1
|
Patino CA, Sarikaya S, Mukherjee P, Pathak N, Espinosa HD. Well Plate-Based Localized Electroporation Workflow for Rapid Optimization of Intracellular Delivery. Bio Protoc 2024; 14:e5037. [PMID: 39100599 PMCID: PMC11291937 DOI: 10.21769/bioprotoc.5037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 08/06/2024] Open
Abstract
Efficient and nontoxic delivery of foreign cargo into cells is a critical step in many biological studies and cell engineering workflows with applications in areas such as biomanufacturing and cell-based therapeutics. However, effective molecular delivery into cells involves optimizing several experimental parameters. In the case of electroporation-based intracellular delivery, there is a need to optimize parameters like pulse voltage, duration, buffer type, and cargo concentration for each unique application. Here, we present the protocol for fabricating and utilizing a high-throughput multi-well localized electroporation device (LEPD) assisted by deep learning-based image analysis to enable rapid optimization of experimental parameters for efficient and nontoxic molecular delivery into cells. The LEPD and the optimization workflow presented herein are relevant to both adherent and suspended cell types and different molecular cargo (DNA, RNA, and proteins). The workflow enables multiplexed combinatorial experiments and can be adapted to cell engineering applications requiring in vitro delivery. Key features • A high-throughput multi-well localized electroporation device (LEPD) that can be optimized for both adherent and suspended cell types. • Allows for multiplexed experiments combined with tailored pulse voltage, duration, buffer type, and cargo concentration. • Compatible with various molecular cargoes, including DNA, RNA, and proteins, enhancing its versatility for cell engineering applications. • Integration with deep learning-based image analysis enables rapid optimization of experimental parameters.
Collapse
Affiliation(s)
- Cesar A. Patino
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | - Sevketcan Sarikaya
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | - Prithvijit Mukherjee
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL, USA
| | - Nibir Pathak
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL, USA
| | - Horacio D. Espinosa
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL, USA
| |
Collapse
|
2
|
Sun H, Yu L, Chen Y, Yang H, Sun L. Analysis of In Situ Electroporation Utilizing Induced Electric Field at a Wireless Janus Microelectrode. MICROMACHINES 2024; 15:819. [PMID: 39064330 PMCID: PMC11279304 DOI: 10.3390/mi15070819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
In situ electroporation, a non-invasive technique for enhancing the permeability of cell membranes, has emerged as a powerful tool for intracellular delivery and manipulation. This method allows for the precise introduction of therapeutic agents, such as nucleic acids, drugs, and proteins, directly into target cells within their native tissue environment. Herein, we introduce an innovative electroporation strategy that employs a Janus particle (JP)-based microelectrode to generate a localized and controllable electric field within a microfluidic chip. The microfluidic device is engineered with an indium tin oxide (ITO)-sandwiched microchannel, where the electric field is applied, and suspended JP microelectrodes that induce a stronger localized electric field. The corresponding simulation model is developed to better understand the dynamic electroporation process. Numerical simulations for both single-cell and chain-assembled cell electroporation have been successfully conducted. The effects of various parameters, including pulse voltage, duration medium conductivity, and radius of Janus microelectrode, on cell membrane permeabilization are systematically investigated. Our findings indicate that the enhanced electric intensity near the poles of the JP microelectrode significantly contributes to the electroporation process. In addition, the distribution for both transmembrane voltage and the resultant nanopores can be altered by conveniently adjusting the relative position of the JP microelectrode, demonstrating a selective and in situ electroporation technique for spatial control over the delivery area. Moreover, the obtained differences in the distribution of electroporation between chain cells can offer insightful directives for the electroporation of tissues or cell populations, enabling the precise and targeted modulation of specific cell populations. As a proof of concept, this work can provide a robust alternative technique for the study of complex and personalized cellular processes.
Collapse
Affiliation(s)
- Haizhen Sun
- School of Mechanical and Electric Engineering, Soochow University, Suzhou 215299, China; (L.Y.); (Y.C.); (L.S.)
