1
|
Zhu Z, Xu W, Liu L. Ovarian aging: mechanisms and intervention strategies. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:590-610. [PMID: 37724254 PMCID: PMC10471094 DOI: 10.1515/mr-2022-0031] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/25/2022] [Indexed: 09/20/2023]
Abstract
Ovarian reserve is essential for fertility and influences healthy aging in women. Advanced maternal age correlates with the progressive loss of both the quantity and quality of oocytes. The molecular mechanisms and various contributing factors underlying ovarian aging have been uncovered. In this review, we highlight some of critical factors that impact oocyte quantity and quality during aging. Germ cell and follicle reserve at birth determines reproductive lifespan and timing the menopause in female mammals. Accelerated diminishing ovarian reserve leads to premature ovarian aging or insufficiency. Poor oocyte quality with increasing age could result from chromosomal cohesion deterioration and misaligned chromosomes, telomere shortening, DNA damage and associated genetic mutations, oxidative stress, mitochondrial dysfunction and epigenetic alteration. We also discuss the intervention strategies to delay ovarian aging. Both the efficacy of senotherapies by antioxidants against reproductive aging and mitochondrial therapy are discussed. Functional oocytes and ovarioids could be rejuvenated from pluripotent stem cells or somatic cells. We propose directions for future interventions. As couples increasingly begin delaying parenthood in life worldwide, understanding the molecular mechanisms during female reproductive aging and potential intervention strategies could benefit women in making earlier choices about their reproductive health.
Collapse
Affiliation(s)
- Zhengmao Zhu
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, China
| | - Wanxue Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Lin Liu
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Tianjin Union Medical Center, Institute of Translational Medicine, Nankai University, Tianjin, China
| |
Collapse
|
2
|
Falchi L, Ledda S, Zedda MT. Embryo biotechnologies in sheep: Achievements and new improvements. Reprod Domest Anim 2022; 57 Suppl 5:22-33. [PMID: 35437835 PMCID: PMC9790389 DOI: 10.1111/rda.14127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/17/2022] [Indexed: 12/30/2022]
Abstract
To date, large-scale use of multiple ovulation and embryo transfer (MOET) programmes in ovine species is limited due to unpredictable results and high costs of hormonal stimulation and treatment. Therefore, even if considered reliable, they are not fully applicable in large-scale systems. More recently, the new prospects offered by in vitro embryo production (IVEP) through collection of oocytes post-mortem or by repeated ovum pick-up from live females suggested an alternative to MOET programmes and may be more extensively used, moving from the exclusive research in the laboratory to field application. The possibility to perform oocytes recovery from juvenile lambs to obtain embryos (JIVET) offers the great advantage to significantly reduce the generation interval, speeding the rate of genetic improvement. Although in the past decades several studies implemented novel protocols to enhance embryo production in sheep, the conditions of every single stage of IVEP can significantly affect embryo yield and successful transfer into the recipients. Moreover, the recent progresses on embryo production and freezing technologies might allow wider propagation of valuable genes in small ruminants populations and may be used for constitution of flocks without risks of disease. In addition, they can give a substantial contribution in preserving endangered breeds. The new era of gene editing might offer innovative perspectives in sheep breeding, but the application of such novel techniques implies involvement of specialized operators and is limited by relatively high costs for embryo manipulation and molecular biology analysis.
