1
|
Kolar D, Krajcovic B, Kleteckova L, Kuncicka D, Vales K, Brozka H. Review: Genes Involved in Mitochondrial Physiology Within 22q11.2 Deleted Region and Their Relevance to Schizophrenia. Schizophr Bull 2023; 49:1637-1653. [PMID: 37379469 PMCID: PMC10686339 DOI: 10.1093/schbul/sbad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
BACKGROUND AND HYPOTHESIS Schizophrenia is associated with altered energy metabolism, but the cause and potential impact of these metabolic changes remain unknown. 22q11.2 deletion syndrome (22q11.2DS) represents a genetic risk factor for schizophrenia, which is associated with the loss of several genes involved in mitochondrial physiology. Here we examine how the haploinsufficiency of these genes could contribute to the emergence of schizophrenia in 22q11.2DS. STUDY DESIGN We characterize changes in neuronal mitochondrial function caused by haploinsufficiency of mitochondria-associated genes within the 22q11.2 region (PRODH, MRPL40, TANGO2, ZDHHC8, SLC25A1, TXNRD2, UFD1, and DGCR8). For that purpose, we combine data from 22q11.2DS carriers and schizophrenia patients, in vivo (animal models) and in vitro (induced pluripotent stem cells, IPSCs) studies. We also review the current knowledge about seven non-coding microRNA molecules located in the 22q11.2 region that may be indirectly involved in energy metabolism by acting as regulatory factors. STUDY RESULTS We found that the haploinsufficiency of genes of interest is mainly associated with increased oxidative stress, altered energy metabolism, and calcium homeostasis in animal models. Studies on IPSCs from 22q11.2DS carriers corroborate findings of deficits in the brain energy metabolism, implying a causal role between impaired mitochondrial function and the development of schizophrenia in 22q11.2DS. CONCLUSIONS The haploinsufficiency of genes within the 22q11.2 region leads to multifaceted mitochondrial dysfunction with consequences to neuronal function, viability, and wiring. Overlap between in vitro and in vivo studies implies a causal role between impaired mitochondrial function and the development of schizophrenia in 22q11.2DS.
Collapse
Affiliation(s)
- David Kolar
- National Institute of Mental Health, Klecany, Czech Republic
| | - Branislav Krajcovic
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Daniela Kuncicka
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Karel Vales
- National Institute of Mental Health, Klecany, Czech Republic
| | - Hana Brozka
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
2
|
Cruz-Vicente P, Gonçalves AM, Barroca-Ferreira J, Silvestre SM, Romão MJ, Queiroz JA, Gallardo E, Passarinha LA. Unveiling the biopathway for the design of novel COMT inhibitors. Drug Discov Today 2022; 27:103328. [PMID: 35907613 DOI: 10.1016/j.drudis.2022.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 06/27/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022]
Abstract
Catechol-O-methyltransferase (COMT) is an enzyme responsible for the O-methylation of biologically active catechol-based molecules. It has been associated with several neurological disorders, especially Parkinson's disease (PD), because of its involvement in catecholamine metabolism, and has been considered an important therapeutic target for central nervous system disorders. In this review, we summarize the biophysical, structural, and therapeutical relevance of COMT; the medicinal chemistry behind the development of COMT inhibitors and the application of computer-aided design to support the design of novel molecules; current methodologies for the biosynthesis, isolation, and purification of COMT; and revise existing bioanalytical approaches for the assessment of enzymatic activity in several biological matrices.
Collapse
Affiliation(s)
- Pedro Cruz-Vicente
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
| | - Ana M Gonçalves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
| | - Jorge Barroca-Ferreira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
| | - Samuel M Silvestre
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Maria J Romão
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
| | - João A Queiroz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Eugénia Gallardo
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; Laboratório de Fármaco-Toxicologia-UBIMedical, Universidade da Beira Interior, 6201-506 Covilhã, Portugal
| | - Luis A Passarinha
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal; Laboratório de Fármaco-Toxicologia-UBIMedical, Universidade da Beira Interior, 6201-506 Covilhã, Portugal.