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China
| | - Linkai Yu
- School of Mechanical and Electric Engineering, Soochow University, Suzhou 215299, China; (L.Y.); (Y.C.); (L.S.)
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China
| | - Yifan Chen
- School of Mechanical and Electric Engineering, Soochow University, Suzhou 215299, China; (L.Y.); (Y.C.); (L.S.)
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China
| | - Hao Yang
- School of Mechanical and Electric Engineering, Soochow University, Suzhou 215299, China; (L.Y.); (Y.C.); (L.S.)
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China
| | - Lining Sun
- School of Mechanical and Electric Engineering, Soochow University, Suzhou 215299, China; (L.Y.); (Y.C.); (L.S.)
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
3
|
Aukema KG, Wang M, de Souza B, O'Keane S, Clipsham M, Wackett LP, Aksan A. Core-shell encapsulation formulations to stabilize desiccated Bradyrhizobium against high environmental temperature and humidity. Microb Biotechnol 2022; 15:2391-2400. [PMID: 35730421 PMCID: PMC9437883 DOI: 10.1111/1751-7915.14078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022] Open
Abstract
Engineered materials to improve the shelf-life of desiccated microbial strains are needed for cost-effective bioaugmentation strategies. High temperatures and humidity of legume-growing regions challenge long-term cell stabilization at the desiccated state. A thermostable xeroprotectant core and hydrophobic water vapour barrier shell encapsulation technique was developed to protect desiccated cells from the environment. A trehalose core matrix increased the stability of desiccated Bradyrhizobium by three orders of magnitude over 20 days at 32°C and 50% relative humidity (RH) compared to buffer alone; however, the improvement was not deemed sufficient for a shelf-stable bioproduct. We tested common additives (skim milk, albumin, gelatin and dextran) to increase the glass transition temperature of the desiccated product to provide further stabilization. Albumin increased the glass transition temperature of the trehalose-based core by 40°C and stabilized desiccated Bradyrhizobium for 4 months during storage at high temperature (32°C) and moderate humidity (50% RH) with only 1 log loss of viability. Although the albumin-trehalose core provided exceptional protection against high temperature, it was ineffective at higher humidity conditions (75%). We therefore incorporated a paraffin shell, which protected desiccated cells against 75% RH providing proof of concept that core and shell encapsulation is an effective strategy to stabilize desiccated cells.
Collapse
Affiliation(s)
- Kelly G. Aukema
- Department of BiochemistryMolecular Biology and BiophysicsMinneapolisMNUSA
- BioTechnology Institute University of MinnesotaSt. PaulMNUSA
| | - Mian Wang
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMNUSA
| | - Beatriz de Souza
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMNUSA
| | - Sophie O'Keane
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMNUSA
| | - Maia Clipsham
- Microbial EngineeringUniversity of MinnesotaSt. PaulMNUSA
| | - Lawrence P. Wackett
- Department of BiochemistryMolecular Biology and BiophysicsMinneapolisMNUSA
- BioTechnology Institute University of MinnesotaSt. PaulMNUSA
| | - Alptekin Aksan
- BioTechnology Institute University of MinnesotaSt. PaulMNUSA
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMNUSA
| |
Collapse
|
4
|
Niu Q, Gao S, Liu X, Chong J, Ren L, Zhu K, Shi W, Yuan X. Membrane stabilization versus perturbation by aromatic monoamine-modified γ-PGA for cryopreservation of human RBCs with high intracellular trehalose. J Mater Chem B 2022; 10:6038-6048. [PMID: 35894777 DOI: 10.1039/d2tb01074g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a nonreducing disaccharide, trehalose can be used as a biocompatible cryoprotectant for solvent-free cell cryopreservation, but the membrane-impermeability limits its cryoprotective efficiency. Herein, a series of aromatic monoamines with a 1-4 methylene spacer were grafted onto γ-poly(glutamic acid) (γ-PGA) for promoting intracellular trehalose uptake in human red blood cells (hRBCs) via membrane perturbation. The self-assembled nanoparticles of the obtained amphiphilic γ-PGA could be adsorbed on the cell membrane by the hydrophobic interaction to disturb the lipid arrangement and increase the membrane permeability of trehalose under hypertonic conditions. Results suggested that the intracellular trehalose could be enhanced progressively with the methylene spacer length, significantly increasing to 75.1 ± 0.7 mM by incubating hRBCs in 0.8 M trehalose containing phenylbutylamine-grafted γ-PGA at 4 °C for 24 h. Meanwhile, the other three polymers exhibited membrane stabilization in addition to improved intracellular trehalose, maintaining the membrane integrity during cryopreservation to achieve high cryosurvival. Molecular dynamics simulation further confirmed that defects could be formed by interaction of the above four amphiphilic polymers on the modeled phospholipid bilayer. It was believed that glycerol-free cryopreservation of human cells could be realized by using trehalose as the biocompatible cryoprotectant, and membrane stabilization can be a compensatory approach to membrane perturbation during impermeable biomolecule delivery.
