1
|
Laugesen C, Ritschel T, Ranjan AG, Hsu L, Jørgensen JB, Svensson J, Ekhlaspour L, Buckingham B, Nørgaard K. Impact of Missed and Late Meal Boluses on Glycemic Outcomes in Automated Insulin Delivery-Treated Children and Adolescents with Type 1 Diabetes: A Two-Center, Population-Based Cohort Study. Diabetes Technol Ther 2024; 26:897-907. [PMID: 38805311 PMCID: PMC11693967 DOI: 10.1089/dia.2024.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Objective: To evaluate the impact of missed or late meal boluses (MLBs) on glycemic outcomes in children and adolescents with type 1 diabetes using automated insulin delivery (AID) systems. Research Design and Methods: AID-treated (Tandem Control-IQ or Medtronic MiniMed 780G) children and adolescents (aged 6-21 years) from Stanford Medical Center and Steno Diabetes Center Copenhagen with ≥10 days of data were included in this two-center, binational, population-based, retrospective, 1-month cohort study. The primary outcome was the association between the number of algorithm-detected MLBs and time in target glucose range (TIR; 70-180 mg/dL). Results: The study included 189 children and adolescents (48% females with a mean ± standard deviation age of 13 ± 4 years). Overall, the mean number of MLBs per day in the cohort was 2.2 ± 0.9. For each additional MLB per day, TIR decreased by 9.7% points (95% confidence interval [CI] 11.3; 8.1), and compared with the quartile with fewest MLBs (Q1), the quartile with most (Q4) had 22.9% less TIR (95% CI: 27.2; 18.6). The age-, sex-, and treatment modality-adjusted probability of achieving a TIR of >70% in Q4 was 1.4% compared with 74.8% in Q1 (P < 0.001). Conclusions: MLBs significantly impacted glycemic outcomes in AID-treated children and adolescents. The results emphasize the importance of maintaining a focus on bolus behavior to achieve a higher TIR and support the need for further research in technological or behavioral support tools to handle MLBs.
Collapse
Affiliation(s)
- Christian Laugesen
- Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Division of Endocrinology and Diabetes, Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Tobias Ritschel
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Liana Hsu
- Division of Endocrinology and Diabetes, Department of Pediatrics, Stanford University, Stanford, California, USA
| | - John Bagterp Jørgensen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Jannet Svensson
- Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Gentofte, Denmark
| | - Laya Ekhlaspour
- Division of Endocrinology, Department of Pediatrics, University of San Francisco, San Francisco, California, USA
| | - Bruce Buckingham
- Division of Endocrinology and Diabetes, Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Kirsten Nørgaard
- Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Gentofte, Denmark
| |
Collapse
|
2
|
Adolfsson P, Hanas R, Zaharieva DP, Dovc K, Jendle J. Automated Insulin Delivery Systems in Pediatric Type 1 Diabetes: A Narrative Review. J Diabetes Sci Technol 2024; 18:1324-1333. [PMID: 38785359 PMCID: PMC11535396 DOI: 10.1177/19322968241248404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
This narrative review assesses the use of automated insulin delivery (AID) systems in managing persons with type 1 diabetes (PWD) in the pediatric population. It outlines current research, the differences between various AID systems currently on the market and the challenges faced, and discusses potential opportunities for further advancements within this field. Furthermore, the narrative review includes various expert opinions on how different AID systems can be used in the event of challenges with rapidly changing insulin requirements. These include examples, such as during illness with increased or decreased insulin requirements and during physical activity of different intensities or durations. Case descriptions give examples of scenarios with added user-initiated actions depending on the type of AID system used. The authors also discuss how another AID system could have been used in these situations.
