.1096/fj.201801887r] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Aberrant epigenetic reprogramming is a major factor of developmental failure of cloned embryos. Histone H3 lysine 27 trimethylation (H3K27me3), a histone mark for transcriptional repression, plays important roles in mammalian embryonic development and induced pluripotent stem cell (iPSC) generation. The global loss of H3K27me3 marks may facilitate iPSC generation in mice and humans. However, the H3K27me3 level and its role in bovine somatic cell nuclear transfer (SCNT) reprogramming remain poorly understood. Here, we show that SCNT embryos exhibit global H3K27me3 hypermethylation from the 2- to 8-cell stage and that its removal by ectopically expressed H3K27me3 lysine demethylase (KDM)6A greatly improves nuclear reprogramming efficiency. In contrast, H3K27me3 reduction by H3K27me3 methylase enhancer of zeste 2 polycomb repressive complex knockdown or donor cell treatment with the enhancer of zeste 2 polycomb repressive complex-selective inhibitor GSK343 suppressed blastocyst formation by SCNT embryos. KDM6A overexpression enhanced the transcription of genes involved in cell adhesion and cellular metabolism and X-linked genes. Furthermore, we identified methyl-CpG-binding domain protein 3-like 2, which was reactivated by KDM6A, as a factor that is required for effective reprogramming in bovines. These results show that H3K27me3 functions as an epigenetic barrier and that KDM6A overexpression improves SCNT efficiency by facilitating transcriptional reprogramming.-Zhou, C., Wang, Y., Zhang, J., Su, J., An, Q., Liu, X., Zhang, M., Wang, Y., Liu, J., Zhang, Y. H3K27me3 is an epigenetic barrier while KDM6A overexpression improves nuclear reprogramming efficiency.
Collapse
Affiliation(s)
- Chuan Zhou
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yizhi Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jingcheng Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jianmin Su
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Quanli An
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xin Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Min Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yongsheng Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jun Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
4
|
Simões R, Rodrigues Santos A. Factors and molecules that could impact cell differentiation in the embryo generated by nuclear transfer. Organogenesis 2018; 13:156-178. [PMID: 29020571 DOI: 10.1080/15476278.2017.1389367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Somatic cell nuclear transfer is a technique to create an embryo using an enucleated oocyte and a donor nucleus. Nucleus of somatic cells must be reprogrammed in order to participate in normal development within an enucleated egg. Reprogramming refers to the erasing and remodeling of cellular epigenetic marks to a lower differentiation state. Somatic nuclei must be reprogrammed by factors in the oocyte cytoplasm to a rather totipotent state since the reconstructed embryo must initiate embryo development from the one cell stage to term. In embryos reconstructed by nuclear transfer, the donor genetic material must respond to the cytoplasmic environment of the cytoplast and recapitulate this normal developmental process. Enucleation is critically important for cloning efficiency because may affect the ultrastructure of the remaining cytoplast, thus resulting in a decline or destruction of its cellular compartments. Nonetheless, the effects of in vitro culturing are yet to be fully understood. In vitro oocyte maturation can affect the abundance of specific transcripts and are likely to deplete the developmental competence. The epigenetic modifications established during cellular differentiation are a major factor determining this low efficiency as they act as epigenetic barriers restricting reprogramming of somatic nuclei. In this review we discuss some factors that could impact cell differentiation in embryo generated by nuclear transfer.
Collapse
Affiliation(s)
- Renata Simões
- a Centro de Ciências Naturais e Humanas, Universidade Federal do ABC , SP , Brazil
| | | |
Collapse
|
5
|
VPA selectively regulates pluripotency gene expression on donor cell and improve SCNT embryo development. In Vitro Cell Dev Biol Anim 2018; 54:496-504. [PMID: 29943354 DOI: 10.1007/s11626-018-0272-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/07/2018] [Indexed: 01/21/2023]
Abstract
SCNT technology has been successfully used to clone a variety of mammals, but the cloning efficiency is very low. This low efficiency is likely due to the incomplete reprogramming of SCNT embryos. Histone modification and DNA methylation may participate in these events. Thus, it would be interesting to attempt to improve the efficiency of SCNT by using a HDACi VPA. In order to guarantee the effect of VPA and reduce its cytotoxicity, a comprehensive analysis of the cell proliferation and histone modification was performed. The results showed that 0.5 and 1 mM VPA treatment for 24 h were the optimal condition. According to the results, H3K4me3 was increased in 0.5 and 1 mM VPA groups, whereas H3K9me2 was significantly decreased. These are the signals of gene-activation. In addition, VPA treatment led to the overexpression of Oct4 and Nanog. These indicated that VPA-treated cells had similar patterns of histone to zygotic embryos, and may be more favorable for reprograming. A total of 833 cloned embryos were produced from the experimental replicates of VPA-treated donor cells. In 1 mM treatment group, the blastocyst rates were significantly increased compared with control. At the same time, our findings demonstrated the interrelation between DNA methylation and histone modifications.
Collapse
|
6
|
Kim MJ, Oh HJ, Choi YB, Lee S, Setyawan EMN, Lee SH, Lee SH, Hur TY, Lee BC. Suberoylanilide hydroxamic acid during in vitro culture improves development of dog-pig interspecies cloned embryos but not dog cloned embryos. J Reprod Dev 2018; 64:277-282. [PMID: 29695650 PMCID: PMC6021613 DOI: 10.1262/jrd.2017-112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This study was conducted to investigate whether the treatment of dog to pig interspecies somatic cell nuclear transfer (iSCNT) embryos with a histone deacetylase inhibitor, to improve nuclear reprogramming, can be applied to dog SCNT embryos. The dog to pig iSCNT embryos were cultured in fresh porcine zygote medium-5 (PZM-5) with 0, 1, or 10 µM suberoylanilide hydroxamic acid (SAHA) for 6 h, then transferred to PZM-5 without SAHA. Although there were no significant differences in cleavage rates, the rates of 5-8-cell stage embryo development were significantly higher in the 10 µM group (19.5 ± 0.8%) compared to the 0 µM groups (13.4 ± 0.8%). Acetylation of H3K9 was also significantly higher in embryos beyond the 4-cell stage in the 10 µM group compared to the 0 or 1 µM groups. Treatment with 10 µM SAHA for 6 h was chosen for application to dog SCNT. Dog cloned embryos with 0 or 10 µM SAHA were transferred to recipients. However, there were no significant differences in pregnancy and delivery rates between the two groups. Therefore, it can be concluded that although porcine oocytes support nuclear reprogramming of dog fibroblasts, treatment with a histone deacetylase inhibitor that supports nuclear reprogramming in dog to pig iSCNT embryos was not sufficient for reprogramming in dog SCNT embryos.