Collapse
Affiliation(s)
- Qingjing Niu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Shuhui Gao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Xingwen Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| | | | - Lixia Ren
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Kongying Zhu
- Analysis and Measurement Center, Tianjin University, Tianjin 300072, China
| | - Wenxiong Shi
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
5
|
Wang F, Lin S, Yu Z, Wang Y, Zhang D, Cao C, Wang Z, Cui D, Chen D. Recent advances in microfluidic-based electroporation techniques for cell membranes. LAB ON A CHIP 2022; 22:2624-2646. [PMID: 35775630 DOI: 10.1039/d2lc00122e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electroporation is a fundamental technique for applications in biotechnology. To date, the ongoing research on cell membrane electroporation has explored its mechanism, principles and potential applications. Therefore, in this review, we first discuss the primary electroporation mechanism to help establish a clear framework. Within the context of its principles, several critical terms are highlighted to present a better understanding of the theory of aqueous pores. Different degrees of electroporation can be used in different applications. Thus, we discuss the electric factors (shock strength, shock duration, and shock frequency) responsible for the degree of electroporation. In addition, finding an effective electroporation detection method is of great significance to optimize electroporation experiments. Accordingly, we summarize several primary electroporation detection methods in the following sections. Finally, given the development of micro- and nano-technology has greatly promoted the innovation of microfluidic-based electroporation devices, we also present the recent advances in microfluidic-based electroporation devices. Also, the challenges and outlook of the electroporation technique for cell membrane electroporation are presented.
Collapse
Affiliation(s)
- Fei Wang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
- Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Shanghai 200240, P. R. China
- Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai 200240, P. R. China
| | - Shujing Lin
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
- Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Shanghai 200240, P. R. China
- Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai 200240, P. R. China
| | - Zixian Yu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
- Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Shanghai 200240, P. R. China
- Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai 200240, P. R. China
| | - Yanpu Wang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
- Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Shanghai 200240, P. R. China
- Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai 200240, P. R. China
| | - Di Zhang
- Centre for Advanced Electronic Materials and Devices (AEMD), Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Chengxi Cao
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
- Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Shanghai 200240, P. R. China
| | - Zhigang Wang
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Daxiang Cui
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
- Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Shanghai 200240, P. R. China
- Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai 200240, P. R. China
| | - Di Chen
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
- Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Shanghai 200240, P. R. China
- Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai 200240, P. R. China
| |
Collapse
|
6
|
Morshedi Rad D, Alsadat Rad M, Razavi Bazaz S, Kashaninejad N, Jin D, Ebrahimi Warkiani M. A Comprehensive Review on Intracellular Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005363. [PMID: 33594744 DOI: 10.1002/adma.202005363] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/22/2020] [Indexed: 05/22/2023]
Abstract
Intracellular delivery is considered an indispensable process for various studies, ranging from medical applications (cell-based therapy) to fundamental (genome-editing) and industrial (biomanufacture) approaches. Conventional macroscale delivery systems critically suffer from such issues as low cell viability, cytotoxicity, and inconsistent material delivery, which have opened up an interest in the development of more efficient intracellular delivery systems. In line with the advances in microfluidics and nanotechnology, intracellular delivery based on micro- and nanoengineered platforms has progressed rapidly and held great promises owing to their unique features. These approaches have been advanced to introduce a smorgasbord of diverse cargoes into various cell types with the maximum efficiency and the highest precision. This review differentiates macro-, micro-, and nanoengineered approaches for intracellular delivery. The macroengineered delivery platforms are first summarized and then each method is categorized based on whether it employs a carrier- or membrane-disruption-mediated mechanism to load cargoes inside the cells. Second, particular emphasis is placed on the micro- and nanoengineered advances in the delivery of biomolecules inside the cells. Furthermore, the applications and challenges of the established and emerging delivery approaches are summarized. The topic is concluded by evaluating the future perspective of intracellular delivery toward the micro- and nanoengineered approaches.
