1
|
Gan H, Cai J, Li L, Zheng X, Yan L, Hu X, Zhao N, Li B, He J, Wang D, Pang P. Endothelium-targeted Ddx24 conditional knockout exacerbates ConA-induced hepatitis in mice due to vascular hyper-permeability. Int Immunopharmacol 2024; 129:111618. [PMID: 38354508 DOI: 10.1016/j.intimp.2024.111618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Acute hepatitis is a progressive inflammatory disorder that can lead to liver failure. Endothelial permeability is the vital pathophysiological change involved in infiltrating inflammatory factors. DDX24 has been implicated in immune signaling. However, the precise role of DDX24 in immune-mediated hepatitis remains unclear. Here, we investigate the phenotype of endothelium-targeted Ddx24 conditional knockout mice with Concanavalin A (ConA)-induced hepatitis. METHODS Mice with homozygous endothelium-targeted Ddx24 conditional knockout (Ddx24flox/flox; Cdh5-Cre+) were established using the CRISPR/Cas9 mediated Cre-loxP system. We investigated the biological functions of endothelial cells derived from transgenic mice and explored the effects of Ddx24 in mice with ConA-induced hepatitis in vivo. The mass spectrometry was performed to identify the differentially expressed proteins in liver tissues of transgenic mice. RESULT We successfully established mice with endothelium-targeted Ddx24 conditional knockout. The results showed migration and tube formation potentials of murine aortic endothelial cells with DDX24 silencing were significantly promoted. No differences were observed between Ddx24flox/flox; Cdh5-Cre+ and control regarding body weight and length, pathological tissue change and embryogenesis. We demonstrated Ddx24flox/flox; Cdh5-Cre+ exhibited exacerbation of ConA-induced hepatitis by up-regulating TNF-α and IFN-γ. Furthermore, endothelium-targeted Ddx24 conditional knockout caused vascular hyper-permeability in ConA-injected mice by down-regulating vascular integrity-associated proteins. Mechanistically, we identified Ddx24 might regulate immune-mediated hepatitis by inflammation-related permeable barrier pathways. CONCLUSION These findings prove that endothelium-targeted Ddx24 conditional knockout exacerbates ConA-induced hepatitis in mice because of vascular hyper-permeability. The findings indicate a crucial role of DDX24 in regulating immune-mediated hepatitis, suggesting DDX24 as a potential therapeutic target in the disorder.
Collapse
Affiliation(s)
- Hairun Gan
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Jianxun Cai
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Luting Li
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Xiaodi Zheng
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Leye Yan
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Xinyan Hu
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Ni Zhao
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Bing Li
- Department of Ophthalmology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China.
| | - Jianan He
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China.
| | - Dashuai Wang
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China.
| | - Pengfei Pang
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China.
| |
Collapse
|
2
|
Abstract
Nucleic acids are paving the way for advanced therapeutics. Unveiling the genome enabled a better understanding of unique genotype-phenotype profiling. Methods for engineering and analysis of nucleic acids, from polymerase chain reaction to Cre-Lox recombination, are contributing greatly to biomarkers' discovery, mapping of cellular signaling cascades, and smart design of therapeutics in precision medicine. Investigating the different subtypes of DNA and RNA via sequencing and profiling is empowering the scientific community with valuable information, to be used in advanced therapeutics, tracking epigenetics linked to disease. Recent results from the application of nucleic acids in novel therapeutics and precision medicine are very encouraging, demonstrating great potential to treat cancer, viral infections via inoculation (e.g., SAR-COV-2 mRNA vaccines), along with metabolic and genetic disorders. Limitations posed by challenges in delivery mode are being addressed to enable efficient guided-gene-programmed precision therapies. With the focus on genetic engineering and novel therapeutics, more precisely, in precision medicine, this chapter discusses the advance enabled by knowledge derived from these innovative branches of biotechnology.
Collapse
|
3
|
Tian X, Zhou B. Strategies for site-specific recombination with high efficiency and precise spatiotemporal resolution. J Biol Chem 2021; 296:100509. [PMID: 33676891 PMCID: PMC8050033 DOI: 10.1016/j.jbc.2021.100509] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 01/04/2023] Open
Abstract
Site-specific recombinases (SSRs) are invaluable genome engineering tools that have enormously boosted our understanding of gene functions and cell lineage relationships in developmental biology, stem cell biology, regenerative medicine, and multiple diseases. However, the ever-increasing complexity of biomedical research requires the development of novel site-specific genetic recombination technologies that can manipulate genomic DNA with high efficiency and fine spatiotemporal control. Here, we review the latest innovative strategies of the commonly used Cre-loxP recombination system and its combinatorial strategies with other site-specific recombinase systems. We also highlight recent progress with a focus on the new generation of chemical- and light-inducible genetic systems and discuss the merits and limitations of each new and established system. Finally, we provide the future perspectives of combining various recombination systems or improving well-established site-specific genetic tools to achieve more efficient and precise spatiotemporal genetic manipulation.