Collapse
Affiliation(s)
- Peter Adolfsson
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, The Hospital of Halland Kungsbacka, Kungsbacka, Sweden
| | - Ragnar Hanas
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, NU Hospital Group, Uddevalla, Sweden
| | - Dessi P. Zaharieva
- Division of Endocrinology, Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Klemen Dovc
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, Ljubljana, Slovenia
| | - Johan Jendle
- School of Medicine, Institute of Medical Sciences, Örebro University, Örebro, Sweden
- Diabetes Endocrinology and Metabolism Research Centre, Örebro University, Örebro, Sweden
| |
Collapse
|
3
|
Thivolet C, Lebbar M, Perge K, Nicolino M, Villar-Fimbel S. Ascertaining the Utility of the Glycemia Risk Index for Glucose Outcomes With Hybrid Closed-Loop Therapy in Adolescents and Adults With Type 1 Diabetes. J Diabetes Sci Technol 2024; 18:1251-1252. [PMID: 39076117 PMCID: PMC11418464 DOI: 10.1177/19322968241258742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Affiliation(s)
- Charles Thivolet
- Center for Diabetes DIAB-eCARE, Hospices Civils de Lyon, Lyon, France
| | - Maha Lebbar
- Center for Diabetes DIAB-eCARE, Hospices Civils de Lyon, Lyon, France
| | - Kevin Perge
- Department of Paediatric Endocrinology and Diabetes, Hospices Civils de Lyon, Bron, France
| | - Marc Nicolino
- Center for Diabetes DIAB-eCARE, Hospices Civils de Lyon, Lyon, France
- Department of Paediatric Endocrinology and Diabetes, Hospices Civils de Lyon, Bron, France
| | | |
Collapse
|
4
|
Bismuth É, Tubiana-Rufi N, Rynders CA, Dalla-Vale F, Bonnemaison E, Coutant R, Farret A, Poidvin A, Bouhours-Nouet N, Storey C, Donzeau A, DeBoer MD, Breton MD, Villard O, Renard É. Sustained 3-Year Improvement of Glucose Control With Hybrid Closed Loop in Children With Type 1 Diabetes While Going Through Puberty. Diabetes Care 2024; 47:1696-1703. [PMID: 38985499 DOI: 10.2337/dc24-0916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
OBJECTIVE To evaluate the impact of prolonged hybrid closed loop (HCL) use in children with type 1 diabetes (T1D) on glucose control and BMI throughout pubertal progression. RESEARCH DESIGN AND METHODS We used a prospective multicenter extension study following the Free-Life Kid AP (FLKAP) HCL trial. The 9-month previously reported FLKAP trial included 119 prepubertal children (aged 6-12 years). During the extension study, participants could continue to use HCL for 30 months (M9 to M39). HbA1c values were collected every 3 months up to M39, while continuous glucose monitoring metrics, BMI z scores, and Tanner stages were collected up to M24. Noninferiority tests were performed to assess parameter sustainability over time. RESULTS One hundred seventeen children completed the extension study, with mean age 10.1 years (minimum to maximum, 6.8-14.0) at the beginning. Improvement of HbA1c obtained in the FLKAP trial was significantly sustained during extension (median [interquartile range], M9 7.0% [6.8-7.4], and M39 7.0% [6.6-7.4], P < 0.0001 for noninferiority test) and did not differ between children who entered puberty at M24 (Tanner stage ≥2; 54% of the patients) and patients who remained prepubertal. BMI z score also remained stable (M9 0.41 [-0.29 to 1.13] and M24 0.48 [-0.11 to 1.13], P < 0.0001, for noninferiority test). No severe hypoglycemia and one ketoacidosis episode not related to the HCL system occurred. CONCLUSIONS Prolonged use of HCL can safely and effectively mitigate impairment of glucose control usually associated with pubertal progression without impact on BMI in children with T1D.