Collapse
Affiliation(s)
- Laura Falchi
- Sezione di Cl. Ostetrica e GinecologiaDipartimento di Medicina VeterinariaUniversità degli Studi di SassariSassariItaly
| | - Sergio Ledda
- Sezione di Cl. Ostetrica e GinecologiaDipartimento di Medicina VeterinariaUniversità degli Studi di SassariSassariItaly
| | - Maria T. Zedda
- Sezione di Cl. Ostetrica e GinecologiaDipartimento di Medicina VeterinariaUniversità degli Studi di SassariSassariItaly
| |
Collapse
|
3
|
Shi J, Xiao L, Tan B, Luo L, Li Z, Hong L, Yang J, Cai G, Zheng E, Wu Z, Gu T. Comparative evaluation of production performances of cloned pigs derived from superior Duroc boars. Anim Reprod Sci 2022; 244:107049. [DOI: 10.1016/j.anireprosci.2022.107049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022]
|
4
|
Technical, Biological and Molecular Aspects of Somatic Cell Nuclear Transfer – A Review. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2021-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
Since the announcement of the birth of the first cloned mammal in 1997, Dolly the sheep, 24 animal species including laboratory, farm, and wild animals have been cloned. The technique for somatic cloning involves transfer of the donor nucleus of a somatic cell into an enucleated oocyte at the metaphase II (MII) stage for the generation of a new individual, genetically identical to the somatic cell donor. There is increasing interest in animal cloning for different purposes such as rescue of endangered animals, replication of superior farm animals, production of genetically engineered animals, creation of biomedical models, and basic research. However, the efficiency of cloning remains relatively low. High abortion, embryonic, and fetal mortality rates are frequently observed. Moreover, aberrant developmental patterns during or after birth are reported. Researchers attribute these abnormal phenotypes mainly to incomplete nuclear remodeling, resulting in incomplete reprogramming. Nevertheless, multiple factors influence the success of each step of the somatic cloning process. Various strategies have been used to improve the efficiency of nuclear transfer and most of the phenotypically normal born clones can survive, grow, and reproduce. This paper will present some technical, biological, and molecular aspects of somatic cloning, along with remarkable achievements and current improvements.
Collapse
|
5
|
Zhang KS, Nadkarni AV, Paul R, Martin AM, Tang SKY. Microfluidic Surgery in Single Cells and Multicellular Systems. Chem Rev 2022; 122:7097-7141. [PMID: 35049287 DOI: 10.1021/acs.chemrev.1c00616] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Microscale surgery on single cells and small organisms has enabled major advances in fundamental biology and in engineering biological systems. Examples of applications range from wound healing and regeneration studies to the generation of hybridoma to produce monoclonal antibodies. Even today, these surgical operations are often performed manually, but they are labor intensive and lack reproducibility. Microfluidics has emerged as a powerful technology to control and manipulate cells and multicellular systems at the micro- and nanoscale with high precision. Here, we review the physical and chemical mechanisms of microscale surgery and the corresponding design principles, applications, and implementations in microfluidic systems. We consider four types of surgical operations: (1) sectioning, which splits a biological entity into multiple parts, (2) ablation, which destroys part of an entity, (3) biopsy, which extracts materials from within a living cell, and (4) fusion, which joins multiple entities into one. For each type of surgery, we summarize the motivating applications and the microfluidic devices developed. Throughout this review, we highlight existing challenges and opportunities. We hope that this review will inspire scientists and engineers to continue to explore and improve microfluidic surgical methods.
Collapse
Affiliation(s)
- Kevin S Zhang
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Ambika V Nadkarni
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States.,Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California 94158, United States
| | - Rajorshi Paul
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Adrian M Martin
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Sindy K Y Tang
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
6
|
Rodríguez-Varela C, Herraiz S, Labarta E. Mitochondrial enrichment in infertile patients: a review of different mitochondrial replacement therapies. Ther Adv Reprod Health 2021; 15:26334941211023544. [PMID: 34263171 PMCID: PMC8243099 DOI: 10.1177/26334941211023544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/07/2021] [Indexed: 01/23/2023] Open
Abstract
Poor ovarian responders exhibit a quantitative reduction in their follicular
pool, and most cases are also associated with poor oocyte quality due to
patient’s age, which leads to impaired in vitro fertilisation
outcomes. In particular, poor oocyte quality has been related to mitochondrial
dysfunction and/or low mitochondrial count as these organelles are crucial in
many essential oocyte processes. Therefore, mitochondrial enrichment has been
proposed as a potential therapy option in infertile patients to improve oocyte
quality and subsequent in vitro fertilisation outcomes.