Collapse
Affiliation(s)
- Min Jung Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun Ju Oh
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Yoo Bin Choi
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Sanghoon Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Erif Maha Nugraha Setyawan
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Seok Hee Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Hoon Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Jeollabuk-do 54875, Republic of Korea
| | - Tai Young Hur
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Jeollabuk-do 54875, Republic of Korea
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
7
|
Zhai Y, Li W, Zhang Z, Cao Y, Wang Z, Zhang S, Li Z. Epigenetic states of donor cells significantly affect the development of somatic cell nuclear transfer (SCNT) embryos in pigs. Mol Reprod Dev 2017; 85:26-37. [PMID: 29205617 DOI: 10.1002/mrd.22935] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/29/2017] [Indexed: 01/31/2023]
Affiliation(s)
- Yanhui Zhai
- College of Veterinary Medicine; Jilin University; Changchun China
- First Hospital; Jilin University; Changchun China
| | - Wei Li
- First Hospital; Jilin University; Changchun China
| | - Zhiren Zhang
- College of Animal Science; Jilin University; Changchun China
| | - Yunqing Cao
- College of Veterinary Medicine; Jilin University; Changchun China
| | | | - Sheng Zhang
- First Hospital; Jilin University; Changchun China
| | - Ziyi Li
- First Hospital; Jilin University; Changchun China
| |
Collapse
|
8
|
Miyoshi K, Kawaguchi H, Maeda K, Sato M, Akioka K, Noguchi M, Horiuchi M, Tanimoto A. Birth of Cloned Microminipigs Derived from Somatic Cell Nuclear Transfer Embryos That Have Been Transiently Treated with Valproic Acid. Cell Reprogram 2017; 18:390-400. [PMID: 27906585 DOI: 10.1089/cell.2016.0025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In our previous study, we found that treatment of miniature pig somatic cell nuclear transfer (SCNT) embryos with 4 mM valproic acid (VPA), a histone deacetylase inhibitor, for 48 hours after activation enhanced blastocyst formation rate and octamer-binding transcription factor-3/4 (Oct-3/4) gene expression at the late blastocyst stage; however, the production of viable cloned pups failed, when those VPA-treated SCNT embryos were transferred to recipients. This failure suggests that the present VPA treatment is suboptimal. In the present study, we explored the optimal conditions for VPA to have beneficial effects on the development of SCNT embryos. When miniature pig SCNT embryos were treated with 8 mM VPA for 24 hours after activation, both the rates of blastocyst formation and blastocysts expressing the Oct-3/4 gene were significantly (p < 0.05) improved. A similar increase in blastocyst formation was also observed when microminipig-derived cells were used as SCNT donors. Five cloned piglets were obtained after the transfer of 152 microminipig SCNT embryos that had been treated with 8 mM VPA for 24 hours. The results indicated that a short duration of treatment with VPA improves the development of both miniature pig and microminipig SCNT embryos, possibly via an enhanced reprogramming mechanism.
Collapse
Affiliation(s)
- Kazuchika Miyoshi
- 1 Laboratory of Animal Reproduction, Faculty of Agriculture, Kagoshima University , Kagoshima, Japan
| | - Hiroaki Kawaguchi
- 2 Department of Hygiene and Health Promotion Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University , Kagoshima, Japan
| | - Kosuke Maeda
- 1 Laboratory of Animal Reproduction, Faculty of Agriculture, Kagoshima University , Kagoshima, Japan
| | - Masahiro Sato
- 3 Section of Gene Expression Regulation, Center for Advanced Biomedical Science and Swine Research, Kagoshima University , Kagoshima, Japan
| | - Kohei Akioka
- 4 Department of Veterinary Histopathology, Joint Faculty of Veterinary Medicine, Kagoshima University , Kagoshima, Japan
| | - Michiko Noguchi
- 5 Laboratory of Theriogenology, Faculty of Veterinary Medicine, Azabu University , Kanagawa, Japan
| | - Masahisa Horiuchi
- 2 Department of Hygiene and Health Promotion Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University , Kagoshima, Japan
| | - Akihide Tanimoto
- 6 Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University , Kagoshima, Japan
| |
Collapse
|
9
|
DNA repair and replication links to pluripotency and differentiation capacity of pig iPS cells. PLoS One 2017; 12:e0173047. [PMID: 28253351 PMCID: PMC5333863 DOI: 10.1371/journal.pone.0173047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/14/2017] [Indexed: 01/05/2023] Open
Abstract
Pigs are proposed to be suitable large animal models for test of the efficacy and safety of induced pluripotent stem cells (iPSCs) for stem cell therapy, but authentic pig ES/iPS cell lines with germline competence are rarely produced. The pathways or signaling underlying the defective competent pig iPSCs remain poorly understood. By improving induction conditions using various small chemicals, we generated pig iPSCs that exhibited high pluripotency and differentiation capacity that can contribute to chimeras. However, their potency was reduced with increasing passages by teratoma formation test, and correlated with declined expression levels of Rex1, an important marker for naïve state. By RNA-sequencing analysis, genes related to WNT signaling were upregulated and MAPK signaling and TGFβ pathways downregulated in pig iPSCs compared to fibroblasts, but they were abnormally expressed during passages. Notably, pathways involving in DNA repair and replication were upregulated at early passage, but downregulated in iPSCs during prolonged passage in cluster with fibroblasts. Our data suggests that reduced DNA repair and replication capacity links to the instability of pig iPSCs. Targeting these pathways may facilitate generation of truly pluripotent pig iPSCs, with implication in translational studies.
Collapse
|
10
|
Cao Z, Hong R, Ding B, Zuo X, Li H, Ding J, Li Y, Huang W, Zhang Y. TSA and BIX-01294 Induced Normal DNA and Histone Methylation and Increased Protein Expression in Porcine Somatic Cell Nuclear Transfer Embryos. PLoS One 2017; 12:e0169092. [PMID: 28114389 PMCID: PMC5256949 DOI: 10.1371/journal.pone.0169092] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 12/12/2016] [Indexed: 11/18/2022] Open
Abstract
The poor efficiency of animal cloning is mainly attributed to the defects in epigenetic reprogramming of donor cells' chromatins during early embryonic development. Previous studies indicated that inhibition of histone deacetylases or methyltransferase, such as G9A, using Trichostatin A (TSA) or BIX-01294 significantly enhanced the developmental efficiency of porcine somatic cell nuclear transfer (SCNT) embryos. However, potential mechanisms underlying the improved early developmental competence of SCNT embryos exposed to TSA and BIX-01294 are largely unclear. Here we found that 50 nM TSA or 1.0 μM BIX-01294 treatment alone for 24 h significantly elevated the blastocyst rate (P < 0.05), while further improvement was not observed under combined treatment condition. Furthermore, co-treatment or TSA treatment alone significantly reduced H3K9me2 level at the 4-cell stage, which is comparable with that in in vivo and in vitro fertilized counterparts. However, only co-treatment significantly decreased the levels of 5mC and H3K9me2 in trophectoderm lineage and subsequently increased the expression of OCT4 and CDX2 associated with ICM and TE lineage differentiation. Altogether, these results demonstrate that co-treatment of TSA and BIX-01294 enhances the early developmental competence of porcine SCNT embryos via improvements in epigenetic status and protein expression.
