1
|
Yang L, Zhang X, Liu Q, Wen Y, Wang Q. Update on the ZNT8 epitope and its role in the pathogenesis of type 1 diabetes. Minerva Endocrinol (Torino) 2023; 48:447-458. [PMID: 38099391 DOI: 10.23736/s2724-6507.22.03723-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Type 1 diabetes (T1D) is an organ-specific chronic autoimmune disease mediated by autoreactive T cells. ZnT8 is a pancreatic islet-specific zinc transporter that is mainly located in β cells. It not only participates in the synthesis, storage and secretion of insulin but also maintains the structural integrity of insulin. ZnT8 is the main autoantigen recognized by autoreactive CD8+ T cells in children and adults with T1D. This article summarizes the latest research results on the T lymphocyte epitope and B lymphocyte epitope of ZnT8 in the current literature. The structure and expression of ZnT8, the role of ZnT8 in insulin synthesis and its role in autoimmunity are reviewed. ZnT8 is the primary autoantigen of T1D and is specifically expressed in pancreatic islets. Thus, it is one of biomarkers for the diagnosis of T1D. It has broad prospects for further research on immunomodulators for the treatment of T1D.
Collapse
Affiliation(s)
- Liu Yang
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xuejiao Zhang
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qing Liu
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yan Wen
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qing Wang
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, China -
| |
Collapse
|
2
|
Liu YC, Liu H, Zhao SL, Chen K, Jin P. Clinical and HLA genotype analysis of immune checkpoint inhibitor-associated diabetes mellitus: a single-center case series from China. Front Immunol 2023; 14:1164120. [PMID: 37359544 PMCID: PMC10288983 DOI: 10.3389/fimmu.2023.1164120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Objective To investigate the clinical characteristics and HLA genotypes of patients with immune checkpoint inhibitor-associated diabetes mellitus (ICI-DM) in China. Methods We enrolled 23 patients with ICI-DM and 51 patients with type 1 diabetes (T1D). Clinical characteristics of the patients were collected. HLA-DRB1, HLA-DQA1, and HLA-DQB1 genotyping was conducted via next-generation sequencing. Results The ICI-DM patients had a male predominance (70.6%), a mean body mass index (BMI) of 21.2 ± 3.5 kg/m2, and a mean onset of ICI-DM in 5 (IQR, 3-9) cycles after ICI therapy. Most (78.3%) ICI-DM patients were treated with anti-PD-1, 78.3% presented with diabetic ketoacidosis, and all had low C-peptide levels and received multiple insulin injections. Compared to T1D patients, ICI-DM patients were significantly older (57.2 ± 12.4 vs 34.1 ± 15.7 years) and had higher blood glucose but lower HbA1c levels (P<0.05). Only two (8.7%) ICI-DM patients were positive for islet autoantibodies, which was lower than that in T1D patients (66.7%, P<0.001). A total of 59.1% (13/22) of ICI-DM patients were heterozygous for an HLA T1D risk haplotype, and DRB1*0901-DQA1*03-DQB1*0303 (DR9) and DRB1*0405-DQA1*03-DQB1*0401 were the major susceptible haplotypes. Compared to T1D, the susceptible DR3-DQA1*0501-DQB1*0201 (DR3) and DR9 haplotypes were less frequent (17.7% vs 2.3%; P=0.011 and 34.4% vs 15.9%; P=0.025), whereas the protective haplotypes (DRB1*1101-DQA1*05-DQB1*0301 and DRB1*1202-DQA1*0601-DQB1*0301) were more frequent in ICI-DM patients (2.1% vs 13.6%; P=0.006 and 4.2% vs 15.9%; P=0.017). None of the ICI-DM patients had T1D-associated high-risk genotypes DR3/DR3, DR3/DR9, and DR9/DR9. Among the 23 ICI-DM patients, 7 (30.4%) presented with ICI-associated fulminant type 1 diabetes (IFD), and 16 (69.6%) presented with ICI-associated type 1 diabetes (IT1D). Compared to IT1D patients, IFD patients exhibited marked hyperglycemia and low C-peptide and HbA1c levels (P<0.05). Up to 66.7% (4/6) of IFD patients were heterozygous for reported fulminant type 1 diabetes susceptibility HLA haplotypes (DRB1*0405-DQB1*0401 or DRB1*0901-DQB1*0303). Conclusion ICI-DM shares similar clinical features with T1D, such as acute onset, poor islet function and insulin dependence. However, the lack of islet autoantibodies, the low frequencies of T1D susceptibility and high frequencies of protective HLA haplotypes indicate that ICI-DM represents a new model distinct from classical T1D.