| |
Collapse
|
3
|
Roy RK, Patra N. Prediction of COMT Inhibitors Using Machine Learning and Molecular Dynamics Methods. J Phys Chem B 2022; 126:3477-3492. [PMID: 35533359 DOI: 10.1021/acs.jpcb.1c10278] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Catechol O-methyltransferase (COMT) plays a vital role in deactivating neurotransmitters like dopamine, norepinephrine, etc., by methylating those compounds. However, the deactivation of an excess amount of neurotransmitters leads to serious mental ailments such as Parkinson's disease. Molecules that bind inside the enzyme's active site inhibit this methylation mechanism by methylating themselves, termed COMT inhibitors. Our study is focused on designing these inhibitors by various machine learning methods. First, we have developed a classification model with experimentally available COMT inhibitors, which helped us generate a new data set of small inhibitor-like molecules. Then, to predict the activity of the new molecules, we have applied regression techniques such as Random Forest, AdaBoost, gradient boosting, and support vector machines. Each of the regression models yielded an R2 value > 70% for both training and test data sets. Finally, to validate our models, 200 ns long molecular dynamics (MD) simulations of the two known inhibitors with known IC50 values and the resultant inhibitors were performed inside the binding pockets to check their stability within. The free energy barrier of the methyl transfer from S-adenosyl-l-methionine (SAM) to each inhibitor was determined by combining steered molecular dynamics (SMD) and umbrella sampling using the quantum mechanics/molecular mechanics (QM/MM) method.
Collapse
Affiliation(s)
- Rakesh Kumar Roy
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Niladri Patra
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| |
Collapse
|
4
|
Interaction of silver nanoparticles with catechol O-methyltransferase: Spectroscopic and simulation analyses. Biochem Biophys Rep 2021; 26:101013. [PMID: 34027136 PMCID: PMC8131974 DOI: 10.1016/j.bbrep.2021.101013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 11/24/2022] Open
Abstract
Catechol O-methyltransferase, an enzyme involved in the metabolism of catechol containing compounds, catalyzes the transfer of a methyl group between S-adenosylmethionine and the hydroxyl groups of the catechol. Furthermore it is considered a potential drug target for Parkinson’s disease as it metabolizes the drug levodopa. Consequently inhibitors of the enzyme would increase levels of levodopa. In this study, absorption, fluorescence and infrared spectroscopy as well as computational simulation studies investigated human soluble catechol O-methyltransferase interaction with silver nanoparticles. The nanoparticles form a corona with the enzyme and quenches the fluorescence of Trp143. This amino acid maintains the correct structural orientation for the catechol ring during catalysis through a static mechanism supported by a non-fluorescent fluorophore–nanoparticle complex. The enzyme has one binding site for AgNPs in a thermodynamically spontaneous binding driven by electrostatic interactions as confirmed by negative ΔG and ΔH and positive ΔS values. Fourier transform infrared spectroscopy within the amide I region of the enzyme indicated that the interaction causes relaxation of its β−structures, while simulation studies indicated the involvement of six polar amino acids. These findings suggest AgNPs influence the catalytic activity of catechol O-methyltransferase, and therefore have potential in controlling the activity of the enzyme. A recombinant soluble human catechol O-methyltransferase was inhibited by silver nanoparticles. Inhibition by AgNPs was concentration and size dependent. The binding mechanism was through spontaneous static quenching, driven by positive ΔS, and negative ΔH and ΔG. Stern-Volmer analysis suggested binding of AgNPs with Trp143. In silico indicate relaxation of β-sheets and the interaction of AgNPs with 6 amino acids in the enzyme’s helical structures.
Collapse
|
5
|
Mutations and structural variations in Catechol-O-methyltransferase gene of patients exhibiting chronic persistent surgical pain. ACTA ACUST UNITED AC 2021; 68:128-136. [PMID: 33478750 DOI: 10.1016/j.redar.2020.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/08/2020] [Accepted: 09/16/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Mutations in the exon 4 of the COMT gene are associated with chronic persistent surgical pain (CPSP). Especially COMT mutated allele G472A (Val158Met) associated with CPSP patients is reported in different ethnic population. The purpose of this study is to evaluate the prevalence of genetic mutations and structural variations in exon 4 of COMT that can be related to the appearance of CPSP in patients under sternotomy. MATERIALS AND METHODS One hundred patients with American Society of Anesthesiologists (ASA) physical status grades i, ii and iii, who underwent sternotomy procedures, were selected to assess the development and magnitude of the CPSP evaluated with pain questionaries' at the end of three months after surgery. This was correlated with COMT allele presence. The exon 4 of COMT gene (that contains the G472A allele) was studied. The polymerase chain reaction (PCR) products were sequenced and mutated sequences were deposited in GenBank®. The structural analysis of COMT was performed using ProCheck® and distortions of three-dimensional tertiary structural orientation was evaluated with root-mean-square deviation (RMSD) score. RESULTS Genetic analysis carried out through PCR showed 220 bp amplicons. The 25% of patients with CPSP showed a Numeric Rating Scale (NRS) > 4 pain score. The 20% of these patients have known Val158Met mutation, 5% of patients showed novel mutations c.382C>G, c.383G>C, p.(Arg128Ala). The mutations in COMT gene contributed major structural variations in COMT leading to the formation of inactive COMT that correlates with CPSP. CONCLUSION The results of the present study showed that both novel and previously reported mutations in COMT gene has strong association with CPSP.