Collapse
Affiliation(s)
- Zubing Cao
- Anhui Provincial Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Renyun Hong
- Anhui Provincial Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Biao Ding
- Anhui Provincial Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiaoyuan Zuo
- Anhui Provincial Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Hui Li
- Anhui Provincial Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jianping Ding
- Anhui Provincial Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yunsheng Li
- Anhui Provincial Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Weiping Huang
- Anhui Provincial Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yunhai Zhang
- Anhui Provincial Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- * E-mail:
| |
Collapse
|
11
|
Selokar NL, Saini M, Agrawal H, Palta P, Chauhan MS, Manik R, Singla SK. Valproic Acid Increases Histone Acetylation and Alters Gene Expression in the Donor Cells But Does Not Improve the In Vitro Developmental Competence of Buffalo (Bubalus bubalis) Embryos Produced by Hand-Made Cloning. Cell Reprogram 2017; 19:10-18. [PMID: 28055238 DOI: 10.1089/cell.2016.0029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Use of histone deacetylase inhibitors (HDACis) is believed to improve the developmental competence and quality of cloned embryos produced. We examined the effects of treatment of buffalo fibroblasts with valproic acid (VPA), a HDACi on these cells and on embryos produced from them by hand-made cloning. VPA treatment (1.5, 3.0, or 4.5 mM) altered (p < 0.05) the growth characteristics and relative expression level of HDAC1, DNMT1, DNMT3a, P53, and CASPASE3, and the global level of H3K9/14ac, H4K5ac, and H3K18ac but not H3K27me3 in the cells. After the use of VPA-treated donor cells for producing embryos, the cleavage and blastocyst rate, and total cell number were not significantly affected; however, the apoptotic index was lower (p < 0.05) for 3.0 or 4.5 mM VPA group than for 1.5 mM VPA group or the controls. In the cloned blastocysts, the expression level of HDAC1 was higher (p < 0.05) and CASPASE3 was lower (p < 0.05), whereas that of DNMT1, DNMT3a, and P53 and the global level of H3K9/14ac were not significantly affected after VPA treatment of donor cells. In conclusion, these results suggest that VPA treatment of donor cells adversely affects their growth characteristics, increases histone acetylation, and alters gene expression but does not improve production rate of cloned embryos.
Collapse
Affiliation(s)
- Naresh L Selokar
- 1 Animal Biotechnology Centre, National Dairy Research Institute , Karnal, India .,2 Department of Animal Physiology and Reproduction, Central Institute for Research on Buffaloes , Hisar, India
| | - Monika Saini
- 1 Animal Biotechnology Centre, National Dairy Research Institute , Karnal, India .,2 Department of Animal Physiology and Reproduction, Central Institute for Research on Buffaloes , Hisar, India
| | - Himanshu Agrawal
- 1 Animal Biotechnology Centre, National Dairy Research Institute , Karnal, India
| | - Prabhat Palta
- 1 Animal Biotechnology Centre, National Dairy Research Institute , Karnal, India
| | | | - Radheysham Manik
- 1 Animal Biotechnology Centre, National Dairy Research Institute , Karnal, India
| | - Suresh Kumar Singla
- 1 Animal Biotechnology Centre, National Dairy Research Institute , Karnal, India
| |
Collapse
|
12
|
Jin L, Zhu HY, Guo Q, Li XC, Zhang YC, Cui CD, Li WX, Cui ZY, Yin XJ, Kang JD. Effect of histone acetylation modification with MGCD0103, a histone deacetylase inhibitor, on nuclear reprogramming and the developmental competence of porcine somatic cell nuclear transfer embryos. Theriogenology 2016; 87:298-305. [PMID: 27742403 DOI: 10.1016/j.theriogenology.2016.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 08/27/2016] [Accepted: 09/06/2016] [Indexed: 12/23/2022]
Abstract
Cloning remains as an important technique to enhance the reconstitution and distribution of animal population with high-genetic merit. One of the major detrimental factors of this technique is the abnormal epigenetic modifications. MGCD0103 is known as a histone deacetylase inhibitor. In this study, we investigated the effect of MGCD0103 on the in vitro blastocyst formation rate in porcine somatic cell nuclear transferred (SCNT) embryos and expression in acetylation of the histone H3 lysine 9 and histone H4 lysine 12. We compared the in vitro embryonic development of SCNT embryos treated with different concentrations of MGCD0103 for 24 hours. Our results reported that treating with 0.2-μM MGCD0103 for 24 hours effectively improved the development of SCNT embryos, in comparison to the control group (blastocyst formation rate, 25.5 vs. 10.7%, P < 0.05). Then we tested the in vitro development of SCNT embryos treated with 0.2-μM MGCD0103 for various intervals after activation. Treatment for 6 hours significantly improved the development of pig SCNT embryos, compared with the control group (blastocyst formation rate, 21.2 vs. 10.5%, P < 0.05). Furthermore, MGCD0103 supplementation significantly (P < 0.05) increases the average fluorescence intensity of AcH3K9 and AcH4K12 in embryos at the pseudo-pronuclear stage. To examine the in vivo development, MGCD0103-treated SCNT embryos were transferred into two surrogate sows, one of whom became pregnant and three fetuses developed. These results suggest that MGCD0103 can enhance the nuclear reprogramming and improve in vitro developmental potential of porcine SCNT embryos.
Collapse
Affiliation(s)
- Long Jin
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Hai-Ying Zhu
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Qing Guo
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Xiao-Chen Li
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Yu-Chen Zhang
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Cheng-Du Cui
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Wen-Xue Li
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Zheng-Yun Cui
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Xi-Jun Yin
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China.
| | - Jin-Dan Kang
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China.
| |
Collapse
|
13
|
Whitworth KM, Mao J, Lee K, Spollen WG, Samuel MS, Walters EM, Spate LD, Prather RS. Transcriptome Analysis of Pig In Vivo, In Vitro-Fertilized, and Nuclear Transfer Blastocyst-Stage Embryos Treated with Histone Deacetylase Inhibitors Postfusion and Activation Reveals Changes in the Lysosomal Pathway. Cell Reprogram 2016; 17:243-58. [PMID: 26731590 DOI: 10.1089/cell.2015.0022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Genetically modified pigs are commonly created via somatic cell nuclear transfer (SCNT). Treatment of reconstructed embryos with histone deacetylase inhibitors (HDACi) immediately after activation improves cloning efficiency. The objective of this experiment was to evaluate the transcriptome of SCNT embryos treated with suberoylanilide hydroxamic acid (SAHA), 4-iodo-SAHA (ISAHA), or Scriptaid as compared to untreated SCNT, in vitro-fertilized (IVF), and in vivo (IVV) blastocyst-stage embryos. SAHA (10 μM) had the highest level of blastocyst development at 43.9%, and all treatments except 10 μM ISAHA had the same percentage of blastocyst development as Scriptaid (p<0.05). Two treatments, 1.0 μM ISAHA and 1.0 μM SAHA, had higher mean cell number than No HDACi treatment (p<0.021). Embryo transfers performed with 10 μM SAHA- and 1 μM ISAHA-treated embryos resulted in the birth of healthy piglets. GenBank accession numbers from up- and downregulated transcripts were loaded into the Database for Annotation, Visualization and Integrated Discovery to identify enriched biological themes. HDACi treatment yielded the highest enrichment for transcripts within the Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway, lysosome. The mean intensity of LysoTracker was lower in IVV embryos compared to IVF and SCNT embryos (p<0.0001). SAHA and ISAHA can successfully be used to create healthy piglets from SCNT.
