1
|
Huang Y, Ma T, Wan Z, Zhong C, Wang J. AFP: Finding pathways accounting for stoichiometry along with atom group tracking in metabolic network. J Biotechnol 2024; 392:139-151. [PMID: 39009230 DOI: 10.1016/j.jbiotec.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 04/29/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024]
Abstract
Automatically finding novel pathways plays an important role in the initial designs of metabolic pathways in synthetic biology and metabolic engineering. Although path-finding methods have been successfully applied in identifying valuable synthetic pathways, few efforts have been made in fusing atom group tracking into building stoichiometry model to search metabolic pathways from arbitrary start compound via Mixed Integer Linear Programming (MILP). We propose a novel method called AFP to find metabolic pathways by incorporating atom group tracking into reaction stoichiometry via MILP. AFP tracks the movements of atom groups in the reaction stoichiometry to construct MILP model to search the pathways containing atom groups exchange in the reactions and adapts the MILP model to provide the options of searching pathways from an arbitrary or given compound to the target compound. Combining atom group tracking with reaction stoichiometry to build MILP model for pathfinding may promote the search of well-designed alternative pathways at the stoichiometric modeling level. The experimental comparisons to the known pathways show that our proposed method AFP is more effective to recover the known pathways than other existing methods and is capable of discovering biochemically feasible pathways producing the metabolites of interest.
Collapse
Affiliation(s)
- Yiran Huang
- School of Computer and Electronics and Information, Guangxi University, Nanning, China; Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning, China; Key Laboratory of Parallel, Distributed and Intelligent Computing, (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning, China; Guangxi Intelligent Digital Services Research Center of Engineering Technology, Guangxi University, Nanning, China.
| | - Tao Ma
- School of Computer and Electronics and Information, Guangxi University, Nanning, China
| | - Zhiyuan Wan
- School of Computer and Electronics and Information, Guangxi University, Nanning, China
| | - Cheng Zhong
- School of Computer and Electronics and Information, Guangxi University, Nanning, China; Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning, China; Key Laboratory of Parallel, Distributed and Intelligent Computing, (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning, China; Guangxi Intelligent Digital Services Research Center of Engineering Technology, Guangxi University, Nanning, China
| | - Jianyi Wang
- Medical College, Guangxi University, Nanning, China
| |
Collapse
|
2
|
Xu Z, Mahadevan R. Efficient Enumeration of Branched Novel Biochemical Pathways Using a Probabilistic Technique. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c02211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhiqing Xu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
3
|
Huang Y, Xie Y, Zhong C, Zhou F. Finding branched pathways in metabolic network via atom group tracking. PLoS Comput Biol 2021; 17:e1008676. [PMID: 33529200 PMCID: PMC7880430 DOI: 10.1371/journal.pcbi.1008676] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 02/12/2021] [Accepted: 01/05/2021] [Indexed: 12/27/2022] Open
Abstract
Finding non-standard or new metabolic pathways has important applications in metabolic engineering, synthetic biology and the analysis and reconstruction of metabolic networks. Branched metabolic pathways dominate in metabolic networks and depict a more comprehensive picture of metabolism compared to linear pathways. Although progress has been developed to find branched metabolic pathways, few efforts have been made in identifying branched metabolic pathways via atom group tracking. In this paper, we present a pathfinding method called BPFinder for finding branched metabolic pathways by atom group tracking, which aims to guide the synthetic design of metabolic pathways. BPFinder enumerates linear metabolic pathways by tracking the movements of atom groups in metabolic network and merges the linear atom group conserving pathways into branched pathways. Two merging rules based on the structure of conserved atom groups are proposed to accurately merge the branched compounds of linear pathways to identify branched pathways. Furthermore, the integrated information of compound similarity, thermodynamic feasibility and conserved atom groups is also used to rank the pathfinding results for feasible branched pathways. Experimental results show that BPFinder is more capable of recovering known branched metabolic pathways as compared to other existing methods, and is able to return biologically relevant branched pathways and discover alternative branched pathways of biochemical interest. The online server of BPFinder is available at http://114.215.129.245:8080/atomic/. The program, source code and data can be downloaded from https://github.com/hyr0771/BPFinder. Computational search of branched metabolic pathways is a fundamental problem in metabolic engineering and metabolic network analysis, which provides a systematic way of understanding the metabolism and discovering alternative pathways for synthesis of useful biomolecules. We propose BPFinder, a novel computational approach to identify branched metabolic pathways via atom group tracking. Different from other pathfinding methods using atom tracking, BPFinder tracks the movement of atom groups in metabolic network to find linear atom group conserving pathways, and merge the found linear pathways by the selected branched compounds to generate branched pathways. Based on the structure of conserved atom groups in branched compounds, we design two merging rules for branched compounds: overlapping rule and non-overlapping rule. The user can flexibly adopt these rules to accurately find the branched pathways that contain overlapping/non-overlapping conserved atom groups. BPFinder also enables the user to combine the information of compound similarity, Gibbs free energy of reactions, and conserved atom groups to sort resulting pathways. Compared with other existing methods, BPFinder can more accurately recover the known branched pathways. The alternative branched pathways returned by BPFinder reveal that the user can flexibly utilize our proposed merging rules to discover biochemically meaningful pathways of interest.
