1
|
Zadeh Shirazi A, Tofighi M, Gharavi A, Gomez GA. The Application of Artificial Intelligence to Cancer Research: A Comprehensive Guide. Technol Cancer Res Treat 2024; 23:15330338241250324. [PMID: 38775067 PMCID: PMC11113055 DOI: 10.1177/15330338241250324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 05/25/2024] Open
Abstract
Advancements in AI have notably changed cancer research, improving patient care by enhancing detection, survival prediction, and treatment efficacy. This review covers the role of Machine Learning, Soft Computing, and Deep Learning in oncology, explaining key concepts and algorithms (like SVM, Naïve Bayes, and CNN) in a clear, accessible manner. It aims to make AI advancements understandable to a broad audience, focusing on their application in diagnosing, classifying, and predicting various cancer types, thereby underlining AI's potential to better patient outcomes. Moreover, we present a tabular summary of the most significant advances from the literature, offering a time-saving resource for readers to grasp each study's main contributions. The remarkable benefits of AI-powered algorithms in cancer care underscore their potential for advancing cancer research and clinical practice. This review is a valuable resource for researchers and clinicians interested in the transformative implications of AI in cancer care.
Collapse
Affiliation(s)
- Amin Zadeh Shirazi
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Morteza Tofighi
- Department of Electrical Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran
| | - Alireza Gharavi
- Department of Computer Science, Azad University, Mashhad Branch, Mashhad, Iran
| | - Guillermo A. Gomez
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
2
|
Mahto R, Ahmed SU, Rahman RU, Aziz RM, Roy P, Mallik S, Li A, Shah MA. A novel and innovative cancer classification framework through a consecutive utilization of hybrid feature selection. BMC Bioinformatics 2023; 24:479. [PMID: 38102551 PMCID: PMC10724960 DOI: 10.1186/s12859-023-05605-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023] Open
Abstract
Cancer prediction in the early stage is a topic of major interest in medicine since it allows accurate and efficient actions for successful medical treatments of cancer. Mostly cancer datasets contain various gene expression levels as features with less samples, so firstly there is a need to eliminate similar features to permit faster convergence rate of classification algorithms. These features (genes) enable us to identify cancer disease, choose the best prescription to prevent cancer and discover deviations amid different techniques. To resolve this problem, we proposed a hybrid novel technique CSSMO-based gene selection for cancer classification. First, we made alteration of the fitness of spider monkey optimization (SMO) with cuckoo search algorithm (CSA) algorithm viz., CSSMO for feature selection, which helps to combine the benefit of both metaheuristic algorithms to discover a subset of genes which helps to predict a cancer disease in early stage. Further, to enhance the accuracy of the CSSMO algorithm, we choose a cleaning process, minimum redundancy maximum relevance (mRMR) to lessen the gene expression of cancer datasets. Next, these subsets of genes are classified using deep learning (DL) to identify different groups or classes related to a particular cancer disease. Eight different benchmark microarray gene expression datasets of cancer have been utilized to analyze the performance of the proposed approach with different evaluation matrix such as recall, precision, F1-score, and confusion matrix. The proposed gene selection method with DL achieves much better classification accuracy than other existing DL and machine learning classification models with all large gene expression dataset of cancer.
Collapse
Affiliation(s)
- Rajul Mahto
- School of Computing Science and Engineering, VIT Bhopal University, Kothrikalan, Sehore, Madhya Pradesh, 46611, India
| | - Saboor Uddin Ahmed
- School of Computing Science and Engineering, VIT Bhopal University, Kothrikalan, Sehore, Madhya Pradesh, 46611, India
| | - Rizwan Ur Rahman
- School of Computing Science and Engineering, VIT Bhopal University, Kothrikalan, Sehore, Madhya Pradesh, 46611, India
| | - Rabia Musheer Aziz
- School of Advanced Sciences and Language, VIT Bhopal University, Kothrikalan, Sehore, Madhya Pradesh, 46611, India
| | - Priyanka Roy
- School of Advanced Sciences and Language, VIT Bhopal University, Kothrikalan, Sehore, Madhya Pradesh, 46611, India.
| | - Saurav Mallik
- Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA.
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, 85721, USA.
| | - Aimin Li
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- School of Computer Science and Engineering, Xi'an University of Technology, Shaanxi, 710048, China
| | - Mohd Asif Shah
- Department of Economics, Kebri Dehar University, Kebri Dehar, 250, Somali, Ethiopia.
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab, 144001, India.
- Centre for Research Impact & Outcome, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
3
|
Aziz RM, Mahto R, Das A, Ahmed SU, Roy P, Mallik S, Li A. CO-WOA: Novel Optimization Approach for Deep Learning Classification of Fish Image. Chem Biodivers 2023; 20:e202201123. [PMID: 37394680 DOI: 10.1002/cbdv.202201123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
The most significant groupings of cold-blooded creatures are the fish family. It is crucial to recognize and categorize the most significant species of fish since various species of seafood diseases and decay exhibit different symptoms. Systems based on enhanced deep learning can replace the area's currently cumbersome and sluggish traditional approaches. Although it seems straightforward, classifying fish images is a complex procedure. In addition, the scientific study of population distribution and geographic patterns is important for advancing the field's present advancements. The goal of the proposed work is to identify the best performing strategy using cutting-edge computer vision, the Chaotic Oppositional Based Whale Optimization Algorithm (CO-WOA), and data mining techniques. Performance comparisons with leading models, such as Convolutional Neural Networks (CNN) and VGG-19, are made to confirm the applicability of the suggested method. The suggested feature extraction approach with Proposed Deep Learning Model was used in the research, yielding accuracy rates of 100 %. The performance was also compared to cutting-edge image processing models with an accuracy of 98.48 %, 98.58 %, 99.04 %, 98.44 %, 99.18 % and 99.63 % such as Convolutional Neural Networks, ResNet150V2, DenseNet, Visual Geometry Group-19, Inception V3, Xception. Using an empirical method leveraging artificial neural networks, the Proposed Deep Learning model was shown to be the best model.