Collapse
Affiliation(s)
- Dorsa Morshedi Rad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Maryam Alsadat Rad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Sajad Razavi Bazaz
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Navid Kashaninejad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Dayong Jin
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute of Molecular Medicine, Sechenov University, Moscow, 119991, Russia
| |
Collapse
|
7
|
Zhang Y, Wang H, Stewart S, Jiang B, Ou W, Zhao G, He X. Cold-Responsive Nanoparticle Enables Intracellular Delivery and Rapid Release of Trehalose for Organic-Solvent-Free Cryopreservation. NANO LETTERS 2019; 19:9051-9061. [PMID: 31680526 DOI: 10.1021/acs.nanolett.9b04109] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Conventional cryopreservation of mammalian cells requires the use of toxic organic solvents (e.g., dimethyl sulfoxide) as cryoprotectants. Consequently, the cryopreserved cells must undergo a tedious washing procedure to remove the organic solvents for their further applications in cell-based medicine, and many of the precious cells may be lost or killed during the procedure. Trehalose has been explored as a nontoxic alternative to traditional cryoprotectants. However, mammalian cells do not synthesize trehalose or express trehalose transporters in their membranes, and the lack of an approach for the efficient intracellular delivery of trehalose has been a major hurdle for its use in cell cryopreservation. In this study, a cold-responsive polymer (poly(N-isopropylacrylamide-co-butyl acrylate)) is utilized to synthesize nanoparticles for the encapsulation and intracellular delivery of trehalose. The trehalose-laden nanoparticles can be efficiently taken up by mammalian cells. The nanoparticles quickly and irreversibly disassemble upon cold treatment, enabling the controlled and rapid release of trehalose from the nanoparticles inside cells. The latter is confirmed by an evident increase in cell volume upon cold treatment. This rapid cold-triggered intracellular release of trehalose is crucial to developing a fast protocol to cryopreserve cells using trehalose. Cells with intracellular trehalose delivered using the nanoparticles show comparable postcryopreservation viability compared to that of cells treated with DMSO, eliminating the need for the tedious and cell-damaging washing procedure required for using the DMSO-cryopreserved cells in vivo. This cold-responsive nanoparticle may greatly facilitate the use of trehalose as a nontoxic cryoprotectant for banking cells and tissues to meet their high demand by modern cell-based medicine.
Collapse
Affiliation(s)
- Yuntian Zhang
- Department of Electronic Science and Technology , University of Science and Technology of China , Hefei , Anhui 230027 , China
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | | | | | | | - Gang Zhao
- Department of Electronic Science and Technology , University of Science and Technology of China , Hefei , Anhui 230027 , China
| | - Xiaoming He
- Marlene and Stewart Greenebaum Comprehensive Cancer Center , University of Maryland , Baltimore , Maryland 21201 , United States
| |
Collapse
|
8
|
Stewart S, He X. Intracellular Delivery of Trehalose for Cell Banking. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7414-7422. [PMID: 30078320 PMCID: PMC6382607 DOI: 10.1021/acs.langmuir.8b02015] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Advances in stem cell technology and regenerative medicine have underscored the need for effective banking of living cells. Cryopreservation, using very low temperatures to achieve suspended animation, is widely used to store or bank cells for later use. This process requires the use of cryoprotective agents (CPAs) to protect cells against damage caused by the cooling and warming process. However, current popular CPAs like DMSO can be toxic to cells and must be thoroughly removed from cells before they can be used for research or clinical applications. Trehalose, a nontoxic sugar found in organisms capable of withstanding extreme cold or desiccation, has been explored as an alternative CPA. The disaccharide must be present on both sides of the cellular membrane to provide cryo-protection. However, trehalose is not synthesized by mammalian cells nor has the capability to diffuse through their plasma membranes. Therefore, it is crucial to achieve intracellular delivery of trehalose for utilizing the full potential of the sugar for cell banking. In this review, various methods that have been explored to deliver trehalose into mammalian cells for their banking at both cryogenic and ambient temperatures are surveyed. Among them, the nanoparticle-mediated approach is particularly exciting. Collectively, studies in the literature demonstrate the great potential of using trehalose as the sole CPA for cell banking, to facilitate the widespread use of living cells in modern medicine.