Nowadays, different options are available for mitochondrial enrichment
treatments that are encompassed in two main approaches: heterologous and
autologous. In the heterologous approach, mitochondria come from an external
source, which is an oocyte donor. These techniques include transferring either a
portion of the donor’s oocyte cytoplasm to the recipient oocyte or nuclear
material from the patient to the donor’s oocyte. In any case, this approach
entails many ethical and safety concerns that mainly arise from the uncertain
degree of mitochondrial heteroplasmy deriving from it. Thus the autologous
approach is considered a suitable potential tool to improve oocyte quality by
overcoming the heteroplasmy issue. Autologous mitochondrial transfer, however,
has not yielded as many beneficial outcomes as initially expected. Proposed
mitochondrial autologous sources include immature oocytes, granulosa cells,
germline stem cells, and adipose-derived stem cells. Presently, it would seem
that these autologous techniques do not improve clinical outcomes in human
infertile patients. However, further trials still need to be performed to
confirm these results. Besides these two main categories, new strategies have
arisen for oocyte rejuvenation by improving patient’s own mitochondrial function
and avoiding the unknown consequences of third-party genetic material. This is
the case of antioxidants, which may enhance mitochondrial activity by
counteracting and/or preventing oxidative stress damage. Among others,
coenzyme-Q10 and melatonin have shown promising results in low-prognosis
infertile patients, although further randomised clinical trials are still
necessary.
Collapse
Affiliation(s)
| | | | - Elena Labarta
- IVI Foundation – IIS La Fe, Valencia, Spain;
IVIRMA Valencia, Valencia, Spain
| |
Collapse
|
7
|
Maeng G, Gong W, Das S, Yannopoulos D, Garry DJ, Garry MG. ETV2-null porcine embryos survive to post-implantation following incomplete enucleation. Reproduction 2021; 159:539-547. [PMID: 31990674 DOI: 10.1530/rep-19-0382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 01/28/2020] [Indexed: 11/08/2022]
Abstract
Blind enucleation is used in porcine somatic cell nuclear transfer (SCNT) to remove the metaphase II (MII) spindle from the oocyte. Deviation of the MII spindle location, however, leads to incomplete enucleation (IE). Here, we report that the rate of complete enucleation (CE) using the blind method was 80.2 ± 1.7%, although this significantly increased when the polar body-MII deviation was minimized (≦45°). While it is established that IE embryos will not survive to full term, the effect of IE on early stage development is unknown. We have previously demonstrated in mice and pigs that ETV2 deletion results in embryonic lethality due to the lack of hematoendothelial lineages. We observed that ETV2-null cloned embryos derived from blindly and incompletely enucleated oocytes had both WT and mutant sequences at E18 and, using FISH analysis, we observed triploidy. We also compared SCNT embryos generated from either CE or intentionally IE oocytes using the spindle viewer system. We observed a higher in vitro blastocyst rate in the IE versus the CE-SCNT embryos (31.9 ± 3.2% vs 21.0 ± 2.1%). Based on known processes in normal fertilization, we infer that the IE-SCNT embryos extruded the haploid second PB after fusion with donor fibroblasts and formed a near-triploid aneuploid nucleus in each blastomere. These studies demonstrate the peri-implantation survival of residual haploid nuclei following IE and emphasize the need for complete enucleation especially for the analysis of SCNT embryos in the peri-implantation stage and will, further, impact the field of reverse xenotransplantation.