Collapse
Affiliation(s)
- Kristin M Whitworth
- 1 Division of Animal Sciences, National Swine Research and Resource Center, University of Missouri , Columbia, MO, 65211
| | - Jiude Mao
- 1 Division of Animal Sciences, National Swine Research and Resource Center, University of Missouri , Columbia, MO, 65211
| | - Kiho Lee
- 2 Department of Animal and Poultry Science, Virginia Tech , Blacksburg, VA, 24061
| | - William G Spollen
- 3 Informatics Research Core Facility, University of Missouri , Columbia, MO, 65211
| | - Melissa S Samuel
- 1 Division of Animal Sciences, National Swine Research and Resource Center, University of Missouri , Columbia, MO, 65211
| | - Eric M Walters
- 1 Division of Animal Sciences, National Swine Research and Resource Center, University of Missouri , Columbia, MO, 65211
| | - Lee D Spate
- 1 Division of Animal Sciences, National Swine Research and Resource Center, University of Missouri , Columbia, MO, 65211
| | - Randall S Prather
- 1 Division of Animal Sciences, National Swine Research and Resource Center, University of Missouri , Columbia, MO, 65211
| |
Collapse
|
14
|
Huang Y, Li Z, Wang A, Han X, Song Y, Yuan L, Li T, Wang B, Lai L, Ouyang H, Pang D. Chimerism in piglets developed from aggregated cloned embryos. FEBS Open Bio 2016; 6:285-302. [PMID: 27239442 PMCID: PMC4821359 DOI: 10.1002/2211-5463.12037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/18/2015] [Accepted: 01/25/2016] [Indexed: 12/02/2022] Open
Abstract
Porcine chimeras are valuable in the study of pluripotency, embryogenesis and development. It would be meaningful to generate chimeric piglets from somatic cell nuclear transfer embryos. In this study, two cell lines expressing the fluorescent markers enhanced green fluorescent protein (EGFP) and tdTomato were used as donor cells to produce reconstructed embryos. Chimeric embryos were generated by aggregating two EGFP‐cell derived embryos with two tdTomato‐cell derived embryos at the 4‐cell stage, and embryo transfer was performed when the aggregated embryos developed into blastocysts. Live porcine chimeras were successfully born and chimerism was observed by their skin color, gene integration, microsatellite loci composition and fluorescent protein expression. The chimeric piglets were largely composed of EGFP‐expressing cells, and this phenomenon was possibly due to the hyper‐methylation of the promoter of the tdTomato gene. In addition, the expression levels of tumorigenicity‐related genes were altered after tdTomato transfection in bladder cancer cells. The results show that chimeric pigs can be produced by aggregating cloned embryos and that the developmental capability of the cloned embryo in the subsequent chimeric development could be affected by the growth characteristics of its donor cell.
Collapse
Affiliation(s)
- Yongye Huang
- College of Life and Health Sciences Northeastern University Shenyang China; Jilin Provincial Key Laboratory of Animal Embryo Engineering College of Animal Sciences Jilin University Changchun China
| | - Zhanjun Li
- Jilin Provincial Key Laboratory of Animal Embryo Engineering College of Animal Sciences Jilin University Changchun China
| | - Anfeng Wang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering College of Animal Sciences Jilin University Changchun China
| | - Xiaolei Han
- Jilin Provincial Key Laboratory of Animal Embryo Engineering College of Animal Sciences Jilin University Changchun China
| | - Yuning Song
- Jilin Provincial Key Laboratory of Animal Embryo Engineering College of Animal Sciences Jilin University Changchun China
| | - Lin Yuan
- Jilin Provincial Key Laboratory of Animal Embryo Engineering College of Animal Sciences Jilin University Changchun China
| | - Tianye Li
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Bing Wang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Liangxue Lai
- Jilin Provincial Key Laboratory of Animal Embryo Engineering College of Animal Sciences Jilin University Changchun China
| | - Hongsheng Ouyang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering College of Animal Sciences Jilin University Changchun China
| | - Daxin Pang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering College of Animal Sciences Jilin University Changchun China
| |
Collapse
|
15
|
Zhou X, Wang L, Du Y, Xie F, Li L, Liu Y, Liu C, Wang S, Zhang S, Huang X, Wang Y, Wei H. Efficient Generation of Gene-Modified Pigs Harboring Precise Orthologous Human Mutation via CRISPR/Cas9-Induced Homology-Directed Repair in Zygotes. Hum Mutat 2016; 37:110-8. [PMID: 26442986 DOI: 10.1002/humu.22913] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/17/2015] [Indexed: 12/25/2022]
Abstract
Precise genetic mutation of model animals is highly valuable for functional investigation of human mutations. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9)-induced homology-directed repair (HDR) is usually used for precise genetic mutation, being limited by the relatively low efficiency compared with that of non-homologous end joining (NHEJ). Although inhibition of NHEJ was shown to enhance HDR-derived mutation, in this work, without inhibition of NHEJ, we first generated gene-modified pigs harboring precise orthologous human mutation (Sox10 c.A325>T) via CRISPR/Cas9-induced HDR in zygotes using single-strand oligo DNA (ssODN) as template with an efficiency as high as 80%, indicating that pig zygotes exhibited high activities of HDR relative to NHEJ and were highly amendable to genetic mutation via CIRSPR/Cas9-induced HDR. Besides, we found a higher concentration of ssODN remarkably reduced HDR-derived mutation in pig zygotes, suggesting a possible balance for optimal HDR-derived mutation in zygotes between the excessive accessibility to HDR templates and the activities of HDR relative to NHEJ which appeared to be negatively correlated to ssODN concentration. In addition, the HDR-derived mutation, as well as those from NHEJ, extensively integrated into various tissues including gonad of founder pig without detected off-targeting, suggesting CRISPR/Cas9-induced HDR in zygotes is a reliable approach for precise genetic mutation in pigs.