Collapse
Affiliation(s)
| | - Xiaoming He
- Correspondence should be addressed to: Xiaoming He, Ph.D., Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States.,
| |
Collapse
|
9
|
Lu Y, Palanikumar L, Choi ES, Huskens J, Ryu JH, Wang Y, Pang W, Duan X. Hypersound-Enhanced Intracellular Delivery of Drug-Loaded Mesoporous Silica Nanoparticles in a Non-Endosomal Pathway. ACS APPLIED MATERIALS & INTERFACES 2019; 11:19734-19742. [PMID: 31090387 DOI: 10.1021/acsami.9b02447] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The intracellular delivery efficiency of drug-loaded nanocarriers is often limited by biological barriers arising from the plasma membrane and the cell interior. In this work, the entering of doxorubicin (Dox)-loaded mesoporous silica nanoparticles (MSNs) into the cytoplasm was acoustically enhanced through direct penetration with the assistance of hypersound of gigahertz (GHz) frequency. Both fluorescence and cell viability measurements revealed that the therapeutic efficacy of Dox-loaded MSNs was significantly improved by tuning the power and duration of hypersound on demand with a nanoelectromechanical resonator. Mechanism studies with inhibitors illustrated that the membrane defects induced by the hypersound-triggered GHz acoustic streaming facilitated the Dox-loaded MSNs of 100-200 nm to directly penetrate through the cell membrane instead of via the traditional endocytosis, which highly increased the delivery efficiency by avoiding the formation of endosomes. This acoustic method enables the drug carriers to overcome biological barriers of the cell membrane and the endosomes without the limitation of carrier materials, which provides a versatile way of enhanced drug delivery for biomedical applications.
Collapse
Affiliation(s)
- Yao Lu
- State Key Laboratory of Precision Measuring Technology & Instruments , Tianjin University , Tianjin 300072 , China
- Molecular Nanofabrication Group, MESA+ Institute for Nanotechnology , University of Twente , Enschede 7500 AE , The Netherlands
| | - Loganathan Palanikumar
- Department of Chemistry, School of Natural Science , Ulsan National Institutes of Science and Technology (UNIST) , Ulsan 44919 , Korea
| | - Eun Seong Choi
- Department of Chemistry, School of Natural Science , Ulsan National Institutes of Science and Technology (UNIST) , Ulsan 44919 , Korea
| | - Jurriaan Huskens
- Molecular Nanofabrication Group, MESA+ Institute for Nanotechnology , University of Twente , Enschede 7500 AE , The Netherlands
| | - Ja-Hyoung Ryu
- Department of Chemistry, School of Natural Science , Ulsan National Institutes of Science and Technology (UNIST) , Ulsan 44919 , Korea
| | - Yanyan Wang
- State Key Laboratory of Precision Measuring Technology & Instruments , Tianjin University , Tianjin 300072 , China
| | - Wei Pang
- State Key Laboratory of Precision Measuring Technology & Instruments , Tianjin University , Tianjin 300072 , China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology & Instruments , Tianjin University , Tianjin 300072 , China
| |
Collapse
|
10
|
Wang B, Liu G, Balamurugan V, Sui Y, Wang G, Song Y, Chang Q. Apatite nanoparticles mediate intracellular delivery of trehalose and increase survival of cryopreserved cells. Cryobiology 2019; 86:103-110. [DOI: 10.1016/j.cryobiol.2018.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 12/18/2022]
|
11
|
Stewart MP, Langer R, Jensen KF. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem Rev 2018; 118:7409-7531. [PMID: 30052023 PMCID: PMC6763210 DOI: 10.1021/acs.chemrev.7b00678] [Citation(s) in RCA: 424] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular delivery is a key step in biological research and has enabled decades of biomedical discoveries. It is also becoming increasingly important in industrial and medical applications ranging from biomanufacture to cell-based therapies. Here, we review techniques for membrane disruption-based intracellular delivery from 1911 until the present. These methods achieve rapid, direct, and universal delivery of almost any cargo molecule or material that can be dispersed in solution. We start by covering the motivations for intracellular delivery and the challenges associated with the different cargo types-small molecules, proteins/peptides, nucleic acids, synthetic nanomaterials, and large cargo. The review then presents a broad comparison of delivery strategies followed by an analysis of membrane disruption mechanisms and the biology of the cell response. We cover mechanical, electrical, thermal, optical, and chemical strategies of membrane disruption with a particular emphasis on their applications and challenges to implementation. Throughout, we highlight specific mechanisms of membrane disruption and suggest areas in need of further experimentation. We hope the concepts discussed in our review inspire scientists and engineers with further ideas to improve intracellular delivery.