Collapse
Affiliation(s)
- Geunho Maeng
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Wuming Gong
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Satyabrata Das
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Daniel J Garry
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA.,Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, Minnesota, USA.,NorthStar Genomics, Eagan, Minnesota, USA
| | - Mary G Garry
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA.,Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, Minnesota, USA.,NorthStar Genomics, Eagan, Minnesota, USA
| |
Collapse
|
8
|
Moura MT, Badaraco J, Sousa RV, Lucci CM, Rumpf R. Improved functional oocyte enucleation by actinomycin D for bovine somatic cell nuclear transfer. Reprod Fertil Dev 2019; 31:1321-1329. [PMID: 30986366 DOI: 10.1071/rd18164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 02/05/2019] [Indexed: 11/23/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) allows animal cloning but remains technically challenging. This study investigated limitations to functional oocyte enucleation by actinomycin D (AD) as a means of making SCNT easier to perform. Denuding oocytes or inhibiting transcription before AD treatment revealed that the toxicity of this compound during bovine oocyte maturation is mediated by cumulus cells. Exposure of denuded oocytes to higher concentrations of AD (5-20μgmL-1 ) and stepwise reductions of the incubation period (from 14.0 to 0.25h) led to complete inhibition of parthenogenetic development. Bovine SCNT using this improved AD enucleation protocol (NT(AD)) restored cleavage rates compared with rates in the parthenogenetic and SCNT controls (P(CTL) and NT(CTL) respectively). However, NT(AD) was associated with increased caspase-3 activity in cleavage stage embryos and did not recover blastocyst rates. The removal of AD-treated oocyte spindle before reconstruction (NT(AD+SR)) improved embryo development and reduced caspase-3 activity to levels similar to those in the P(CTL) and NT(CTL) groups. Furthermore, mid-term pregnancies were achieved using NT(AD+SR) blastocysts. In conclusion, improvements in AD functional enucleation for bovine SCNT circumvents most cellular roadblocks to early embryonic development and future investigations must focus on restoring blastocyst formation.
Collapse
Affiliation(s)
- Marcelo T Moura
- Laboratório de Reprodução Animal, Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Av. W5 Norte (final), CP 02372, CEP 70770-900, Brasília, DF, Brazil; and Departamento de Agronomia e Medicina Veterinária, Universidade de Brasília, Instituto Central de Ciências Sul, Campus Universitário Darci Ribeiro, CEP 70297-400, Brasília, DF, Brazil; and Present address: Laboratório de Biologia Celular, Universidade Federal de São Paulo, Campus Diadema, CEP 09972-270, Diadema, SP, Brazil; and Corresponding author
| | - Jeferson Badaraco
- Laboratório de Reprodução Animal, Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Av. W5 Norte (final), CP 02372, CEP 70770-900, Brasília, DF, Brazil
| | - Regivaldo V Sousa
- Laboratório de Reprodução Animal, Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Av. W5 Norte (final), CP 02372, CEP 70770-900, Brasília, DF, Brazil
| | - Carolina M Lucci
- Departamento de Agronomia e Medicina Veterinária, Universidade de Brasília, Instituto Central de Ciências Sul, Campus Universitário Darci Ribeiro, CEP 70297-400, Brasília, DF, Brazil
| | - Rodolfo Rumpf
- Laboratório de Reprodução Animal, Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Av. W5 Norte (final), CP 02372, CEP 70770-900, Brasília, DF, Brazil; and Departamento de Agronomia e Medicina Veterinária, Universidade de Brasília, Instituto Central de Ciências Sul, Campus Universitário Darci Ribeiro, CEP 70297-400, Brasília, DF, Brazil; and Present address: Geneal Biotecnologia, Rodovia BR-050, Km 184, CEP 38038-050, Uberaba, MG, Brazil
| |
Collapse
|
9
|
Bovine somatic cell nuclear transfer using mitomycin C-mediated chemical oocyte enucleation. ZYGOTE 2019; 27:137-142. [PMID: 31036094 DOI: 10.1017/s0967199419000029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
SummaryChemical oocyte enucleation holds the potential to ease somatic cell nuclear transfer (SCNT), although high enucleation rates remain limited to micromanipulation-based approaches. Therefore, this study aimed to test mitomycin C (MMC) for use in bovine functional chemical oocyte enucleation. Incubation of denuded eggs in 10 µg ml-1 MMC for different periods did not affect most maturation rates (0.5 h: 85.78%A, 1.0 h: 72.77%B, 1.5 h: 83.87%A, and 2.0 h: 82.05%A) in comparison with non-treated controls (CTL; 85.77%A). Parthenogenetic development arrest by MMC was efficient at cleavage (CTL: 72.93%A, 0.5 h: 64.92%A,B, 1.0 h: 60.39%B,C, 1.5 h: 66.35%A,B, and 2.0 h: 53.84%C) and blastocyst stages (CTL: 33.94%A, 0.5 h: 7.58%B, 1.0 h: 2.47%C, 1.5 h: 0.46%C, and 2.0 h: 0.51%C). Blastocysts were obtained after nuclear transfer (NT) using MMC enucleation [NT(MMC): 4.54%B] but at lower rates than for the SCNT control [NT(CTL): 26.31%A]. The removal of the meiotic spindle after MMC incubation fully restored SCNT blastocyst development [NT(MMC+SR): 24.74%A]. Early pregnancies were obtained by the transfer of NT(MMC) and NT(MMC+SR) blastocysts to synchronized recipients. In conclusion, MMC leads to functional chemical oocyte enucleation during SCNT and further suggests its potential for application towards technical improvements.