Collapse
|
6
|
Kafshdooz L, Kahroba H, Kafshdooz T, Roghayeh Sheervalilou, Pourfathi H. Labour analgesia; Molecular pathway and the role of nanocarriers: a systematic review. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:927-932. [PMID: 30873885 DOI: 10.1080/21691401.2019.1573736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Labour is considered to be one of the most painful procedures in human experience. The most effective technique for pain relief during labour is neuraxial labour analgesia which provides analgesia without maternal or fetal sedation. Genetic predisposition may be of importance for pain perception and women experience varying degrees of pain in labour. Genetic variations in opioid receptor (OPR) genes may influence the response to epidural opioid analgesia during labour. The single-nucleotide polymorphism, A118G of the mu opioid receptor gene (oprm1), has been associated with altered pain perception. Targeted drug delivery reduces toxic side effects. Liposomes, nano-particles, nanofibres hydrogel, have been suggested to deliver anaesthetic drugs.
Collapse
Affiliation(s)
- Leila Kafshdooz
- a Womens Reproductive Health Research Center , Tabriz University of Medical Sciences , Tabriz , Iran.,b Molecular Medicine Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Houman Kahroba
- b Molecular Medicine Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,c Department of Molecular Medicine, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Tayebeh Kafshdooz
- c Department of Molecular Medicine, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Roghayeh Sheervalilou
- c Department of Molecular Medicine, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Hojjat Pourfathi
- d Department of Anesthesiology, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
7
|
Motahari Z, Moody SA, Maynard TM, LaMantia AS. In the line-up: deleted genes associated with DiGeorge/22q11.2 deletion syndrome: are they all suspects? J Neurodev Disord 2019; 11:7. [PMID: 31174463 PMCID: PMC6554986 DOI: 10.1186/s11689-019-9267-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 04/21/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND 22q11.2 deletion syndrome (22q11DS), a copy number variation (CNV) disorder, occurs in approximately 1:4000 live births due to a heterozygous microdeletion at position 11.2 (proximal) on the q arm of human chromosome 22 (hChr22) (McDonald-McGinn and Sullivan, Medicine 90:1-18, 2011). This disorder was known as DiGeorge syndrome, Velo-cardio-facial syndrome (VCFS) or conotruncal anomaly face syndrome (CTAF) based upon diagnostic cardiovascular, pharyngeal, and craniofacial anomalies (McDonald-McGinn and Sullivan, Medicine 90:1-18, 2011; Burn et al., J Med Genet 30:822-4, 1993) before this phenotypic spectrum was associated with 22q11.2 CNVs. Subsequently, 22q11.2 deletion emerged as a major genomic lesion associated with vulnerability for several clinically defined behavioral deficits common to a number of neurodevelopmental disorders (Fernandez et al., Principles of Developmental Genetics, 2015; Robin and Shprintzen, J Pediatr 147:90-6, 2005; Schneider et al., Am J Psychiatry 171:627-39, 2014). RESULTS The mechanistic relationships between heterozygously deleted 22q11.2 genes and 22q11DS phenotypes are still unknown. We assembled a comprehensive "line-up" of the 36 protein coding loci in the 1.5 Mb minimal critical deleted region on hChr22q11.2, plus 20 protein coding loci in the distal 1.5 Mb that defines the 3 Mb typical 22q11DS deletion. We categorized candidates based upon apparent primary cell biological functions. We analyzed 41 of these genes that encode known proteins to determine whether haploinsufficiency of any single 22q11.2 gene-a one gene to one phenotype correspondence due to heterozygous deletion restricted to that locus-versus complex multigenic interactions can account for single or multiple 22q11DS phenotypes. CONCLUSIONS Our 22q11.2 functional genomic assessment does not support current theories of single gene haploinsufficiency for one or all 22q11DS phenotypes. Shared molecular functions, convergence on fundamental cell biological processes, and related consequences of individual 22q11.2 genes point to a matrix of multigenic interactions due to diminished 22q11.2 gene dosage. These interactions target fundamental cellular mechanisms essential for development, maturation, or homeostasis at subsets of 22q11DS phenotypic sites.