Collapse
Affiliation(s)
- Rabia Musheer Aziz
- Mathematics division, School of Advanced Sciences and Languages, VIT Bhopal University, Kothrikalan, Sehore, 466116, M.P., India
| | - Rajul Mahto
- School of Computing Science and Engineering, VIT Bhopal University, Kothrikalan, Sehore, 466116, M.P., India
| | - Aryan Das
- School of Computing Science and Engineering, VIT Bhopal University, Kothrikalan, Sehore, 466116, M.P., India
| | - Saboor Uddin Ahmed
- School of Computing Science and Engineering, VIT Bhopal University, Kothrikalan, Sehore, 466116, M.P., India
| | - Priyanka Roy
- Mathematics division, School of Advanced Sciences and Languages, VIT Bhopal University, Kothrikalan, Sehore, 466116, M.P., India
| | - Saurav Mallik
- Molecular and Integrative Physiological Sciences, Department of Environmental health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Aimin Li
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- School of Computer Science and Engineering, Xi'an University of Technology, Shaanxi, 710048, China
| |
Collapse
|
4
|
Jakšić Z, Devi S, Jakšić O, Guha K. A Comprehensive Review of Bio-Inspired Optimization Algorithms Including Applications in Microelectronics and Nanophotonics. Biomimetics (Basel) 2023; 8:278. [PMID: 37504166 PMCID: PMC10807478 DOI: 10.3390/biomimetics8030278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
The application of artificial intelligence in everyday life is becoming all-pervasive and unavoidable. Within that vast field, a special place belongs to biomimetic/bio-inspired algorithms for multiparameter optimization, which find their use in a large number of areas. Novel methods and advances are being published at an accelerated pace. Because of that, in spite of the fact that there are a lot of surveys and reviews in the field, they quickly become dated. Thus, it is of importance to keep pace with the current developments. In this review, we first consider a possible classification of bio-inspired multiparameter optimization methods because papers dedicated to that area are relatively scarce and often contradictory. We proceed by describing in some detail some more prominent approaches, as well as those most recently published. Finally, we consider the use of biomimetic algorithms in two related wide fields, namely microelectronics (including circuit design optimization) and nanophotonics (including inverse design of structures such as photonic crystals, nanoplasmonic configurations and metamaterials). We attempted to keep this broad survey self-contained so it can be of use not only to scholars in the related fields, but also to all those interested in the latest developments in this attractive area.
Collapse
Affiliation(s)
- Zoran Jakšić
- Center of Microelectronic Technologies, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia University of Belgrade, 11000 Belgrade, Serbia;
| | - Swagata Devi
- Department of Electronics and Communication Engineering, B V Raju Institute of Technology Narasapur, Narasapur 502313, India;
| | - Olga Jakšić
- Center of Microelectronic Technologies, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia University of Belgrade, 11000 Belgrade, Serbia;
| | - Koushik Guha
- Department of Electronics and Communication Engineering, National Institute of Technology Silchar, Silchar 788010, India;
| |
Collapse
|
5
|
Wang Z, Zhou Y, Takagi T, Song J, Tian YS, Shibuya T. Genetic algorithm-based feature selection with manifold learning for cancer classification using microarray data. BMC Bioinformatics 2023; 24:139. [PMID: 37031189 PMCID: PMC10082986 DOI: 10.1186/s12859-023-05267-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/02/2023] [Indexed: 04/10/2023] Open
Abstract
BACKGROUND Microarray data have been widely utilized for cancer classification. The main characteristic of microarray data is "large p and small n" in that data contain a small number of subjects but a large number of genes. It may affect the validity of the classification. Thus, there is a pressing demand of techniques able to select genes relevant to cancer classification. RESULTS This study proposed a novel feature (gene) selection method, Iso-GA, for cancer classification. Iso-GA hybrids the manifold learning algorithm, Isomap, in the genetic algorithm (GA) to account for the latent nonlinear structure of the gene expression in the microarray data. The Davies-Bouldin index is adopted to evaluate the candidate solutions in Isomap and to avoid the classifier dependency problem. Additionally, a probability-based framework is introduced to reduce the possibility of genes being randomly selected by GA. The performance of Iso-GA was evaluated on eight benchmark microarray datasets of cancers. Iso-GA outperformed other benchmarking gene selection methods, leading to good classification accuracy with fewer critical genes selected. CONCLUSIONS The proposed Iso-GA method can effectively select fewer but critical genes from microarray data to achieve competitive classification performance.
Collapse
Affiliation(s)
- Zixuan Wang
- Division of Medical Data Informatics, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
| | - Yi Zhou
- Beijing International Center for Mathematical Research, Peking University, Beijing, 100871, China
| | - Tatsuya Takagi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Jiangning Song
- Biomedicine Discovery Institute and Monash Data Futures Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Yu-Shi Tian
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Tetsuo Shibuya
- Division of Medical Data Informatics, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| |
Collapse
|
6
|
Nekouie N, Romoozi M, Esmaeili M. A New Evolutionary Ensemble Learning of Multimodal Feature Selection from Microarray Data. Neural Process Lett 2023. [DOI: 10.1007/s11063-023-11159-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
7
|
Cyclic peptides as an inhibitor of metastasis in breast cancer targeting MMP-1: Computational approach. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.101128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
8
|
Ficolin-3 may act as a tumour suppressor by recognising O-GlcNAcylation site in hepatocellular carcinoma. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|