Collapse
Affiliation(s)
- Martin P. Stewart
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
| |
Collapse
|
12
|
Deng Y, Kizer M, Rada M, Sage J, Wang X, Cheon DJ, Chung AJ. Intracellular Delivery of Nanomaterials via an Inertial Microfluidic Cell Hydroporator. NANO LETTERS 2018; 18:2705-2710. [PMID: 29569926 DOI: 10.1021/acs.nanolett.8b00704] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The introduction of nanomaterials into cells is an indispensable process for studies ranging from basic biology to clinical applications. To deliver foreign nanomaterials into living cells, traditionally endocytosis, viral and lipid nanocarriers or electroporation are mainly employed; however, they critically suffer from toxicity, inconsistent delivery, and low throughput and are time-consuming and labor-intensive processes. Here, we present a novel inertial microfluidic cell hydroporator capable of delivering a wide range of nanomaterials to various cell types in a single-step without the aid of carriers or external apparatus. The platform inertially focuses cells into the channel center and guides cells to collide at a T-junction. Controlled compression and shear forces generate transient membrane discontinuities that facilitate passive diffusion of external nanomaterials into the cell cytoplasm while maintaining high cell viability. This hydroporation method shows superior delivery efficiency, is high-throughput, and has high controllability; moreover, its extremely simple and low-cost operation provides a powerful and practical strategy in the applications of cellular imaging, biomanufacturing, cell-based therapies, regenerative medicine, and disease diagnosis.
Collapse
Affiliation(s)
| | | | - Miran Rada
- Department of Regenerative and Cancer Cell Biology , Albany Medical College (AMC) , Albany , New York 12208 , United States
| | - Jessica Sage
- Department of Regenerative and Cancer Cell Biology , Albany Medical College (AMC) , Albany , New York 12208 , United States
| | | | - Dong-Joo Cheon
- Department of Regenerative and Cancer Cell Biology , Albany Medical College (AMC) , Albany , New York 12208 , United States
| | | |
Collapse
|
13
|
Zhang Z, Wang Y, Zhang H, Tang Z, Liu W, Lu Y, Wang Z, Yang H, Pang W, Zhang H, Zhang D, Duan X. Hypersonic Poration: A New Versatile Cell Poration Method to Enhance Cellular Uptake Using a Piezoelectric Nano-Electromechanical Device. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1602962. [PMID: 28195400 DOI: 10.1002/smll.201602962] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/18/2016] [Indexed: 06/06/2023]
Abstract
Efficient delivery of genes and therapeutic agents to the interior of the cell is critical for modern biotechnology. Herein, a new type of chemical-free cell poration method-hypersonic poration-is developed to improve the cellular uptake, especially the nucleus uptake. The hypersound (≈GHz) is generated by a designed piezoelectric nano-electromechanical resonator, which directly induces normal/shear stress and "molecular bombardment" effects on the bilayer membranes, and creates reversible temporal nanopores improving the membrane permeability. Both theory analysis and cellular uptake experiments of exogenous compounds prove the high delivery efficiency of hypersonic poration. Since target molecules in cells are accumulated with the treatment, the delivered amount can be controlled by tuning the treatment time. Furthermore, owing to the intrinsic miniature of the resonator, localized drug delivery at a confined spatial location and tunable arrays of the resonators that are compatible with multiwell plate can be achieved. The hypersonic poration method shows great delivery efficacy combined with advantage of scalability, tunable throughput, and simplification in operation and provides a potentially powerful strategy in the field of molecule delivery, cell transfection, and gene therapy.