Collapse
|
3
|
Siddiqui K, Nawaz SS, Alfadda AA, Mujammami M. Islet Autoantibodies to Pancreatic Insulin-Producing Beta Cells in Adolescent and Adults with Type 1 Diabetes Mellitus: A Cross-Sectional Study. Diagnostics (Basel) 2023; 13:diagnostics13101736. [PMID: 37238221 DOI: 10.3390/diagnostics13101736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
(1) Background: Type 1 diabetes mellitus (T1D) is a chronic autoimmune disease caused by the destruction of pancreatic insulin-producing beta cells. T1D is one of the most common endocrine and metabolic disorders occurring in children. Autoantibodies against pancreatic insulin-producing beta cells are important immunological and serological markers of T1D. Zinc transporter 8 autoantibody (ZnT8) is a recently identified autoantibody in T1D; however, no data on ZnT8 autoantibody in the Saudi Arabian population have been reported. Thus, we aimed to investigate the prevalence of islet autoantibodies (IA-2 and ZnT8) in adolescents and adults with T1D according to age and disease duration. (2) Methods: In total, 270 patients were enrolled in this cross-sectional study. After meeting the study's inclusion and exclusion criteria, 108 patients with T1D (50 men and 58 women) were assessed for T1D autoantibody levels. Serum ZnT8 and IA-2 autoantibodies were measured using commercial enzyme-linked immunosorbent assay kits. (3) Results: IA-2 and ZnT8 autoantibodies were present in 67.6% and 54.6% of patients with T1D, respectively. Autoantibody positivity was found in 79.6% of the patients with T1D. Both the IA-2 and ZnT8 autoantibodies were frequently observed in adolescents. The prevalence of IA-2 and ZnT8 autoantibodies in patients with a disease duration < 1 year was 100% and 62.5%, respectively, which declined with an increase in disease duration (p < 0.020). Logistic regression analysis revealed a significant relationship between age and autoantibodies (p < 0.004). (4) Conclusions: The prevalence of IA-2 and ZnT8 autoantibodies in the Saudi Arabian T1D population appears to be higher in adolescents. The current study also showed that the prevalence of autoantibodies decreased with disease duration and age. IA-2 and ZnT8 autoantibodies are important immunological and serological markers for T1D diagnosis in the Saudi Arabian population.
Collapse
Affiliation(s)
- Khalid Siddiqui
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Shaik Sarfaraz Nawaz
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Assim A Alfadda
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
- Department of Medicine, College of Medicine & King Saud University Medical City, King Saud University, Riyadh 11461, Saudi Arabia
- Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Muhammad Mujammami
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
- Department of Medicine, College of Medicine & King Saud University Medical City, King Saud University, Riyadh 11461, Saudi Arabia
- University Diabetes Center, King Saud University Medical City, King Saud University, Riyadh 11461, Saudi Arabia
| |
Collapse
|
4
|
Fan W, Nan X, Peng Y, Li X, Xiang Y, Yan X, Xie Z, Zhou H, Tang X, Cheng J, Niu X, Liu J, Ji Q, Ji L, Huang G, Zhou Z. Distribution of autoantibodies to insulinoma-associated antigen-2 and zinc transporter 8 in type 1 diabetes and latent autoimmune diabetes: A nationwide, multicentre, cross-sectional study. Diabetes Metab Res Rev 2023; 39:e3592. [PMID: 36401613 PMCID: PMC10078268 DOI: 10.1002/dmrr.3592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/18/2022] [Accepted: 10/05/2022] [Indexed: 11/21/2022]
Abstract
AIMS This study investigated insulinoma-associated-2 autoantibody (IA-2A) and zinc transporter 8 autoantibody (ZnT8A) distribution in patients with type 1 diabetes (T1D) and latent autoimmune diabetes (LAD) and the autoantibodies' association with clinical characteristics and HLA-DR-DQ genes. MATERIALS AND METHODS This cross-sectional study recruited 17,536 patients with diabetes from 46 hospitals across China. A total of 189 patients with T1D and 58 patients with LAD with IA-2A positivity, 126 patients with T1D and 86 patients with LAD with ZnT8A positivity, and 231 patients with type 2 diabetes (T2D) were selected to evaluate islet autoantibodies, clinical phenotypes, and HLA-DR-DQ gene frequency. RESULTS IA-2A was bimodally distributed in patients with T1D and LAD. Patients with low IA-2A titre LAD had lower fasting C-peptide (FCP) (p < 0.01), lower postprandial C-peptide (PCP) (p < 0.001), and higher haemoglobin A1c (HbA1c) levels (p < 0.05) than patients with T2D. Patients with high IA-2A titre LAD were younger than patients with low IA-2A titre LAD (p < 0.05). Patients with low IA-2A titre T1D had lower FCP (p < 0.01), lower PCP (p < 0.01), and higher HbA1c levels (p < 0.05) than patients with high IA-2A titre LAD. HLA-DR-DQ genetic analysis demonstrated that the frequency of susceptible HLA haplotypes was higher in IA-2A-positive patients (p < 0.001) than in patients with T2D. Patients with high ZnT8A titre LAD had lower FCP (p = 0.045), lower PCP (p = 0.023), and higher HbA1c levels (p = 0.009) and a higher frequency of total susceptible haplotypes (p < 0.001) than patients with low ZnT8A titre LAD. CONCLUSIONS IA-2A in patients with T1D and LAD was bimodally distributed, and the presence of IA-2A could demonstrate partial LAD clinical characteristics. ZnT8A titre had a certain predictive value for islet functions in patients with LAD.
Collapse
Affiliation(s)
- Wenqi Fan
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xixi Nan
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yiman Peng
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yufei Xiang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiang Yan
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Houde Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaohan Tang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jin Cheng
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaohong Niu
- Department of Endocrinology, Heji Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Jing Liu
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, China
| | - Qiuhe Ji
- Department of Endocrinology, Xijing Hospital, Fourth Military Medical University, Xi an, China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Gan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|