Collapse
Affiliation(s)
- Yiran Huang
- School of Computer and Electronics and Information, Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning, China
- * E-mail:
| | - Yusi Xie
- School of Computer and Electronics and Information, Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning, China
| | - Cheng Zhong
- School of Computer and Electronics and Information, Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning, China
| | - Fengfeng Zhou
- College of Computer Science and Technology, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, China
| |
Collapse
|
4
|
Otero-Muras I, Carbonell P. Automated engineering of synthetic metabolic pathways for efficient biomanufacturing. Metab Eng 2020; 63:61-80. [PMID: 33316374 DOI: 10.1016/j.ymben.2020.11.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 12/19/2022]
Abstract
Metabolic engineering involves the engineering and optimization of processes from single-cell to fermentation in order to increase production of valuable chemicals for health, food, energy, materials and others. A systems approach to metabolic engineering has gained traction in recent years thanks to advances in strain engineering, leading to an accelerated scaling from rapid prototyping to industrial production. Metabolic engineering is nowadays on track towards a truly manufacturing technology, with reduced times from conception to production enabled by automated protocols for DNA assembly of metabolic pathways in engineered producer strains. In this review, we discuss how the success of the metabolic engineering pipeline often relies on retrobiosynthetic protocols able to identify promising production routes and dynamic regulation strategies through automated biodesign algorithms, which are subsequently assembled as embedded integrated genetic circuits in the host strain. Those approaches are orchestrated by an experimental design strategy that provides optimal scheduling planning of the DNA assembly, rapid prototyping and, ultimately, brings forward an accelerated Design-Build-Test-Learn cycle and the overall optimization of the biomanufacturing process. Achieving such a vision will address the increasingly compelling demand in our society for delivering valuable biomolecules in an affordable, inclusive and sustainable bioeconomy.
Collapse
Affiliation(s)
- Irene Otero-Muras
- BioProcess Engineering Group, IIM-CSIC, Spanish National Research Council, Vigo, 36208, Spain.
| | - Pablo Carbonell
- Institute of Industrial Control Systems and Computing (ai2), Universitat Politècnica de València, 46022, Spain.
| |
Collapse
|
5
|
Kim SM, Peña MI, Moll M, Bennett GN, Kavraki LE. Improving the organization and interactivity of metabolic pathfinding with precomputed pathways. BMC Bioinformatics 2020; 21:13. [PMID: 31924164 PMCID: PMC6954563 DOI: 10.1186/s12859-019-3328-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 12/18/2019] [Indexed: 11/11/2022] Open
Abstract
Background The rapid growth of available knowledge on metabolic processes across thousands of species continues to expand the possibilities of producing chemicals by combining pathways found in different species. Several computational search algorithms have been developed for automating the identification of possible heterologous pathways; however, these searches may return thousands of pathway results. Although the large number of results are in part due to the large number of possible compounds and reactions, a subset of core reaction modules is repeatedly observed in pathway results across multiple searches, suggesting that some subpaths between common compounds were more consistently explored than others.To reduce the resources spent on searching the same metabolic space, a new meta-algorithm for metabolic pathfinding, Hub Pathway search with Atom Tracking (HPAT), was developed to take advantage of a precomputed network of subpath modules. To investigate the efficacy of this method, we created a table describing a network of common hub metabolites and how they are biochemically connected and only offloaded searches to and from this hub network onto an interactive webserver capable of visualizing the resulting pathways. Results A test set of nineteen known pathways taken from literature and metabolic databases were used to evaluate if HPAT was capable of identifying known pathways. HPAT found the exact pathway for eleven of the nineteen test cases using a diverse set of precomputed subpaths, whereas a comparable pathfinding search algorithm that does not use precomputed subpaths found only seven of the nineteen test cases. The capability of HPAT to find novel pathways was demonstrated by its ability to identify novel 3-hydroxypropanoate (3-HP) synthesis pathways. As for pathway visualization, the new interactive pathway filters enable a reduction of the number of displayed pathways from hundreds down to less than ten pathways in several test cases, illustrating their utility in reducing the amount of presented information while retaining pathways of interest. Conclusions This work presents the first step in incorporating a precomputed subpath network into metabolic pathfinding and demonstrates how this leads to a concise, interactive visualization of pathway results. The modular nature of metabolic pathways is exploited to facilitate efficient discovery of alternate pathways.