Collapse
|
10
|
He X, Tan C, Li Z, Zhao C, Shi J, Zhou R, Wang X, Jiang G, Cai G, Liu D, Wu Z. Characterization and comparative analyses of transcriptomes of cloned and in vivo fertilized porcine pre-implantation embryos. Biol Open 2019; 8:bio.039917. [PMID: 30952695 PMCID: PMC6504007 DOI: 10.1242/bio.039917] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) is the only method known to rapidly reprogram differentiated cells into totipotent embryos. Most cloned embryos become arrested before implantation and the details of the underlying molecular mechanism remain largely unknown. Dynamic regulation of the transcriptome is a key molecular mechanism driving early embryonic development. Here, we report comprehensive transcriptomic analysis of cloned embryos (from Laiwu and Duroc pigs) and in vivo fertilized embryos (from Duroc pigs) using RNA-sequencing. Comparisons between gene expression patterns were performed according to differentially expressed genes, specific-expressed genes, first-expressed genes, pluripotency genes and pathway enrichment analysis. In addition, we closely analyzed the improperly expressed histone lysine methyltransferases and histone lysine demethylases during cell reprogramming in cloned embryos. In summary, we identified altered gene expression profiles in porcine cloned pre-implantation embryos in comparison to normal in vivo embryos. Our findings provide a substantial framework for further discovery of the epigenetic reprogramming mechanisms in porcine SCNT embryos. Summary: Comparative transcriptome analyses of cloned and in vivo fertilized pre-implantation embryos: transcriptional defects and reprogramming barriers in porcine somatic cell nuclear reprogramming.
Collapse
Affiliation(s)
- Xiaoyan He
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.,Wen's Group Academy, Wen's Foodstuff Group Co., Ltd, Yunfu 527400, China, China
| | - Cheng Tan
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.,Wen's Group Academy, Wen's Foodstuff Group Co., Ltd, Yunfu 527400, China, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Chengfa Zhao
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Junsong Shi
- Wen's Group Academy, Wen's Foodstuff Group Co., Ltd, Yunfu 527400, China, China
| | - Rong Zhou
- Wen's Group Academy, Wen's Foodstuff Group Co., Ltd, Yunfu 527400, China, China
| | - Xingwang Wang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Gelong Jiang
- Wen's Group Academy, Wen's Foodstuff Group Co., Ltd, Yunfu 527400, China, China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Dewu Liu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
11
|
Huang Y, Yuan L, Li T, Liu X, Yu Y, Ouyang H, Wang B. IWP2 impairs the development of porcine somatic cell nuclear transfer embryos via Wnt signaling pathway inactivation. Biomed Rep 2017; 7:36-40. [PMID: 28685057 DOI: 10.3892/br.2017.918] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/11/2017] [Indexed: 11/06/2022] Open
Abstract
Wnt signaling is critical in embryonic development and post-embryonic tissue homeostasis. The aim of the present study was to evaluate the expression levels of canonical Wnt signaling genes in porcine somatic cell nuclear transfer (SCNT) embryos. Quantitative polymerase chain reaction analysis was performed in porcine SCNT embryos, and the results indicated that the temporal expression patterns of canonical signaling genes were similar between in vivo and SCNT embryos from the 2-cell to the blastocyst stage. In addition, aberrant expression in a small number of Wnt signaling genes in SCNT embryos was identified. IWP2, an inhibitor of Wnt processing, was applied to the culture of SCNT embryos. The Wnt signaling pathway in the SCNT blastocysts may be inactivated via IWP2 treatment, reflecting the low expression levels of c-Myc and peroxisome proliferator-activated receptor δ. Furthermore, blastocyst hatching was damaged by IWP2 treatment. These findings indicate that the canonical Wnt signaling pathway is important for SCNT embryo development.