Collapse
Affiliation(s)
- Élise Bismuth
- Department of Pediatric Endocrinology and Diabetology, Robert Debré Hospital, Assistance Publique Hôpitaux de Paris, Groupe Hospitalo-Universitaire Nord, University of Paris, Paris, France
- Center of Clinical Investigations, INSERM CIC1426, Robert Debré Hospital, Assistance Publique Hôpitaux de Paris, Groupe Hospitalo-Universitaire Nord, Paris, France
| | - Nadia Tubiana-Rufi
- Department of Pediatric Endocrinology and Diabetology, Robert Debré Hospital, Assistance Publique Hôpitaux de Paris, Groupe Hospitalo-Universitaire Nord, University of Paris, Paris, France
- Center of Clinical Investigations, INSERM CIC1426, Robert Debré Hospital, Assistance Publique Hôpitaux de Paris, Groupe Hospitalo-Universitaire Nord, Paris, France
| | - Corey A Rynders
- Center for Diabetes Technology, University of Virginia, Charlottesville, VA
| | - Fabienne Dalla-Vale
- Department of Pediatrics Endocrinology, Montpellier University Hospital, Montpellier, France
| | | | - Régis Coutant
- Department of Pediatric Endocrinology and Diabetology, Angers University Hospital, Angers, France
| | - Anne Farret
- Department of Endocrinology and Diabetology, Montpellier University Hospital, Montpellier, France
| | - Amélie Poidvin
- Department of Pediatric Endocrinology and Diabetology, Robert Debré Hospital, Assistance Publique Hôpitaux de Paris, Groupe Hospitalo-Universitaire Nord, University of Paris, Paris, France
| | - Natacha Bouhours-Nouet
- Department of Pediatric Endocrinology and Diabetology, Angers University Hospital, Angers, France
| | - Caroline Storey
- Department of Pediatric Endocrinology and Diabetology, Robert Debré Hospital, Assistance Publique Hôpitaux de Paris, Groupe Hospitalo-Universitaire Nord, University of Paris, Paris, France
| | - Aurélie Donzeau
- Department of Pediatric Endocrinology and Diabetology, Angers University Hospital, Angers, France
| | - Mark D DeBoer
- Center for Diabetes Technology, University of Virginia, Charlottesville, VA
- Department of Pediatrics, University of Virginia, Charlottesville, VA
| | - Marc D Breton
- Center for Diabetes Technology, University of Virginia, Charlottesville, VA
| | - Orianne Villard
- Department of Endocrinology and Diabetology, Montpellier University Hospital, Montpellier, France
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Éric Renard
- Department of Endocrinology and Diabetology, Montpellier University Hospital, Montpellier, France
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
- INSERM Clinical Investigation Centre 1411, Montpellier, France
| |
Collapse
|
5
|
Lejk A, Myśliwiec K, Michalak A, Pernak B, Fendler W, Myśliwiec M. Comparison of Metabolic Control in Children and Adolescents Treated with Insulin Pumps. CHILDREN (BASEL, SWITZERLAND) 2024; 11:839. [PMID: 39062288 PMCID: PMC11275477 DOI: 10.3390/children11070839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND While insulin pumps remain the most common form of therapy for youths with type 1 diabetes (T1DM), they differ in the extent to which they utilize data from continuous glucose monitoring (CGM) and automate insulin delivery. METHODS The aim of the study was to compare metabolic control in patients using different models of insulin pumps. This retrospective single-center study randomly sampled 30 patients for each of the following treatments: Medtronic 720G without PLGS (predictive low glucose suspend), Medtronic 640G or 740G with PLGS and Medtronic 780G. In the whole study group, we used CGM systems to assess patients' metabolic control, and we collected lipid profiles. In three groups of patients, we utilized CGM sensors (Guardian 3, Guardian 4, Libre 2 and Dexcom G6) to measure the following glycemic variability proxy values: time in range (TIR), time below 70 mg/dL (TBR), time above 180 mg/dL (TAR), coefficient of variation (CV) and mean sensor glucose. RESULTS Medtronic 640G or 740G and 780G users were more likely to achieve a target time in the target range 70-180 mg/dL (≥80%) [Medtronic 720G = 4 users (13.3%) vs. Medtronic 640G/740G = 10 users (33.3%) vs. Medtronic 780G = 13 users (43.3%); p = 0.0357)] or low glucose variability [Medtronic 720G = 9 users (30%) vs. Medtronic 640G/740G = 18 users (60%) vs. Medtronic 780G = 19 users (63.3%); p = 0.0175)]. CONCLUSIONS Any integration between the insulin pump and CGM was associated with better glycemic control. More advanced technologies and artificial intelligence in diabetes help patients maintain better glycemia by eliminating various factors affecting postprandial glycemia.