Collapse
Affiliation(s)
- Sarah M Kim
- Department of Computer Science, Rice University, Houston, Texas, USA
| | - Matthew I Peña
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Mark Moll
- Department of Computer Science, Rice University, Houston, Texas, USA.
| | | | - Lydia E Kavraki
- Department of Computer Science, Rice University, Houston, Texas, USA
| |
Collapse
|
6
|
Systems biology based metabolic engineering for non-natural chemicals. Biotechnol Adv 2019; 37:107379. [DOI: 10.1016/j.biotechadv.2019.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/23/2019] [Accepted: 04/01/2019] [Indexed: 12/17/2022]
|
7
|
Sikorska-Zimny K, Badełek E, Grzegorzewska M, Ciecierska A, Kowalski A, Kosson R, Tuccio L, Mencaglia AA, Ciaccheri L, Mignani AG, Kaniszewski S, Agati G. Comparison of lycopene changes between open-field processing and fresh market tomatoes during ripening and post-harvest storage by using a non-destructive reflectance sensor. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:2763-2774. [PMID: 30430568 DOI: 10.1002/jsfa.9484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/09/2018] [Accepted: 11/11/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Accumulation and stability of tomato lycopene markedly depends on the cultivar, plant growing and storage conditions. To estimate lycopene in open-field cultivated processing and fresh market tomatoes, we used a calibrated spectral reflectance portable sensor. RESULTS Lycopene accumulation in fruits attached to the plant, starting from the Green ripening stage, followed a sigmoidal function. It was faster and reached higher levels in processing (cv. Calista) than fresh market (cv. Volna) tomatoes (90 and 62 mg kg-1 fresh weight, respectively). During storage at 12, 20 and 25 °C, Red tomatoes retained about 90% of harvest lycopene for three weeks. Pink tomatoes increased lycopene during the first week of storage, but never reached the lycopene values of Red tomatoes ripened on the vine. Storability at 12 °C retaining the highest quality in red tomatoes was limited to 14 and 7 days for Calista and Volna cultivars, respectively. CONCLUSION Significant differences in lycopene accumulation and stability between processing and fresh market tomatoes were established by examining with time the very same fruits by a non-destructive optical tool. It can be useful in agronomical and post-harvest physiological studies and can be of interest for producers oriented to the niche nutraceutical market. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Ewa Badełek
- Research Institute of Horticulture, Skierniewice, Poland
| | | | | | - Artur Kowalski
- Research Institute of Horticulture, Skierniewice, Poland
| | - Ryszard Kosson
- Research Institute of Horticulture, Skierniewice, Poland
| | - Lorenza Tuccio
- Istituto di Fisica Applicata 'Nello Carrara' - CNR, Sesto Fiorentino, Italy
| | - Andrea A Mencaglia
- Istituto di Fisica Applicata 'Nello Carrara' - CNR, Sesto Fiorentino, Italy
| | - Leonardo Ciaccheri
- Istituto di Fisica Applicata 'Nello Carrara' - CNR, Sesto Fiorentino, Italy
| | | | | | - Giovanni Agati
- Istituto di Fisica Applicata 'Nello Carrara' - CNR, Sesto Fiorentino, Italy
| |
Collapse
|
8
|
Enumerating all possible biosynthetic pathways in metabolic networks. Sci Rep 2018; 8:9932. [PMID: 29967471 PMCID: PMC6028704 DOI: 10.1038/s41598-018-28007-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/14/2018] [Indexed: 12/24/2022] Open
Abstract
Exhaustive identification of all possible alternate pathways that exist in metabolic networks can provide valuable insights into cellular metabolism. With the growing number of metabolic reconstructions, there is a need for an efficient method to enumerate pathways, which can also scale well to large metabolic networks, such as those corresponding to microbial communities. We developed MetQuest, an efficient graph-theoretic algorithm to enumerate all possible pathways of a particular size between a given set of source and target molecules. Our algorithm employs a guided breadth-first search to identify all feasible reactions based on the availability of the precursor molecules, followed by a novel dynamic-programming based enumeration, which assembles these reactions into pathways of a specified size producing the target from the source. We demonstrate several interesting applications of our algorithm, ranging from identifying amino acid biosynthesis pathways to identifying the most diverse pathways involved in degradation of complex molecules. We also illustrate the scalability of our algorithm, by studying large graphs such as those corresponding to microbial communities, and identify several metabolic interactions happening therein. MetQuest is available as a Python package, and the source codes can be found at https://github.com/RamanLab/metquest.