Collapse
Affiliation(s)
- Yongye Huang
- Department of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning 110169, P.R. China.,Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Lin Yuan
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Tianye Li
- Department of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning 110169, P.R. China
| | - Xiangfu Liu
- Department of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning 110169, P.R. China
| | - Yang Yu
- Department of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning 110169, P.R. China
| | - Hongsheng Ouyang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Bing Wang
- Department of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning 110169, P.R. China
| |
Collapse
|
12
|
Czernik M, Toschi P, Zacchini F, Iuso D, Ptak GE. Deregulated Expression of Mitochondrial Proteins Mfn2 and Bcnl3L in Placentae from Sheep Somatic Cell Nuclear Transfer (SCNT) Conceptuses. PLoS One 2017; 12:e0169579. [PMID: 28076382 PMCID: PMC5226789 DOI: 10.1371/journal.pone.0169579] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/18/2016] [Indexed: 12/28/2022] Open
Abstract
In various animal species, the main cause of pregnancy loss in conceptuses obtained by somatic cell nuclear transfer (SCNT) are placental abnormalities. Most abnormalities described in SCNT pregnancies (such as placentomegaly, reduced vascularisation, hypoplasia of trophoblastic epithelium) suggest that placental cell degeneration may be triggered by mitochondrial failure. We hypothesized that placental abnormalities of clones obtained by SCNT are related to mitochondrial dysfunction. To test this, early SCNT and control (CTR, from pregnancies obtained by in vitro fertilization) placentae were collected from pregnant ewes (at day 20 and 22 of gestation) and subjected to morphological, mRNA and protein analysis. Here, we demonstrated swollen and fragmented mitochondria and low expression of mitofusin 2 (Mfn2), the protein which plays a crucial role in mitochondrial functionality, in SCNT early placentae. Furthermore, reduced expression of the Bcnl3L/Nix protein, which plays a crucial role in selective elimination of damaged mitochondria, was observed and reflected by the accumulation of numerous damaged mitochondria in SCNT placental cells. Likely, this accumulation of damaged organelles led to uncontrolled apoptosis in SCNT placentae, as demonstrated by the high number of apoptotic bodies, fragmented cytoplasm, condensed chromatin, lack of integrity of the nuclear membrane and the perturbed mRNA expression of apoptotic genes (BCL2 and BAX). In conclusion, our data indicate that deregulated expression of Mfn2 and Bcnl3L is responsible for placental abnormalities in SCNT conceptuses. Our results suggest that some nuclear genes, that are involved in the regulation of mitochondrial function, do not work well and consequently this influence the function of mitochondria.
Collapse
Affiliation(s)
- Marta Czernik
- Faculty of Veterinary Medicine, Experimental Embryology, University of Teramo, Teramo, Italy
| | - Paola Toschi
- Faculty of Veterinary Medicine, Experimental Embryology, University of Teramo, Teramo, Italy
| | - Federica Zacchini
- Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Poland
| | - Domenico Iuso
- Faculty of Veterinary Medicine, Experimental Embryology, University of Teramo, Teramo, Italy
| | - Grażyna Ewa Ptak
- Faculty of Veterinary Medicine, Experimental Embryology, University of Teramo, Teramo, Italy
- Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Poland
- National Research Institute of Animal Production, Balice n/Krakow, Poland
- * E-mail:
| |
Collapse
|
13
|
Czernik M, Iuso D, Toschi P, Khochbin S, Loi P. Remodeling somatic nuclei via exogenous expression of protamine 1 to create spermatid-like structures for somatic nuclear transfer. Nat Protoc 2016; 11:2170-2188. [PMID: 27711052 DOI: 10.1038/nprot.2016.130] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This protocol describes how to convert the chromatin structure of sheep and mouse somatic cells into spermatid-like nuclei through the heterologous expression of the protamine 1 gene (Prm1). Furthermore, we also provide step-by-step instructions for somatic cell nuclear transfer (SCNT) of Prm1-remodeled somatic nuclei in sheep oocytes. There is evidence that changing the organization of a somatic cell nucleus with that which mirrors the spermatozoon nucleus leads to better nuclear reprogramming. The protocol may have further potential application in determining the protamine and histone footprints of the whole genome; obtaining 'gametes' from somatic cells; and furthering understanding of the molecular mechanisms regulating the maintenance of DNA methylation in imprinted control regions during male gametogenesis. The protocol is straightforward, and it requires 4 weeks from the establishment of the cell lines to their transfection and the production of cloned blastocysts. It is necessary for researchers to have experience in cell biology and embryology, with basic skills in molecular biology, to carry out the protocol.