Collapse
Affiliation(s)
- Zahra Motahari
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| | - Sally Ann Moody
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| | - Thomas Michael Maynard
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| | - Anthony-Samuel LaMantia
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| |
Collapse
|
8
|
Abstract
Neuropathic pain (NP) is an increasingly common chronic pain state and a major health burden, affecting approximately 7% to 10% of the general population. Emerging evidence suggests that genetic factors could partially explain individual susceptibility to NP and the estimated heritability in twins is 37%. The aim of this study was to systematically review and summarize the studies in humans that have investigated the influence of genetic factors associated with NP. We conducted a comprehensive literature search and performed meta-analyses of all the potential genetic variants associated with NP. We reviewed 29 full-text articles and identified 28 genes that were significantly associated with NP, mainly involved in neurotransmission, immune response, and metabolism. Genetic variants in HLA genes, COMT, OPRM1, TNFA, IL6, and GCH1, were found to have an association with NP in more than one study. In the meta-analysis, polymorphisms in HLA-DRB1*13 (odds ratio [OR], 2.96; confidence interval [CI], 1.93-4.56), HLA-DRB1*04 (OR, 1.40; CI, 1.02-1.93), HLA-DQB1*03 (OR, 2.86; CI, 1.57-5.21), HLA-A*33 (OR, 2.32; CI, 1.42-3.80), and HLA-B*44 (OR, 3.17; CI, 2.22-4.55) were associated with significantly increased risk of developing NP, whereas HLA-A*02 (OR, 0.64; CI, 0.47-0.87) conferred reduced risk and neither rs1799971 in OPRM1 (OR, 0.55; CI, 0.27-1.11) nor rs4680 in COMT (OR, 0.95; CI, 0.81-1.13) were significantly associated with NP. These findings demonstrate an important and specific contribution of genetic factors to the risk of developing NP. However, large-scale replication studies are required to validate these candidate genes. Our review also highlights the need for genome-wide association studies with consistent case definition to elucidate the genetic architecture underpinning NP.
Collapse
|
9
|
Pinheiro SD, Serrão MP, Silva T, Borges F, Soares-da-Silva P. Pharmacodynamic evaluation of novel Catechol-O-methyltransferase inhibitors. Eur J Pharmacol 2019; 847:53-60. [DOI: 10.1016/j.ejphar.2019.01.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/13/2019] [Accepted: 01/23/2019] [Indexed: 12/30/2022]
|
10
|
Parkin GM, Udawela M, Gibbons A, Scarr E, Dean B. Catechol-O-methyltransferase (COMT) genotypes are associated with varying soluble, but not membrane-bound COMT protein in the human prefrontal cortex. J Hum Genet 2018; 63:1251-1258. [DOI: 10.1038/s10038-018-0511-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 11/09/2022]
|
11
|
Tammimäki A, Aonurm-Helm A, Männistö PT. Delayed O-methylation of l-DOPA in MB-COMT-deficient mice after oral administration of l-DOPA and carbidopa. Xenobiotica 2018; 48:325-331. [PMID: 28375049 DOI: 10.1080/00498254.2017.1315781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 04/02/2017] [Indexed: 06/07/2023]
Abstract
1. Catechol-O-methyltransferase (COMT) is involved in the O-methylation of l-DOPA, dopamine, and other catechols. The enzyme is expressed in two isoforms: soluble (S-COMT), which resides in the cytoplasm, and membrane-bound (MB-COMT), which is anchored to intracellular membranes. 2. To obtain specific information on the functions of COMT isoforms, we studied how a complete MB-COMT deficiency affects the total COMT activity in the body, peripheral l-DOPA levels, and metabolism after l-DOPA (10 mg kg-1) plus carbidopa (30 mg kg-1) administration by gastric tube in wild-type (WT) and MB-COMT-deficient mice. l-DOPA and 3-O-methyl-l-DOPA (3-OMD) levels were assayed in plasma, duodenum, and liver. 3. We showed that the selective lack of MB-COMT did not alter the total COMT activity, COMT enzyme kinetics, l-DOPA levels, or the total O-methylation of l-DOPA but delayed production of 3-OMD in plasma and peripheral tissues.