Collapse
Affiliation(s)
- Xiaoyang Zhou
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Lulu Wang
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Yinan Du
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Fei Xie
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Liang Li
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Yu Liu
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Chuanhong Liu
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Shiqiang Wang
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Shibing Zhang
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yong Wang
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Hong Wei
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| |
Collapse
|
16
|
Mallol A, Piqué L, Santaló J, Ibáñez E. Morphokinetics of cloned mouse embryos treated with epigenetic drugs and blastocyst prediction. Reproduction 2015; 151:203-14. [PMID: 26621919 DOI: 10.1530/rep-15-0354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/30/2015] [Indexed: 12/31/2022]
Abstract
Time-lapse monitoring of somatic cell nuclear transfer (SCNT) embryos may help to predict developmental success and increase birth and embryonic stem cells (ESC) derivation rates. Here, the development of ICSI fertilized embryos and of SCNT embryos, non-treated or treated with either psammaplin A (PsA) or vitamin C (VitC), was monitored, and the ESC derivation rates from the resulting blastocysts were determined. Blastocyst rates were similar among PsA-treated and VitC-treated SCNT embryos and ICSI embryos, but lower for non-treated SCNT embryos. ESC derivation rates were higher in treated SCNT embryos than in non-treated or ICSI embryos. Time-lapse microscopy analysis showed that non-treated SCNT embryos had a delayed development from the second division until compaction, lower number of blastomeres at compaction and longer compaction and cavitation durations compared with ICSI ones. Treatment of SCNT embryos with PsA further increased this delay whereas treatment with VitC slightly reduced it, suggesting that both treatments act through different mechanisms, not necessarily related to their epigenetic effects. Despite these differences, the time of completion of the third division, alone or combined with the duration of compaction and/or the presence of fragmentation, had a strong predictive value for blastocyst formation in all groups. In contrast, we failed to predict ESC derivation success from embryo morphokinetics. Time-lapse technology allows the selection of SCNT embryos with higher developmental potential and could help to increase cloning outcomes. Nonetheless, further studies are needed to find reliable markers for full-term development and ESC derivation success.
Collapse
Affiliation(s)
- Anna Mallol
- Unitat de Biologia Cel.lularDepartament de Biologia Cel.lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Laia Piqué
- Unitat de Biologia Cel.lularDepartament de Biologia Cel.lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Josep Santaló
- Unitat de Biologia Cel.lularDepartament de Biologia Cel.lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Elena Ibáñez
- Unitat de Biologia Cel.lularDepartament de Biologia Cel.lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
17
|
Wang Y, Zhou XY, Xiang PY, Wang LL, Tang H, Xie F, Li L, Wei H. The meganuclease I-SceI containing nuclear localization signal (NLS-I-SceI) efficiently mediated mammalian germline transgenesis via embryo cytoplasmic microinjection. PLoS One 2014; 9:e108347. [PMID: 25250567 PMCID: PMC4177210 DOI: 10.1371/journal.pone.0108347] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 08/18/2014] [Indexed: 12/23/2022] Open
Abstract
The meganuclease I-SceI has been effectively used to facilitate transgenesis in fish eggs for nearly a decade. I-SceI-mediated transgenesis is simply via embryo cytoplasmic microinjection and only involves plasmid vectors containing I-SceI recognition sequences, therefore regarding the transgenesis process and application of resulted transgenic organisms, I-SceI-mediated transgenesis is of minimal bio-safety concerns. However, currently no transgenic mammals derived from I-SceI-mediated transgenesis have been reported. In this work, we found that the native I-SceI molecule was not capable of facilitating transgenesis in mammalian embryos via cytoplasmic microinjection as it did in fish eggs. In contrast, the I-SceI molecule containing mammalian nuclear localization signal (NLS-I-SceI) was shown to be capable of transferring DNA fragments from cytoplasm into nuclear in porcine embryos, and cytoplasmic microinjection with NLS-I-SceI mRNA and circular I-SceI recognition sequence-containing transgene plasmids resulted in transgene expression in both mouse and porcine embryos. Besides, transfer of the cytoplasmically microinjected mouse and porcine embryos into synchronized recipient females both efficiently resulted in transgenic founders with germline transmission competence. These results provided a novel method to facilitate mammalian transgenesis using I-SceI, and using the NLS-I-SceI molecule, a simple, efficient and species-neutral transgenesis technology based on embryo cytoplasmic microinjection with minimal bio-safety concerns can be established for mammalian species. As far as we know, this is the first report for transgenic mammals derived from I-SceI-mediated transgenesis via embryo cytoplasmic microinjection.
Collapse
Affiliation(s)
- Yong Wang
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
- * E-mail: (YW); (HW)
| | - Xiao-Yang Zhou
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Peng-Ying Xiang
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Lu-Lu Wang
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Huan Tang
- China Three Gorges Museum, Chongqing, China
| | - Fei Xie
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Liang Li
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Hong Wei
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
- * E-mail: (YW); (HW)
| |
Collapse
|
18
|
Grupen CG. The evolution of porcine embryo in vitro production. Theriogenology 2014; 81:24-37. [PMID: 24274407 DOI: 10.1016/j.theriogenology.2013.09.022] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/14/2013] [Accepted: 09/14/2013] [Indexed: 12/23/2022]
Abstract
The in vitro production of porcine embryos has presented numerous challenges to researchers over the past four decades. Some of the problems encountered were specific to porcine gametes and embryos and needed the concerted efforts of many to overcome. Gradually, porcine embryo in vitro production systems became more reliable and acceptable rates of blastocyst formation were achieved. Despite the significant improvements, the problem of polyspermic fertilization has still not been adequately resolved and the embryo in vitro culture conditions are still considered to be suboptimal. Whereas early studies focused on increasing our understanding of the reproductive processes involved, the technology evolved to the point where in vitro-matured oocytes and in vitro-produced embryos could be used as research material for developing associated reproductive technologies, such as SCNT and embryo cryopreservation. Today, the in vitro procedures used to mature oocytes and culture embryos are integral to the production of transgenic pigs by SCNT. This review discusses the major achievements, advances, and knowledge gained from porcine embryo in vitro production studies and highlights the future research perspectives of this important technology.