Collapse
Affiliation(s)
- Agnieszka Lejk
- Department of Pediatrics, Diabetology and Endocrinology, Medical University of Gdansk, 80-210 Gdansk, Poland; (A.L.)
| | - Karolina Myśliwiec
- Department of Pediatrics, Diabetology and Endocrinology, Medical University of Gdansk, 80-210 Gdansk, Poland; (A.L.)
| | - Arkadiusz Michalak
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland
- Department of Pediatrics, Diabetology, Endocrinology and Nephrology, Medical University of Lodz, 91-738 Lodz, Poland
| | - Barbara Pernak
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland
| | - Małgorzata Myśliwiec
- Department of Pediatrics, Diabetology and Endocrinology, Medical University of Gdansk, 80-210 Gdansk, Poland; (A.L.)
| |
Collapse
|
6
|
Enciso Izquierdo FJ, Amaya García MJ, Cordero Vaquero AA, Lucas Gamero JA, Gomez-Barrado Turégano P, Luengo Andrada M, Cordero Pearson A, Grau Figueredo RJ. Retrospective observational study on real world use of the Minimed™ 780G automated insulin delivery system: Impact of the settings on autocorrection and omitted meal boluses. ENDOCRINOL DIAB NUTR 2024; 71:229-235. [PMID: 38942701 DOI: 10.1016/j.endien.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 06/30/2024]
Abstract
INTRODUCTION The Medtronic MiniMed™ 780G (MM780G) system uses an algorithm that includes autocorrection bolus (AB) delivery. This study evaluates the impact of omitted meal boluses and the system settings, glucose target and active insulin time (AIT), on the AB. METHOD Retrospective observational study on data uploaded by all MiniMed 780G users in our healthcare area, obtained through the remote monitoring platform Care Connect, from April to August 2023. Downloads with a sensor usage time <95% were excluded. RESULTS 235 downloads belonging to 235 users were analysed. AB delivery was significantly higher at 2 h AIT (36.08 ± 13.17%) compared to the rest of settings (2.25-4 h) (26.43 ± 13.2%) (p < 0.001). AB differences based on the glucose target were not found. Patients with <3 meal boluses per day had higher AB delivery (46.91 ± 19.00% vs 27.53 ± 11.54%) (p < 0.001) and had more unfavourable glucometric parameters (GMI 7.12 ± 0.45%, TIR 67.46 ± 12.89% vs GMI 6.78 ± 0.3%, TIR 76.51 ± 8.37%) (p < 0.001). However, the 2-h AIT group presented similar TAR, TIR and GMI regardless of the number of meal boluses. CONCLUSION The fewer user-initiated boluses, the greater the autocorrection received. The active insulin time of 2 h entails a more active autocorrection pattern that makes it possible to more effectively compensate for the omission of meal boluses without increasing hypoglycaemias.
Collapse
Affiliation(s)
| | - María José Amaya García
- Unidad de Endocrinología y Nutrición, Hospital Universitario San Pedro de Alcantara, Cáceres, Spain.