Collapse
Affiliation(s)
- Anne Tammimäki
- a Division of Pharmacology and Pharmacotherapy , Faculty of Pharmacy, University of Helsinki , Finland and
| | - Anu Aonurm-Helm
- b Division of Pharmacology and Toxicology , Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu , Tartu , Estonia
| | - Pekka T Männistö
- a Division of Pharmacology and Pharmacotherapy , Faculty of Pharmacy, University of Helsinki , Finland and
| |
Collapse
|
12
|
Chaube R, Rawat A, Inbaraj RM, Bobe J, Guiguen Y, Fostier A, Joy KP. Identification and characterization of a catechol-o-methyltransferase cDNA in the catfish Heteropneustes fossilis: Tissue, sex and seasonal variations, and effects of gonadotropin and 2-hydroxyestradiol-17β on mRNA expression. Gen Comp Endocrinol 2017; 246:129-141. [PMID: 27939670 DOI: 10.1016/j.ygcen.2016.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/03/2016] [Accepted: 12/06/2016] [Indexed: 11/18/2022]
Abstract
Catechol-O-methyltransferase (COMT) is involved in the methylation and inactivation of endogenous and xenobiotic catechol compounds, and serves as a common biochemical link in the catecholamine and catecholestrogen metabolism. Studies on cloning, sequencing and function characterization comt gene in lower vertebrates like fish are fewer. In the present study, a full-length comt cDNA of 1442bp with an open-reading frame (ORF) of 792bp, and start codon (ATG) at nucleotide 162 and stop codon (TAG) at nucleotide 953 was isolated and characterized in the stinging catfish Heteropneustes fossilis (accession No. KT597925). The ORF codes for a protein of 263 amino acid residues, which is also validated by the catfish transcriptome data analysis. The catfish Comt shared conserved putative structural regions important for S-adenosyl methionine (AdoMet)- and catechol-binding, transmembrane regions, two glycosylation sites (N-65 and N-91) at the N-terminus and two phosphorylation sites (Ser-235 and Thr-240) at the C-terminus. The gene was expressed in all tissues examined and the expression showed significant sex dimorphic distribution with high levels in females. The transcript was abundant in the liver, brain and gonads and low in muscles. The transcripts showed significant seasonal variations in the brain and ovary, increased progressively to the peak levels in spawning phase and then declined. The brain and ovarian comt mRNA levels showed periovulatory changes after in vivo and in vitro human chorionic gonadotropin (hCG) treatments with high fold increases at 16 and 24h in the brain and at 16h in the ovary. The catecholestrogen 2-hydroxyE2 up regulated ovarian comt expression in vitro with the highest fold increase at 16h. The mRNA and protein was localized in the follicular layer of the vitellogenic follicles and in the cytoplasm of primary follicles. The data were discussed in relation to catecholamine and catecholestrogen-mediated functions in the brain and ovary of the stinging catfish.
Collapse
Affiliation(s)
- R Chaube
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - A Rawat
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - R M Inbaraj
- Department of Zoology, Madras Christian College, Chennai 600059, India
| | - J Bobe
- INRA LPGP UR037, Fish Physiology and Genomics, Campus de Beaulieu, F-35042 Rennes Cedex, France
| | - Y Guiguen
- INRA LPGP UR037, Fish Physiology and Genomics, Campus de Beaulieu, F-35042 Rennes Cedex, France
| | - A Fostier
- INRA LPGP UR037, Fish Physiology and Genomics, Campus de Beaulieu, F-35042 Rennes Cedex, France
| | - K P Joy
- Department of Biotechnology, Cochin University of Science and Technology, Kochi 682022, India.