Collapse
|
9
|
Abd Algfoor Z, Shahrizal Sunar M, Abdullah A, Kolivand H. Identification of metabolic pathways using pathfinding approaches: a systematic review. Brief Funct Genomics 2017; 16:87-98. [PMID: 26969656 DOI: 10.1093/bfgp/elw002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Metabolic pathways have become increasingly available for various microorganisms. Such pathways have spurred the development of a wide array of computational tools, in particular, mathematical pathfinding approaches. This article can facilitate the understanding of computational analysis of metabolic pathways in genomics. Moreover, stoichiometric and pathfinding approaches in metabolic pathway analysis are discussed. Three major types of studies are elaborated: stoichiometric identification models, pathway-based graph analysis and pathfinding approaches in cellular metabolism. Furthermore, evaluation of the outcomes of the pathways with mathematical benchmarking metrics is provided. This review would lead to better comprehension of metabolism behaviors in living cells, in terms of computed pathfinding approaches.
Collapse
Affiliation(s)
- Zeyad Abd Algfoor
- MaGIC-X (Media and Games Innovation Centre of Excellence), UTM-IRDA Digital Media Centre, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Mohd Shahrizal Sunar
- MaGIC-X (Media and Games Innovation Centre of Excellence), UTM-IRDA Digital Media Centre, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Afnizanfaizal Abdullah
- Boston University School of Medicine, Boston Medical Center, Boston, MA, USA.,Duke Global Health Institute, Duke University, Durham, NC, USA.,Global Health Program, Duke Kunshan University, Jiangsu, China
| | - Hoshang Kolivand
- Department of Computer Science, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
10
|
Wang L, Dash S, Ng CY, Maranas CD. A review of computational tools for design and reconstruction of metabolic pathways. Synth Syst Biotechnol 2017; 2:243-252. [PMID: 29552648 PMCID: PMC5851934 DOI: 10.1016/j.synbio.2017.11.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 11/28/2022] Open
Abstract
Metabolic pathways reflect an organism's chemical repertoire and hence their elucidation and design have been a primary goal in metabolic engineering. Various computational methods have been developed to design novel metabolic pathways while taking into account several prerequisites such as pathway stoichiometry, thermodynamics, host compatibility, and enzyme availability. The choice of the method is often determined by the nature of the metabolites of interest and preferred host organism, along with computational complexity and availability of software tools. In this paper, we review different computational approaches used to design metabolic pathways based on the reaction network representation of the database (i.e., graph or stoichiometric matrix) and the search algorithm (i.e., graph search, flux balance analysis, or retrosynthetic search). We also put forth a systematic workflow that can be implemented in projects requiring pathway design and highlight current limitations and obstacles in computational pathway design.
Collapse
Affiliation(s)
- Lin Wang
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Satyakam Dash
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Chiam Yu Ng
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
11
|
Kim SM, Peña MI, Moll M, Bennett GN, Kavraki LE. A review of parameters and heuristics for guiding metabolic pathfinding. J Cheminform 2017; 9:51. [PMID: 29086092 PMCID: PMC5602787 DOI: 10.1186/s13321-017-0239-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/07/2017] [Indexed: 12/04/2022] Open
Abstract
Recent developments in metabolic engineering have led to the successful biosynthesis of valuable products, such as the precursor of the antimalarial compound, artemisinin, and opioid precursor, thebaine. Synthesizing these traditionally plant-derived compounds in genetically modified yeast cells introduces the possibility of significantly reducing the total time and resources required for their production, and in turn, allows these valuable compounds to become cheaper and more readily available. Most biosynthesis pathways used in metabolic engineering applications have been discovered manually, requiring a tedious search of existing literature and metabolic databases. However, the recent rapid development of available metabolic information has enabled the development of automated approaches for identifying novel pathways. Computer-assisted pathfinding has the potential to save biochemists time in the initial discovery steps of metabolic engineering. In this paper, we review the parameters and heuristics used to guide the search in recent pathfinding algorithms. These parameters and heuristics capture information on the metabolic network structure, compound structures, reaction features, and organism-specificity of pathways. No one metabolic pathfinding algorithm or search parameter stands out as the best to use broadly for solving the pathfinding problem, as each method and parameter has its own strengths and shortcomings. As assisted pathfinding approaches continue to become more sophisticated, the development of better methods for visualizing pathway results and integrating these results into existing metabolic engineering practices is also important for encouraging wider use of these pathfinding methods.