| | | | | | | | - María Luengo Andrada
- Unidad de Endocrinología y Nutrición, Hospital Universitario San Pedro de Alcantara, Cáceres, Spain
| | - Andrea Cordero Pearson
- Unidad de Endocrinología y Nutrición, Hospital Universitario San Pedro de Alcantara, Cáceres, Spain
| | | |
Collapse
|
7
|
Henry Z, Villar Fimbel S, Bendelac N, Perge K, Thivolet C. Beneficial effects of automated insulin delivery over one-year follow-up in real life for youths and adults with type 1 diabetes irrespective of patient characteristics. Diabetes Obes Metab 2024; 26:557-566. [PMID: 37905353 DOI: 10.1111/dom.15344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 11/02/2023]
Abstract
AIM To investigate glycaemic outcomes in youths and adults with type 1 diabetes with either MiniMed™ 780G or Tandem t:slim X2™ control-IQ automated insulin delivery (AID) systems and to evaluate clinical factors that migrate, mitigate the achievement of therapeutic goals. MATERIALS AND METHODS This retrospective, real-world, observational study was conducted in a specialized university type 1 diabetes centre with patients observed for 3-12 months post-initiation of an AID system. Primary outcomes were the percentage time in the target glucose range [TIR70-180 mg/dl (3.9-10 mmol/L)] as measured by continuous glucose monitoring, mean glucose management indicator (GMI) and glycated haemoglobin (HbA1c) levels. RESULTS Our study cohort consisted of 48 adolescents and 183 adults (55% females) aged 10-77 years. The mean (95% confidence interval) TIR70-180 mg/dl after 30 days was higher than baseline and by 14% points after 360 days with 71.33% (69.4-73.2) (n = 123, p < .001). HbA1c levels decreased by 0.7% and GMI by 0.6% after 360 days. The proportion of time spent <70 mg/dl (3.9 mmol/L) was not significantly different from baseline. During follow-up, 780G users had better continuous glucose monitoring results than control-IQ users but similar HbA1c levels, and an increased risk of weight gain. Age at onset influenced TIR70-180 mg/dl in univariate analysis but there was no significant relationship after adjusting on explanatory variables. Baseline body mass index did not influence the performance of AID systems. CONCLUSIONS This analysis showed the beneficial effects of two AID systems for people with type 1 diabetes across a broad spectrum of participant characteristics. Only half of the participants achieved international recommendations for glucose control with TIR70-180 mg/dl >70%, HbA1c levels or GMI <7%, which outlines the need to maintain strong educational and individual strategies.
Collapse
Affiliation(s)
- Zoé Henry
- Centre for Diabetes DIAB-eCARE, Hospices Civils de Lyon, Lyon, France
| | | | - Nathalie Bendelac
- Centre for Diabetes DIAB-eCARE, Hospices Civils de Lyon, Lyon, France
- Department of paediatric Endocrinology and Diabetes, Hospices Civils de Lyon, Bron, France
| | - Kevin Perge
- Department of paediatric Endocrinology and Diabetes, Hospices Civils de Lyon, Bron, France
| | - Charles Thivolet
- Centre for Diabetes DIAB-eCARE, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
8
|
Messer LH, D’Souza E, Merchant G, Mueller L, Farnan J, Habif S, Pinsker JE. Smartphone Bolus Feature Increases Number of Insulin Boluses in People With Low Bolus Frequency. J Diabetes Sci Technol 2024; 18:10-13. [PMID: 37605474 PMCID: PMC10899852 DOI: 10.1177/19322968231191796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
BACKGROUND The t:connect mobile app from Tandem Diabetes Care recently added a feature to allow t:slim X2 insulin pump users to initiate an insulin bolus from their personal smartphone. User experience and user interface considerations prioritized safety and ease of use, and we examined whether the smartphone bolus feature changed bolus behavior in individuals who bolused less than three times/day. METHODS We performed a retrospective analysis of t:slim X2 insulin pump users in the United States who had remotely updated their insulin pump software to be compatible with the smartphone bolus version of the app and who gave less than three boluses per day prior to the smartphone bolus update. RESULTS Of the 4470 early adopters who met these criteria, the median number of boluses was 2.2 per day (prior to smartphone bolus update) versus 2.7 per day (after smartphone bolus update), equating to approximately half a bolus more delivered per day (P < .001). Overall, a median of one bolus per day was administered by smartphone app as opposed to being initiated from the screen on the insulin pump. CONCLUSION This analysis found a significant increase in bolusing behavior among early adopters of the smartphone bolus feature of the t:connect mobile app.
Collapse
|
9
|
Addala A. Making a Good Thing Even Better: Expanding Access and Applicability of Automated Insulin Delivery Systems to Benefit All Youth With Type 1 Diabetes. Diabetes Care 2023; 46:2126-2128. [PMID: 38011525 PMCID: PMC10698214 DOI: 10.2337/dci23-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 11/29/2023]
Affiliation(s)
- Ananta Addala
- Division of Pediatric Endocrinology, Department of Pediatrics, Stanford University, Stanford, CA
| |
Collapse
|