Collapse
Affiliation(s)
- Zhixin Zhang
- College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Yanyan Wang
- College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Hongxiang Zhang
- College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Zifan Tang
- College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Wenpeng Liu
- College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Yao Lu
- College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Zefang Wang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Haitao Yang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Wei Pang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Hao Zhang
- College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Daihua Zhang
- College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Xuexin Duan
- College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
14
|
Stewart MP, Sharei A, Ding X, Sahay G, Langer R, Jensen KF. In vitro and ex vivo strategies for intracellular delivery. Nature 2016; 538:183-192. [DOI: 10.1038/nature19764] [Citation(s) in RCA: 537] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 07/11/2016] [Indexed: 12/11/2022]
|
15
|
Rao W, Huang H, Wang H, Zhao S, Dumbleton J, Zhao G, He X. Nanoparticle-mediated intracellular delivery enables cryopreservation of human adipose-derived stem cells using trehalose as the sole cryoprotectant. ACS APPLIED MATERIALS & INTERFACES 2015; 7:5017-28. [PMID: 25679454 PMCID: PMC4734639 DOI: 10.1021/acsami.5b00655] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this study, pH responsive genipin-cross-linked Pluronic F127-chitosan nanoparticles (GNPs) was synthesized to encapsulate trehalose for intracellular delivery to cryopreserve primary human adipose-derived stem cells (hADSCs). Trehalose is a disaccharide of glucose used by lower organisms to survive extreme cold in nature and has been used to cryopreserve various biomacromolecules. However, it does not enter mammalian cells because of its highly hydrophilic nature, and has only been used in combination with other cell-penetrating cryoprotectants (such as dimethyl sulfoxide, DMSO) to cryopreserve mammalian cells. Our data show that trehalose can be efficiently encapsulated in our GNPs for intracellular delivery, which enables cryopreservation of primary hADSCs using the nontoxic sugar as the sole cryoprotectant. This capability is important because the conventional approach of cryopreserving mammalian cells using highly toxic (at body temperature) cell-penetrating cryoprotectants requires multistep washing of the cryopreserved cells to remove the toxic cryoprotectant for further use, which is time-consuming and associated with significant cell loss (∼10% during each washing step). By contrast, the trehalose-cryopreserved cells can be used without washing, which should greatly facilitate the wide application of the burgeoning cell-based medicine.