Collapse
Affiliation(s)
- Sarah M Kim
- Department of Computer Science, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Matthew I Peña
- Department of BioSciences, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Mark Moll
- Department of Computer Science, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - George N Bennett
- Department of BioSciences, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Lydia E Kavraki
- Department of Computer Science, Rice University, 6100 Main St., Houston, TX, 77005, USA.
| |
Collapse
|
12
|
Huang Y, Zhong C, Lin HX, Wang J. A Method for Finding Metabolic Pathways Using Atomic Group Tracking. PLoS One 2017; 12:e0168725. [PMID: 28068354 PMCID: PMC5221824 DOI: 10.1371/journal.pone.0168725] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/05/2016] [Indexed: 12/13/2022] Open
Abstract
A fundamental computational problem in metabolic engineering is to find pathways between compounds. Pathfinding methods using atom tracking have been widely used to find biochemically relevant pathways. However, these methods require the user to define the atoms to be tracked. This may lead to failing to predict the pathways that do not conserve the user-defined atoms. In this work, we propose a pathfinding method called AGPathFinder to find biochemically relevant metabolic pathways between two given compounds. In AGPathFinder, we find alternative pathways by tracking the movement of atomic groups through metabolic networks and use combined information of reaction thermodynamics and compound similarity to guide the search towards more feasible pathways and better performance. The experimental results show that atomic group tracking enables our method to find pathways without the need of defining the atoms to be tracked, avoid hub metabolites, and obtain biochemically meaningful pathways. Our results also demonstrate that atomic group tracking, when incorporated with combined information of reaction thermodynamics and compound similarity, improves the quality of the found pathways. In most cases, the average compound inclusion accuracy and reaction inclusion accuracy for the top resulting pathways of our method are around 0.90 and 0.70, respectively, which are better than those of the existing methods. Additionally, AGPathFinder provides the information of thermodynamic feasibility and compound similarity for the resulting pathways.
Collapse
Affiliation(s)
- Yiran Huang
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
- School of Computer, Electronics and Information, Guangxi University, Nanning, China
- * E-mail: (YH); (CZ)
| | - Cheng Zhong
- School of Computer, Electronics and Information, Guangxi University, Nanning, China
- * E-mail: (YH); (CZ)
| | - Hai Xiang Lin
- Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
| | - Jianyi Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| |
Collapse
|
13
|
Vitsios DM, Psomopoulos FE, Mitkas PA, Ouzounis CA. Inference of Pathway Decomposition Across Multiple Species Through Gene Clustering. INT J ARTIF INTELL T 2015. [DOI: 10.1142/s0218213015400035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the wake of gene-oriented data analysis in large-scale bioinformatics studies, focus in research is currently shifting towards the analysis of the functional association of genes, namely the metabolic pathways in which genes participate. The goal of this paper is to attempt to identify the core genes in a specific pathway, based on a user-defined selection of genomes. To this end, a novel algorithm has been developed that uses data from the KEGG database, and through the application of the MCL clustering algorithm, identifies clusters that correspond to different “layers” of genes, either on a phylogenetic or a functional level. The algorithm's complexity, evaluated experimentally, is presented and the results on three characteristic case studies are discussed.
Collapse
Affiliation(s)
- Dimitrios M. Vitsios
- Center for Research and Technology Hellas (CERTH), 6th km. Charilaou – Thermi Road, Thermi 57001, Thessaloniki, Greece
- EMBL – European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Fotis E. Psomopoulos
- Center for Research and Technology Hellas (CERTH), 6th km. Charilaou – Thermi Road, Thermi 57001, Thessaloniki, Greece
| | - Pericles A. Mitkas
- Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, AUTH CAMPUS, Thessaloniki 54124, Greece
| | - Christos A. Ouzounis
- Center for Research and Technology Hellas (CERTH), 6th km. Charilaou – Thermi Road, Thermi 57001, Thessaloniki, Greece
| |
Collapse
|