Collapse
Affiliation(s)
- Marta Czernik
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Domenico Iuso
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Paola Toschi
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Saadi Khochbin
- INSERM, U823, Institut Albert Bonniot, Université Grenoble Alpes, Grenoble, France
| | - Pasqualino Loi
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| |
Collapse
|
14
|
Plasma membrane and acrosome loss before ICSI is required for sheep embryonic development. J Assist Reprod Genet 2016; 33:757-63. [PMID: 27059776 DOI: 10.1007/s10815-016-0709-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/23/2016] [Indexed: 02/07/2023] Open
Abstract
PURPOSE This study aims to determine if the integrity of the sperm plasma membrane and acrosome vesicle could be limiting factors in sheep intracytoplasmic sperm injection (ICSI). METHODS Prior to in vitro fertilization (IVF) or ICSI, the oocytes were subjected to in vitro maturation (IVM) for 24 h. First, to evaluate the need of artificial activation for ovine ICSI, 226 oocytes were injected with intact spermatozoa (IS), from which 125 were activated by incubation in ionomycin and 101 were cultured without activation. Next, spermatozoa were mechanically (by piezo-electrical pulses) and/or chemically (by ionomycin/Triton X-100) treated to break membranes and acrosomes and were injected into oocytes, grouped as follows: (i) piezo-pulsed spermatozoa (PPS), (ii) PPS pre-treated with ionomycin (PPS-I), (iii) PPS pre-treated with Triton X-100 (PPS-T), and (iv) intact and untreated spermatozoa as a control (CTR-IS). RESULTS No differences were observed in the zygote/cleavage/blastocyst rate between chemically activated and non-activated oocytes (50 vs. 45 %, 11.6 vs. 10.1 %; 1.8 vs. 1.1 %, respectively), after ICSI with CTR-IS. Injection of PPS compared to CTR-IS increased the proportion of zygotes and blastocysts (84.6 vs. 45 %, p < 0.01; 15.5 vs. 1.1 %, p < 0.0001, respectively). Moreover, the percentage of PPS-derived blastocysts was not significantly different from that obtained by conventional IVF (15.5 vs. 20.2 %). The ICSI blastocysts' development was also improved with PPS pre-treated with ionomycin (15.6 %), but was completely impeded with PPS pre-treated with Triton X-100 (0 %). CONCLUSION Our findings confirm that ICSI with spermatozoa whose plasma membrane and acrosome have been mechanically damaged substantially improves embryonic development until the blastocyst stage.