Collapse
Affiliation(s)
- Xueying Tian
- Key Laboratory of Regenerative Medicine of Ministry of Education, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Bin Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
4
|
Thakur VS, Welford SM. Generation of a conditional mutant knock-in under the control of the natural promoter using CRISPR-Cas9 and Cre-Lox systems. PLoS One 2020; 15:e0240256. [PMID: 33007045 PMCID: PMC7531807 DOI: 10.1371/journal.pone.0240256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/22/2020] [Indexed: 01/04/2023] Open
Abstract
Modulation of gene activity by creating mutations has contributed significantly to the understanding of protein functions. Oftentimes, however, mutational analyses use overexpression studies, in which proteins are taken out of their normal contexts and stoichiometries. In the present work, we sought to develop an approach to simultaneously use the CRISPR/Cas9 and Cre-Lox techniques to modify the endogenous SAT1 gene to introduce mutant forms of the protein while still under the control of its natural gene promoter. We cloned the C-terminal portion of wild type (WT) SAT1, through the transcriptional stop elements, and flanked by LoxP sites in front of an identical version of SAT1 containing point mutations in critical binding sites. The construct was inserted into the endogenous SAT1 locus by Non-Homologous End Joining (NHEJ) after a CRISPR/Cas9 induced DNA double strand break. After validating that normal function of SAT1 was not altered by the insertional event, we were then able to assess the impact of point mutations by introduction of Cre recombinase. The system thus enables generation of cells in which endogenous WT SAT1 can be conditionally modified, and allow investigation of the functional consequences of site specific mutations in the context of the normal promoter and chromatin regulation.
Collapse
Affiliation(s)
- Vijay S. Thakur
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - Scott M. Welford
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL, United States of America
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States of America
- * E-mail:
| |
Collapse
|
5
|
Lundin A, Porritt MJ, Jaiswal H, Seeliger F, Johansson C, Bidar AW, Badertscher L, Wimberger S, Davies EJ, Hardaker E, Martins CP, James E, Admyre T, Taheri-Ghahfarokhi A, Bradley J, Schantz A, Alaeimahabadi B, Clausen M, Xu X, Mayr LM, Nitsch R, Bohlooly-Y M, Barry ST, Maresca M. Development of an ObLiGaRe Doxycycline Inducible Cas9 system for pre-clinical cancer drug discovery. Nat Commun 2020; 11:4903. [PMID: 32994412 PMCID: PMC7525522 DOI: 10.1038/s41467-020-18548-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/26/2020] [Indexed: 12/28/2022] Open
Abstract
The CRISPR-Cas9 system has increased the speed and precision of genetic editing in cells and animals. However, model generation for drug development is still expensive and time-consuming, demanding more target flexibility and faster turnaround times with high reproducibility. The generation of a tightly controlled ObLiGaRe doxycycline inducible SpCas9 (ODInCas9) transgene and its use in targeted ObLiGaRe results in functional integration into both human and mouse cells culminating in the generation of the ODInCas9 mouse. Genomic editing can be performed in cells of various tissue origins without any detectable gene editing in the absence of doxycycline. Somatic in vivo editing can model non-small cell lung cancer (NSCLC) adenocarcinomas, enabling treatment studies to validate the efficacy of candidate drugs. The ODInCas9 mouse allows robust and tunable genome editing granting flexibility, speed and uniformity at less cost, leading to high throughput and practical preclinical in vivo therapeutic testing.
Collapse
Affiliation(s)
- Anders Lundin
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Michelle J Porritt
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Himjyot Jaiswal
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Cellink AB, Gothenburg, Sweden
| | - Frank Seeliger
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Camilla Johansson
- Clinical Pharmacology and Safety Sciences, Sweden Imaging Hub, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Abdel Wahad Bidar
- Clinical Pharmacology and Safety Sciences, Sweden Imaging Hub, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Lukas Badertscher
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Sandra Wimberger
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Emma J Davies
- Early Oncology TDE, Oncology R&D, AstraZeneca, Li KaShing Centre, Cambridge, UK
- Healx, Cambridge, UK
| | - Elizabeth Hardaker
- Early Oncology TDE, Oncology R&D, AstraZeneca, Li KaShing Centre, Cambridge, UK
| | - Carla P Martins
- Early Oncology TDE, Oncology R&D, AstraZeneca, Li KaShing Centre, Cambridge, UK
| | - Emily James
- Early Oncology TDE, Oncology R&D, AstraZeneca, Li KaShing Centre, Cambridge, UK
| | - Therese Admyre
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Amir Taheri-Ghahfarokhi
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jenna Bradley
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge Science Park, Cambridge, UK
| | - Anna Schantz
- Pharmaceutical Sciences, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Babak Alaeimahabadi
- Data Sciences and Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Maryam Clausen
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Xiufeng Xu
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Lorenz M Mayr
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Roberto Nitsch
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Mohammad Bohlooly-Y
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Simon T Barry
- Early Oncology TDE, Oncology R&D, AstraZeneca, Li KaShing Centre, Cambridge, UK
| | - Marcello Maresca
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
6
|
Expression and purification of codon-optimized cre recombinase in E. coli. Protein Expr Purif 2020; 167:105546. [DOI: 10.1016/j.pep.2019.105546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/15/2019] [Accepted: 11/24/2019] [Indexed: 12/31/2022]
|