| |
Collapse
|
13
|
Carter C. The barrier, airway particle clearance, placental and detoxification functions of autism susceptibility genes. Neurochem Int 2016; 99:42-51. [DOI: 10.1016/j.neuint.2016.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/11/2016] [Accepted: 06/07/2016] [Indexed: 02/08/2023]
|
14
|
Liang SC, Ge GB, Xia YL, Pei-Pei D, Ping W, Qi XY, Cai-Xia T, Ling Y. Inhibition of human catechol-O-methyltransferase-mediated dopamine O-methylation by daphnetin and its Phase II metabolites. Xenobiotica 2016; 47:498-504. [PMID: 27435571 DOI: 10.1080/00498254.2016.1204567] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Si-Cheng Liang
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China,
- Second Affiliated Hospital of Dalian Medical University, Dalian, China,
- Graduate University of Chinese Academy of Sciences, Beijing, China, and
| | - Guang-Bo Ge
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China,
| | - Yang-Liu Xia
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China,
| | - Dong Pei-Pei
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Wang Ping
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China,
| | - Xiao-Yi Qi
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China,
- Second Affiliated Hospital of Dalian Medical University, Dalian, China,
| | - Tu Cai-Xia
- Second Affiliated Hospital of Dalian Medical University, Dalian, China,
| | - Yang Ling
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China,
| |
Collapse
|
15
|
Moskovitz J, Walss-Bass C, Cruz DA, Thompson PM, Hairston J, Bortolato M. The enzymatic activities of brain catechol-O-methyltransferase (COMT) and methionine sulphoxide reductase are correlated in a COMT Val/Met allele-dependent fashion. Neuropathol Appl Neurobiol 2015; 41:941-51. [PMID: 25640985 DOI: 10.1111/nan.12219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/07/2015] [Indexed: 01/05/2023]
Abstract
AIMS The enzyme catechol-O-methyltransferase (COMT) plays a primary role in the metabolism of catecholamine neurotransmitters and is implicated in the modulation of cognitive and emotional responses. The best characterized single nucleotide polymorphism (SNP) of the COMT gene consists of a valine (Val)-to-methionine (Met) substitution at codon 108/158. The Met-containing variant confers a marked reduction in COMT catalytic activity. We recently showed that the activity of recombinant COMT is positively regulated by the enzyme Met sulphoxide reductase (MSR), which counters the oxidation of Met residues of proteins. The current study was designed to assess whether brain COMT activity may be correlated to MSR in an allele-dependent fashion. METHODS COMT and MSR activities were measured from post-mortem samples of prefrontal cortices, striata and cerebella of 32 subjects by using catechol and dabsyl-Met sulphoxide as substrates, respectively. Allelic discrimination of COMT Val(108/185) Met SNP was performed using the Taqman 5'nuclease assay. RESULTS Our studies revealed that, in homozygous carriers of Met, but not Val alleles, the activity of COMT and MSR was significantly correlated throughout all tested brain regions. CONCLUSION These results suggest that the reduced enzymatic activity of Met-containing COMT may be secondary to Met sulphoxidation and point to MSR as a key molecular determinant for the modulation of COMT activity.
Collapse
Affiliation(s)
- Jackob Moskovitz
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, USA
| | - Consuelo Walss-Bass
- Department of Psychiatry and Behavioral Science, School of Medicine, University of Texas Health Science Center, Houston, USA
| | - Dianne A Cruz
- Southwest Brain Bank, Department of Psychiatry, School of Medicine, University of Texas Health Science Center, San Antonio, USA
| | - Peter M Thompson
- Southwest Brain Bank, Department of Psychiatry, School of Medicine, University of Texas Health Science Center, San Antonio, USA
| | - Jenaqua Hairston
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, USA
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, USA
| |
Collapse
|
16
|
Methylation and its role in the disposition of tanshinol, a cardiovascular carboxylic catechol from Salvia miltiorrhiza roots (Danshen). Acta Pharmacol Sin 2015; 36:627-43. [PMID: 25891082 PMCID: PMC4422947 DOI: 10.1038/aps.2015.20] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/27/2015] [Indexed: 12/29/2022] Open
Abstract
AIM Tanshinol is an important catechol in the antianginal herb Salvia miltiorrhiza roots (Danshen). This study aimed to characterize tanshinol methylation. METHODS Metabolites of tanshinol were analyzed by liquid chromatography/mass spectrometry. Metabolism was assessed in vitro with rat and human enzymes. The major metabolites were synthesized for studying their interactions with drug metabolizing enzymes and transporters and their vasodilatory properties. Dose-related tanshinol methylation and its influences on tanshinol pharmacokinetics were also studied in rats. RESULTS Methylation, preferentially in the 3-hydroxyl group, was the major metabolic pathway of tanshinol. In rats, tanshinol also underwent considerable 3-O-sulfation, which appeared to be poor in human liver. These metabolites were mainly eliminated via renal excretion, which involved tubular secretion mainly by organic anion transporter (OAT) 1. The methylated metabolites had no vasodilatory activity. Entacapone-impaired methylation did not considerably increase systemic exposure to tanshinol in rats. The saturation of tanshinol methylation in rat liver could be predicted from the Michaelis constant of tanshinol for catechol-O-methyltransferase (COMT). Tanshinol had low affinity for human COMT and OATs; its methylated metabolites also had low affinity for the transporters. Tanshinol and its major human metabolite (3-O-methyltanshinol) exhibited negligible inhibitory activities against human cytochrome P450 enzymes, organic anion transporting polypeptides 1B1/1B3, multidrug resistance protein 1, multidrug resistance-associated protein 2, and breast cancer resistance protein. CONCLUSION Tanshinol is mainly metabolized via methylation. Tanshinol and its major human metabolite have low potential for pharmacokinetic interactions with synthetic antianginal agents. This study will help define the risk of hyperhomocysteinemia related to tanshinol methylation.