Collapse
Affiliation(s)
- Christopher G Grupen
- Faculty of Veterinary Science, The University of Sydney, Camden, New South Wales, Australia.
| |
Collapse
|
19
|
Dynamic changes of histone H3 lysine 27 acetylation in pre-implantational pig embryos derived from somatic cell nuclear transfer. Anim Reprod Sci 2014; 148:153-63. [DOI: 10.1016/j.anireprosci.2014.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/03/2014] [Accepted: 06/05/2014] [Indexed: 01/08/2023]
|
20
|
Hou L, Ma F, Yang J, Riaz H, Wang Y, Wu W, Xia X, Ma Z, Zhou Y, Zhang L, Ying W, Xu D, Zuo B, Ren Z, Xiong Y. Effects of histone deacetylase inhibitor oxamflatin on in vitro porcine somatic cell nuclear transfer embryos. Cell Reprogram 2014; 16:253-65. [PMID: 24960409 PMCID: PMC4116115 DOI: 10.1089/cell.2013.0058] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Low cloning efficiency is considered to be caused by the incomplete or aberrant epigenetic reprogramming of differentiated donor cells in somatic cell nuclear transfer (SCNT) embryos. Oxamflatin, a novel class of histone deacetylase inhibitor (HDACi), has been found to improve the in vitro and full-term developmental potential of SCNT embryos. In the present study, we studied the effects of oxamflatin treatment on in vitro porcine SCNT embryos. Our results indicated that the rate of in vitro blastocyst formation of SCNT embryos treated with 1 μM oxamflatin for 15 h postactivation was significantly higher than all other treatments. Treatment of oxamflatin decreased the relative histone deacetylase (HDAC) activity in cloned embryos and resulted in hyperacetylation levels of histone H3 at lysine 9 (AcH3K9) and histone H4 at lysine 5 (AcH4K5) at pronuclear, two-cell, and four-cell stages partly through downregulating HDAC1. The suppression of HDAC6 through oxamflatin increased the nonhistone acetylation level of α-tubulin during the mitotic cell cycle of early SCNT embryos. In addition, we demonstrated that oxamflatin downregulated DNA methyltransferase 1 (DNMT1) expression and global DNA methylation level (5-methylcytosine) in two-cell-stage porcine SCNT embryos. The pluripotency-related gene POU5F1 was found to be upregulated in the oxamflatin-treated group with a decreased DNA methylation tendency in its promoter regions. Treatment of oxamflatin did not change the locus-specific DNA methylation levels of Sus scrofa heterochromatic satellite DNA sequences at the blastocyst stage. Meanwhile, our findings suggest that treatment with HDACi may contribute to maintaining the stable status of cytoskeleton-associated elements, such as acetylated α-tubulin, which may be the crucial determinants of donor nuclear reprogramming in early SCNT embryos. In summary, oxamflatin treatment improves the developmental potential of porcine SCNT embryos in vitro.
Collapse
Affiliation(s)
- Liming Hou
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fanhua Ma
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinzeng Yang
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, 96822
| | - Hasan Riaz
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongliang Wang
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wangjun Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoliang Xia
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiyuan Ma
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ying Zhou
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin Zhang
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenqin Ying
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dequan Xu
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Zuo
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhuqing Ren
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuanzhu Xiong
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
21
|
Mallol A, Santaló J, Ibáñez E. Psammaplin a improves development and quality of somatic cell nuclear transfer mouse embryos. Cell Reprogram 2014; 16:392-406. [PMID: 25068567 DOI: 10.1089/cell.2014.0012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Faulty reprogramming of the donor somatic nucleus to a totipotent embryonic state by the recipient oocyte is a major obstacle for cloning success. Accordingly, treatment of cloned embryos with epigenetic modifiers, such as histone deacetylase inhibitors (HDACi), enhances cloning efficiency. The purpose of our study was to further explore the potential effect of valproic acid (VPA), used in previous studies, and to investigate the effect of psammaplin A (PsA), a novel HDACi, on the development and quality of cloned mouse embryos. To this aim, cloned embryos were treated with 5, 10, and 20 μM PsA or 2 and 4 mM VPA for 8-9 h (before and during activation) or 16 h or 24 h (during and after activation), and their in vitro developmental potential and blastocyst quality were evaluated. Treatments with 10 μM PsA and 2 mM VPA for 16 h were selected as the most optimal, showing higher blastocyst rates and quality. These treatments had no significant effects on the expression of Nanog, Oct4, and Cdx2 or on global histone and DNA methylation levels at the blastocyst stage, but both increased global levels of histone acetylation at early developmental stages. This was correlated with a two-fold (for VPA) and four-fold (for PsA) increase in full-term development, and a 11.5-fold increase when PsA was combined with the use of latrunculin A instead of cytochalasin B. In conclusion, PsA improves mouse cloning efficiency to a higher extent than VPA.
Collapse
Affiliation(s)
- Anna Mallol
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona , 08193, Bellaterra, Spain
| | | | | |
Collapse
|
22
|
Zhu HY, Kang JD, Li S, Jin JX, Hong Y, Jin L, Guo Q, Gao QS, Yan CG, Yin XJ. Production of rhesus monkey cloned embryos expressing monomeric red fluorescent protein by interspecies somatic cell nuclear transfer. Biochem Biophys Res Commun 2014; 444:638-43. [PMID: 24491539 DOI: 10.1016/j.bbrc.2014.01.137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 01/25/2014] [Indexed: 10/25/2022]
Abstract
Interspecies somatic cell nuclear transfer (iSCNT) is a promising method to clone endangered animals from which oocytes are difficult to obtain. Monomeric red fluorescent protein 1 (mRFP1) is an excellent selection marker for transgenically modified cloned embryos during somatic cell nuclear transfer (SCNT). In this study, mRFP-expressing rhesus monkey cells or porcine cells were transferred into enucleated porcine oocytes to generate iSCNT and SCNT embryos, respectively. The development of these embryos was studied in vitro. The percentage of embryos that underwent cleavage did not significantly differ between iSCNT and SCNT embryos (P>0.05; 71.53% vs. 80.30%). However, significantly fewer iSCNT embryos than SCNT embryos reached the blastocyst stage (2.04% vs. 10.19%, P<0.05). Valproic acid was used in an attempt to increase the percentage of iSCNT embryos that developed to the blastocyst stage. However, the percentages of embryos that underwent cleavage and reached the blastocyst stage were similar between untreated iSCNT embryos and iSCNT embryos treated with 2mM valproic acid for 24h (72.12% vs. 70.83% and 2.67% vs. 2.35%, respectively). These data suggest that porcine-rhesus monkey interspecies embryos can be generated that efficiently express mRFP1. However, a significantly lower proportion of iSCNT embryos than SCNT embryos reach the blastocyst stage. Valproic acid does not increase the percentage of porcine-rhesus monkey iSCNT embryos that reach the blastocyst stage. The mechanisms underling nuclear reprogramming and epigenetic modifications in iSCNT need to be investigated further.