Collapse
Affiliation(s)
- Wei Rao
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, US
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Haishui Huang
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, US
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
- Department of Mechanical Engineering, The Ohio State University, Columbus, OH 43210, US
| | - Hai Wang
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, US
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Shuting Zhao
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, US
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Jenna Dumbleton
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, US
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Gang Zhao
- Centre for Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xiaoming He
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, US
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
16
|
Rao W, Zhang W, Poventud-Fuentes I, Wang Y, Lei Y, Agarwal P, Weekes B, Li C, Lu X, Yu J, He X. Thermally responsive nanoparticle-encapsulated curcumin and its combination with mild hyperthermia for enhanced cancer cell destruction. Acta Biomater 2014; 10:831-42. [PMID: 24516867 DOI: 10.1016/j.actbio.2013.10.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this study, thermally responsive polymeric nanoparticle-encapsulated curcumin (nCCM) was prepared and characterized. The nCCM is ≈ 22 and 300 nm in diameter at 37 and 22 °C, respectively. The smaller size of the nCCM at 37 °C was found to significantly facilitate its uptake in vitro by human prostate adenocarcinoma PC-3 cancer cells. However, the intracellular nCCM decreases rapidly (rather than plateaus) after reaching its peak at ≈ 1.5 h during a 3-day incubation of the PC-3 cells with nCCM. Moreover, a mild hyperthermia (with negligible cytotoxicity alone) at 43 °C applied between 1 and 1.5 h during the 3-day incubation not only increases the peak uptake but also alters intracellular distribution of nCCM (facilitating its delivery into cell nuclei), which helps to retain a significantly much higher level of intracellular curcumin. These effects of mild hyperthermia could be due in part to the thermal responsiveness of the nCCM: they are more positively charged at 43 °C and can be more easily attracted to the negatively charged nuclear membrane to enter nuclei as a result of electrostatic interaction. Ultimately, a combination of the thermally responsive nCCM and mild hyperthermia significantly enhances the anticancer capability of nCCM, resulting in a more than 7-fold decrease in its inhibitory concentration to reduce cell viability to 50% (IC50). Further mechanistic studies suggest injury pathways associated with heat shock proteins 27 and 70 should contribute to the enhanced cancer cell destruction by inducing cell apoptosis and necrosis. Overall, this study demonstrates the potential of combining mild hyperthermia and thermally responsive nanodrugs such as nCCM for augmented cancer therapy.
Collapse
|
17
|
Di-rhamnolipids improve effect of trehalose on both hypothermic preservation and cryopreservation of rat hepatocytes. Appl Microbiol Biotechnol 2013; 97:4553-61. [DOI: 10.1007/s00253-012-4680-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/20/2012] [Accepted: 12/21/2012] [Indexed: 01/13/2023]
|
18
|
Zhang W, Rong J, Wang Q, He X. The encapsulation and intracellular delivery of trehalose using a thermally responsive nanocapsule. NANOTECHNOLOGY 2009; 20:275101. [PMID: 19528681 DOI: 10.1088/0957-4484/20/27/275101] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The thermally responsive wall permeability of an empty core-shell structured Pluronic nanocapsule (together with its temperature dependent size and surface charge) was successfully utilized for encapsulation, intracellular delivery, and controlled release of trehalose, a highly hydrophilic small (M(W) = 342 D) molecule (a disaccharide of glucose) that is exceptional for long-term stabilization of biologicals (particularly at ambient temperatures). It was found that trehalose can be physically encapsulated in the nanocapsule using a soaking-freeze-drying-heating procedure. The nanocapsule is capable of physically withholding trehalose with negligible release in hours for cellular uptake at 37 degrees C when its wall permeability is low. A quick release of the encapsulated sugar can be achieved by thermally cycling the nanocapsule between 37 and 22 degrees C (or lower). A significant amount of trehalose (up to 0.3 M) can be delivered into NIH 3T3 fibroblasts by incubating the cells with the trehalose-encapsulated nanocapsules at 37 degrees C for 40 min. Moreover, cytotoxicity of the nanocapsule for the purpose of intracellular delivery of trehalose was found to be negligible. Altogether, the thermally responsive nanocapsule is effective for intracellular delivery of trehalose, which is critical for the long-term stabilization of mammalian cells at ambient temperatures and the eventual success of modern cell-based medicine.
Collapse
Affiliation(s)
- Wujie Zhang
- Department of Mechanical Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208, USA
| | | | | | | |
Collapse
|
19
|
Sitaula R, Elmoazzen H, Toner M, Bhowmick S. Desiccation tolerance in bovine sperm: A study of the effect of intracellular sugars and the supplemental roles of an antioxidant and a chelator. Cryobiology 2009; 58:322-30. [DOI: 10.1016/j.cryobiol.2009.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 03/17/2009] [Accepted: 03/17/2009] [Indexed: 10/21/2022]
|