Collapse
|
17
|
Wu W, Wu Q, Hong X, Xiong G, Xiao Y, Zhou J, Wang W, Wu H, Zhou L, Song W, Dai H, Qiu H, Zhao Y. Catechol-O-methyltransferase inhibits colorectal cancer cell proliferation and invasion. Arch Med Res 2014; 46:17-23. [PMID: 25532943 DOI: 10.1016/j.arcmed.2014.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 12/15/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Catechol-O-methyltransferase (COMT) has been reported as an important molecule in various types of cancers. The biological function of COMT in colorectal cancer (CRC) has not yet been fully investigated. METHODS We constructed a transient transfection of a CRC cell lines to up- and downregulate COMT expression level and tested the proliferative, invasion ability in vitro. We also constructed a stable transduced CRC cell line and conducted tumor-forming capacity experiment in mouse xenograft model in vivo. RESULTS In vitro experiment showed that COMT inhibited the cell proliferation by regulating p-Akt, PTEN and inhibited G1 to S phase transition by regulating p53, p27, and cyclinD1. COMT inhibited invasion by regulating E-cadherin. In vivo experiment showed decreased tumor growth in COMT overexpressing cell line. CONCLUSIONS COMT has tumor-suppressive functions for CRC cell lines in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Wenming Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiao Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiafei Hong
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guangbing Xiong
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaolin Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenze Wang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huanwen Wu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Song
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Hongmei Dai
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huizhong Qiu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
18
|
Smith SB, Reenilä I, Männistö PT, Slade GD, Maixner W, Diatchenko L, Nackley AG. Epistasis between polymorphisms in COMT, ESR1, and GCH1 influences COMT enzyme activity and pain. Pain 2014; 155:2390-9. [PMID: 25218601 DOI: 10.1016/j.pain.2014.09.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 07/29/2014] [Accepted: 09/04/2014] [Indexed: 01/19/2023]
Abstract
Abnormalities in the enzymatic activity of catechol-O-methyltransferase (COMT) contribute to chronic pain conditions, such as temporomandibular disorders (TMD). Thus, we sought to determine the effects of polymorphisms in COMT and functionally related pain genes in the COMT pathway (estrogen receptor 1 [ESR1], guanosine-5-triphosphate cyclohydrolase 1 [GCH1], methylenetetrahydrofolate reductase [MTHFR]) on COMT enzymatic activity, musculoskeletal pain, and pain-related intermediate phenotypes among TMD cases and healthy control subjects. Results show that the COMT rs4680 (val(158)met) polymorphism is most strongly associated with outcome measures, such that individuals with the minor A allele (met) exhibit reduced COMT activity, increased TMD risk, and increased musculoskeletal pain. Epistatic interactions were observed between the COMT rs4680 polymorphism and polymorphisms in GCH1 and ESR1. Among individuals with the COMT met allele, those with 2 copies of the GCH1 rs10483639 minor G allele exhibit normalized COMT activity and increased mechanical pain thresholds. Among individuals with the COMT val allele, those with 2 copies of the ESR1 rs3020377 minor A allele exhibit reduced COMT activity, increased bodily pain, and poorer self-reported health. These data reveal that the GCH1 minor G allele confers a protective advantage among met carriers, whereas the ESR1 minor A allele is disadvantageous among val carriers. Furthermore, these data suggest that the ability to predict the downstream effects of genetic variation on COMT activity is critically important to understanding the molecular basis of chronic pain conditions.