Collapse
Affiliation(s)
- Hai-Ying Zhu
- Department of Animal Science, Agricultural College of Yanbian University, Yanji 133002, PR China
| | - Jin-Dan Kang
- Department of Animal Science, Agricultural College of Yanbian University, Yanji 133002, PR China
| | - Suo Li
- Department of Animal Science, Agricultural College of Yanbian University, Yanji 133002, PR China
| | - Jun-Xue Jin
- Department of Animal Science, Agricultural College of Yanbian University, Yanji 133002, PR China
| | - Yu Hong
- Department of Animal Science, Agricultural College of Yanbian University, Yanji 133002, PR China
| | - Long Jin
- Department of Animal Science, Agricultural College of Yanbian University, Yanji 133002, PR China
| | - Qing Guo
- Department of Animal Science, Agricultural College of Yanbian University, Yanji 133002, PR China
| | - Qing-Shan Gao
- Department of Animal Science, Agricultural College of Yanbian University, Yanji 133002, PR China
| | - Chang-Guo Yan
- Department of Animal Science, Agricultural College of Yanbian University, Yanji 133002, PR China
| | - Xi-Jun Yin
- Department of Animal Science, Agricultural College of Yanbian University, Yanji 133002, PR China.
| |
Collapse
|
23
|
Su J, Wang Y, Zhang L, Wang B, Liu J, Luo Y, Guo Z, Quan F, Zhang Y. Oocyte-secreted factors in oocyte maturation media enhance subsequent development of bovine cloned embryos. Mol Reprod Dev 2014; 81:341-9. [PMID: 24420374 DOI: 10.1002/mrd.22302] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 01/09/2014] [Indexed: 11/08/2022]
Abstract
Successful in vitro maturation (IVM) and oocyte quality both affect the subsequent development of cloned embryos derived from somatic-cell nuclear transfer (SCNT). Developmental competence is usually lower in oocytes matured in vitro compared with those that matured in vivo, possibly due to insufficient levels of oocyte-secreted factors (OSFs) and disrupted oocyte-cumulus communication. This study investigated the effects of OSFs secreted by denuded oocytes (DOs) during IVM on the subsequent developmental competence of cloned bovine embryos. Cumulus-oocyte complexes (COCs) from antral follicles of slaughtered-cow ovaries collected from an abattoir were divided into four groups: COCs co-cultured with and without DOs in maturation media used for SCNT, as well as COCs co-cultured with and without DOs in maturation media used for in vitro fertilization (IVF). Based on the developmental competence and embryo quality of bovine embryos generated from these four groups, we found that co-culturing the COCs with DOs enhanced the in vitro development of IVF and cloned bovine embryos, and potentially generated more high-quality cloned blastocysts that possessed locus-specific histone modifications at levels similar to in vitro-fertilized embryos. These results strongly suggest that co-culturing COCs with DOs enhances subsequent developmental competence of cloned bovine embryo.
Collapse
Affiliation(s)
- Jianmin Su
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhang H, Xiao Y, Wang X, Riaz H, Li W, Fu S, Xin Y, Shi L, Ma F, Li X, Yang L. Effects of histone deacetylase inhibitors on the early development of bovine androgenetic embryos. Cell Reprogram 2014; 16:54-64. [PMID: 24387164 DOI: 10.1089/cell.2013.0027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Histone acetylation is one of the most important posttranslational modifications that contribute to transcriptional initiation and chromatin remodeling. In our previous study, we enhanced sperm chromatin remodeling within the bovine sperm injection-derived androgenentic (SpI-AG) embryos by sperm pretreatment, and thereby improved their early developmental competence. In this study, we found that blastocyst development of SpI-AG embryos could be elevated by the histone deacetylase inhibitor (HDACi). First, we optimized the efficacy of two histone deacetylase inhibitors [trichostatin A (TSA) and Scriptaid (SCR)] in a dose (0, 5, 10, 20, 50, and 100 nM for TSA; 0, 50, 100, 200, 300, and 500 nM for SCR, respectively) and time-dependent (0, 10, 15, 20, and 25 h) manner on the developmental capacity of these embryos. Furthermore, we quantitatively assessed the alterations in histone H3 and H4 overall acetylation levels and blastocyst quality of SpI-AG embryos by immunofluorescence staining. We found a significantly improved morula and blastocyst development rate of SpI-AG embryos at a mild dose of TSA (20 nM) or SCR (200 nM) for 15 h after embryo activation. Furthermore, both HDACi noticeably increased the levels of acetylated histone H3 and H4 in SpI-AG blastocyst embryos, whereas, SCR treatment improved the quality of blastocysts when compared with control group. In conclusion, HDACi is beneficial for early development of bovine SpI-AG embryos and can be used to improve the efficiency of its in vitro production.
Collapse
Affiliation(s)
- Hualin Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University , Wuhan, 430070, P.R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Luo C, Lu F, Wang X, Wang Z, Li X, Gong F, Jiang J, Liu Q, Shi D. Treatment of donor cells with trichostatin A improves in vitro development and reprogramming of buffalo (Bubalus bubalis) nucleus transfer embryos. Theriogenology 2013; 80:878-86. [DOI: 10.1016/j.theriogenology.2013.07.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 07/21/2013] [Accepted: 07/22/2013] [Indexed: 11/30/2022]
|
26
|
Gao H, Bai H, Ao X, Sa R, Wang H, Wang Z, Yue Y, Yu H. The effect of valproic acid on bovine oocyte maturation and early embryonic development in vitro. Cytotechnology 2013; 66:525-32. [PMID: 23839299 DOI: 10.1007/s10616-013-9603-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 06/08/2013] [Indexed: 12/23/2022] Open
Abstract
Our objective is to investigate the effect of valproic acid (VPA), a histone deacetylase inhibitor, on early embryonic development. We studied the effect of VPA on the in vitro maturation of bovine oocytes, and on the development of bovine embryos derived from in vitro fertilization (IVF) or parthenogenesis. Germinal vesicle stage bovine oocytes were cultured with different concentrations of VPA for 24 h; low dose VPA treatment (0.03 and 0.3 mM) had no effect on oocyte maturation, but 3 and 6 mM VPA significantly decreased maturation rate; when used for IVF or parthenogenesis, VPA-treated oocytes generated significantly lowered blastocyst rate. Oocytes matured in vitro were fertilized or underwent parthenogenetic activation; 6 h later, they were exposed to VPA for 48 h, and then the cleavage rate, blastocyst rate and mRNA expression levels of transcription factors (Oct4, Nanog, and Cdx2) were assessed. For embryos cultured in 0.3 mM VPA, there was no remarkable change in cleavage rate or blastocyst rate, but the expression of Oct4 and Nanog in blastocysts was significantly increased. For embryos treated with 3.0 mM VPA, the cleavage rate and blastocyst rate were significantly decreased. In conclusion, low dose VPA has no effect on oocyte maturation but affects subsequent embryonic development. Low dose VPA administration to IVF embryos had no effect on embryonic development, but the expression of several important transcription factors was increased. Treatment of IVF embryos with low dose VPA may improve their development potential.