Collapse
|
15
|
Iuso D, Czernik M, Toschi P, Fidanza A, Zacchini F, Feil R, Curtet S, Buchou T, Shiota H, Khochbin S, Ptak GE, Loi P. Exogenous Expression of Human Protamine 1 (hPrm1) Remodels Fibroblast Nuclei into Spermatid-like Structures. Cell Rep 2015; 13:1765-71. [PMID: 26628361 PMCID: PMC4675893 DOI: 10.1016/j.celrep.2015.10.066] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 09/04/2015] [Accepted: 10/21/2015] [Indexed: 11/26/2022] Open
Abstract
Protamines confer a compact structure to the genome of male gametes. Here, we find that somatic cells can be remodeled by transient expression of protamine 1 (Prm1). Ectopically expressed Prm1 forms scattered foci in the nuclei of fibroblasts, which coalescence into spermatid-like structures, concomitant with a loss of histones and a reprogramming barrier, H3 lysine 9 methylation. Protaminized nuclei injected into enucleated oocytes efficiently underwent protamine to maternal histone TH2B exchange and developed into normal blastocyst stage embryos in vitro. Altogether, our findings present a model to study male-specific chromatin remodeling, which can be exploited for the improvement of somatic cell nuclear transfer. In vitro protaminization of somatic cell nuclei Conversion of interphase somatic nuclei into “spermatid-like” structures Protaminization of somatic nuclei that is reversed upon injection into enucleated oocytes A simplified model of nuclear remodeling and reprogramming in vitro
Collapse
Affiliation(s)
- Domenico Iuso
- Faculty of Veterinary Medicine, University of Teramo, Renato Balzarini Street 1, Campus Coste Sant'Agostino, 64100 Teramo, Italy
| | - Marta Czernik
- Faculty of Veterinary Medicine, University of Teramo, Renato Balzarini Street 1, Campus Coste Sant'Agostino, 64100 Teramo, Italy
| | - Paola Toschi
- Faculty of Veterinary Medicine, University of Teramo, Renato Balzarini Street 1, Campus Coste Sant'Agostino, 64100 Teramo, Italy
| | - Antonella Fidanza
- Faculty of Veterinary Medicine, University of Teramo, Renato Balzarini Street 1, Campus Coste Sant'Agostino, 64100 Teramo, Italy
| | - Federica Zacchini
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postepu 36A, Jastrzębiec, 05-552 Magdalenka, Poland
| | - Robert Feil
- Institute of Molecular Genetics (IGMM), CNRS UMR-5535 and University of Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Sandrine Curtet
- INSERM, U823, Institut Albert Bonniot, Université Grenoble Alpes, 38700 Grenoble, France
| | - Thierry Buchou
- INSERM, U823, Institut Albert Bonniot, Université Grenoble Alpes, 38700 Grenoble, France
| | - Hitoshi Shiota
- INSERM, U823, Institut Albert Bonniot, Université Grenoble Alpes, 38700 Grenoble, France
| | - Saadi Khochbin
- INSERM, U823, Institut Albert Bonniot, Université Grenoble Alpes, 38700 Grenoble, France
| | - Grazyna Ewa Ptak
- Faculty of Veterinary Medicine, University of Teramo, Renato Balzarini Street 1, Campus Coste Sant'Agostino, 64100 Teramo, Italy; Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postepu 36A, Jastrzębiec, 05-552 Magdalenka, Poland; National Research Institute of Animal Production 1, Krakowska Street, 32-083 Balice n/Krakow, Poland
| | - Pasqualino Loi
- Faculty of Veterinary Medicine, University of Teramo, Renato Balzarini Street 1, Campus Coste Sant'Agostino, 64100 Teramo, Italy.
| |
Collapse
|
16
|
Cree L, Loi P. Mitochondrial replacement: from basic research to assisted reproductive technology portfolio tool-technicalities and possible risks. Mol Hum Reprod 2014; 21:3-10. [PMID: 25425606 DOI: 10.1093/molehr/gau082] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mitochondrial DNA (mtDNA) mutations are a relatively common cause of progressive disorders that can be severe or even life-threatening. There is currently no cure for these disorders; therefore recent research has been focused on attempting to prevent the transmission of these maternally inherited mutations. Here we highlight the challenges of understanding the transmission of mtDNA diseases, discuss current genetic management options and explore the use of germ-line reconstruction technologies to prevent mtDNA diseases. In particular we discuss their potential, indications, limitations and possible safety concerns.
Collapse
Affiliation(s)
- Lynsey Cree
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland 1023, New Zealand Fertility Associates, Auckland, New Zealand
| | - Pasqualino Loi
- Department of Comparative Biomedical Sciences, University of Teramo, Piazza Aldo Moro 45, Teramo, Italy
| |
Collapse
|