Collapse
Affiliation(s)
- Haixia Gao
- The Key Laboratory of Mammal Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, 010021, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Akagi S, Geshi M, Nagai T. Recent progress in bovine somatic cell nuclear transfer. Anim Sci J 2013; 84:191-9. [PMID: 23480698 DOI: 10.1111/asj.12035] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 11/02/2012] [Indexed: 11/30/2022]
Abstract
Bovine somatic cell nuclear transfer (SCNT) embryos can develop to the blastocyst stage at a rate similar to that of embryos produced by in vitro fertilization. However, the full-term developmental rate of SCNT embryos is very low, owing to the high embryonic and fetal losses after embryo transfer. In addition, increased birth weight and postnatal mortality are observed at high rates in cloned calves. The low efficiency of SCNT is probably attributed to incomplete reprogramming of the donor nucleus and most of the developmental problems of clones are thought to be caused by epigenetic defects. Applications of SCNT will depend on improvement in the efficiency of production of healthy cloned calves. In this review, we discuss problems and recent progress in bovine SCNT.
Collapse
Affiliation(s)
- Satoshi Akagi
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba, Japan.
| | | | | |
Collapse
|
28
|
Dai Y, Chen J, Li H, Li S, Chen J, Ding Y, Wu J, Wang C, Tan M. Characterizing the effects of VPA, VC and RCCS on rabbit keratocytes onto decellularized bovine cornea. PLoS One 2012; 7:e50114. [PMID: 23209652 PMCID: PMC3510233 DOI: 10.1371/journal.pone.0050114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 10/16/2012] [Indexed: 11/19/2022] Open
Abstract
To investigate the morphological and growth characteristics of rabbit keratocytes when cultured on decellularized cornea under simulate microgravity (SMG) rotary cell culture system (RCCS) and static culture or in plastic culture supplemented with small molecules of valproic acid (VPA) and vitamin C (VC). Bovine corneas were firstly decellularized with Triton X-100 and NH(4)OH and through short-term freezing process. Then cell count kit-8 (CCK-8) and flow cytometry were used to test the effects of VPA and VC on the proliferation, cell cycle and apoptosis of rabbit keratocytes. Hematoxylin-eosin (H&E) staining and scanning electron microscopy (SEM) imaging showed that cells were eliminated in the decellularized bovine corneas. The proliferation of cultured keratocytes was promoted by VPA and VC in the cell proliferation assay. VPA and VC moderately decreased the number of apoptotic cells and obviously promoted cell-cycle entrance of keratocytes. Rabbit keratocytes in plastic displayed spindle shape and rare interconnected with or without VPA and VC. Cells revealed dendritic morphology and reticular cellular connections when cultured on the carriers of decellularized corneas supplemented with VPA and VC even in the presence of 10% fetal bovine serum (FBS). When cultured in RCCS supplemented with VPA, VC and 10% FBS, keratocytes displayed round shape with many prominences and were more prone to grow into the pores of carriers with aggregation. Reverse transcription-polymerase chain reaction (RT-PCR) analysis proved that the keratocytes cultured on decellularized bovine cornea under SMG with VPA and VC expressed keratocan and lumican. Keratocytes cultured on plastic expressed lumican but not keratocan. Immunofluorescence identification revealed that cells in all groups were positively immunostained for vimentin. Keratocytes on decellularized bovine cornea under SMG or in static culture were positively immunostained for keratocan and lumican. Thus, we reasonably made a conclusion that the combination of VPA, VC, RCCS and decellularized corneal carriers provide a good condition for keratocytes to well grow. Keratocytes can be manipulated to be aggregates or physiological morphological growth in vitro, which are important for the research of corneal stem cells and corneal tissue engineering.
Collapse
Affiliation(s)
- Ying Dai
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, People's Republic of China
| | - Jiansu Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, People's Republic of China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, People's Republic of China
| | - Hongyang Li
- Ophthalmology Department, First Affiliated Hospital of Jinan University, Guangzhou, People's Republic of China
| | - Shanyi Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, People's Republic of China
| | - Jian Chen
- Ophthalmology Department, First Affiliated Hospital of Jinan University, Guangzhou, People's Republic of China
| | - Yong Ding
- Ophthalmology Department, First Affiliated Hospital of Jinan University, Guangzhou, People's Republic of China
| | - Jing Wu
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, People's Republic of China
| | - Chan Wang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, People's Republic of China
| | - Meihua Tan
- Ophthalmology Department, First Affiliated Hospital of Jinan University, Guangzhou, People's Republic of China
| |
Collapse
|
29
|
Kang JD, Li S, Lu Y, Wang W, Liang S, Liu X, Jin JX, Hong Y, Yan CG, Yin XJ. Valproic acid improved in vitro development of pig cloning embryos but did not improve survival of cloned pigs to adulthood. Theriogenology 2012; 79:306-11.e1. [PMID: 23140802 DOI: 10.1016/j.theriogenology.2012.08.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 08/20/2012] [Accepted: 08/31/2012] [Indexed: 11/28/2022]
Abstract
The objective was to examine the effects of valproic acid (VPA), a histone deacetylase inhibitor, on in vitro and in vivo development of Wuzhishan miniature pig somatic cell nuclear transfer (SCNT) embryos. Experiment 1 compared in vitro developmental competence of nuclear transfer embryos treated with various concentrations of VPA for 24 h. Embryos treated with 2 mM VPA for 24 h had a greater rate of blastocyst formation compared with control or embryos treated with 4 or 8 mM VPA (21.5% vs. 10.5%, 12.6%, and 17.2%, P < 0.05). Experiment 2 examined the in vitro developmental competence of nuclear transfer embryos treated with 2 mM VPA for various intervals after chemical activation. Embryos treated for 24 h had higher rates of blastocyst formation than the control or those treated for 4 or 48 h (20.7% vs. 9.2%, 12.1%, and 9.1%, P < 0.05). In Experiment 3, an average of 207 (range, 192-216) nuclear transfer embryos from the VPA-treated group were transferred to surrogate mothers, resulting in three pregnancies. Two of the surrogates delivered a total of 11 live piglets. However, for unknown reasons, nine of 11 piglets in the VPA-treated group died within 1 to 5 d after birth. Untreated control embryos (average, 205; range, 179-225) transferred to four surrogate mothers resulted in three pregnancies, two of which delivered a total of 12 live offspring, although four of 12 piglets in the VPA-untreated group died (cause unknown) within 1 to 3 d, whereas eight of the 12 piglets in the VPA-untreated group survived more than 3 or 4 mo. The average birth weight of the two litters from the VPA-treated group tended (P < 0.05) to be lower than that from the control groups (551.6 g vs. 675.2 g). In conclusion, VPA treatment increased the blastocyst formation rate of SCNT porcine embryos; both VPA-treated and the untreated clones developed to term, but offspring from VPA-treated embryos had a lower survival to adulthood than those from control embryos (18.2% vs. 67.0%; P < 0.05).
Collapse
Affiliation(s)
- Jin-Dan Kang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kumar BM, Maeng GH, Lee YM, Lee JH, Jeon BG, Ock SA, Kang T, Rho GJ. Epigenetic modification of fetal fibroblasts improves developmental competency and gene expression in porcine cloned embryos. Vet Res Commun 2012; 37:19-28. [DOI: 10.1007/s11259-012-9542-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2012] [Indexed: 02/03/2023]
|