Collapse
Affiliation(s)
- Shad B Smith
- Center for Pain Research and Innovation, School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - Ilkka Reenilä
- Division of Pharmacology and Toxicology, University of Helsinki, Helsinki, Finland
| | - Pekka T Männistö
- Division of Pharmacology and Toxicology, University of Helsinki, Helsinki, Finland
| | - Gary D Slade
- Center for Pain Research and Innovation, School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - William Maixner
- Center for Pain Research and Innovation, School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - Luda Diatchenko
- Center for Pain Research and Innovation, School of Dentistry, University of North Carolina, Chapel Hill, NC, USA; Alan Edwards Pain Centre For Research on Pain, McGill University, Montreal, Canada
| | - Andrea G Nackley
- Center for Pain Research and Innovation, School of Dentistry, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
19
|
Rhein VF, Carroll J, He J, Ding S, Fearnley IM, Walker JE. Human METTL20 methylates lysine residues adjacent to the recognition loop of the electron transfer flavoprotein in mitochondria. J Biol Chem 2014; 289:24640-51. [PMID: 25023281 PMCID: PMC4148887 DOI: 10.1074/jbc.m114.580464] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In mammalian mitochondria, protein methylation is a relatively uncommon post-transcriptional modification, and the extent of the mitochondrial protein methylome, the modifying methyltransferases, and their substrates have been little studied. As shown here, the β-subunit of the electron transfer flavoprotein (ETF) is one such methylated protein. The ETF is a heterodimer of α- and β-subunits. Lysine residues 199 and 202 of mature ETFβ are almost completely trimethylated in bovine heart mitochondria, whereas ETFα is not methylated. The enzyme responsible for the modifications was identified as methyltransferase-like protein 20 (METTL20). In human 143B cells, the methylation of ETFβ is less extensive and is diminished further by suppression of METTL20. Tagged METTL20 expressed in HEK293T cells specifically associates with the ETF and promotes the trimethylation of ETFβ lysine residues 199 and 202. ETF serves as a mobile electron carrier linking dehydrogenases involved in fatty acid oxidation and one-carbon metabolism to the membrane-associated ubiquinone pool. The methylated residues in ETFβ are immediately adjacent to a protein loop that recognizes and binds to the dehydrogenases. Suppression of trimethylation of ETFβ in mouse C2C12 cells oxidizing palmitate as an energy source reduced the consumption of oxygen by the cells. These experiments suggest that the oxidation of fatty acids in mitochondria and the passage of electrons via the ETF may be controlled by modulating the protein-protein interactions between the reduced dehydrogenases and the β-subunit of the ETF by trimethylation of lysine residues. METTL20 is the first lysine methyltransferase to be found to be associated with mitochondria.
Collapse
Affiliation(s)
- Virginie F Rhein
- From The Medical Research Council Mitochondrial Biology Unit, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Joe Carroll
- From The Medical Research Council Mitochondrial Biology Unit, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Jiuya He
- From The Medical Research Council Mitochondrial Biology Unit, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Shujing Ding
- From The Medical Research Council Mitochondrial Biology Unit, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Ian M Fearnley
- From The Medical Research Council Mitochondrial Biology Unit, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - John E Walker
- From The Medical Research Council Mitochondrial Biology Unit, Hills Road, Cambridge CB2 0XY, United Kingdom
| |
Collapse
|
20
|
Godar SC, Bortolato M. Gene-sex interactions in schizophrenia: focus on dopamine neurotransmission. Front Behav Neurosci 2014; 8:71. [PMID: 24639636 PMCID: PMC3944784 DOI: 10.3389/fnbeh.2014.00071] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 02/19/2014] [Indexed: 02/02/2023] Open
Abstract
Schizophrenia is a severe mental disorder, with a highly complex and heterogenous clinical presentation. Our current perspectives posit that the pathogenic mechanisms of this illness lie in complex arrays of gene × environment interactions. Furthermore, several findings indicate that males have a higher susceptibility for schizophrenia, with earlier age of onset and overall poorer clinical prognosis. Based on these premises, several authors have recently begun exploring the possibility that the greater schizophrenia vulnerability in males may reflect specific gene × sex (G×S) interactions. Our knowledge on such G×S interactions in schizophrenia is still rudimentary; nevertheless, the bulk of preclinical evidence suggests that the molecular mechanisms for such interactions are likely contributed by the neurobiological effects of sex steroids on dopamine (DA) neurotransmission. Accordingly, several recent studies suggest a gender-specific association of certain DAergic genes with schizophrenia. These G×S interactions have been particularly documented for catechol-O-methyltransferase (COMT) and monoamine oxidase (MAO), the main enzymes catalyzing DA metabolism. In the present review, we will outline the current evidence on the interactions of DA-related genes and sex-related factors, and discuss the potential molecular substrates that may mediate their cooperative actions in schizophrenia pathogenesis.
Collapse
Affiliation(s)
- Sean C Godar
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas Lawrence, KS, USA
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas Lawrence, KS, USA ; Consortium for Translational Research on Aggression and Drug Abuse, University of Kansas Lawrence, KS, USA
| |
Collapse
|
21
|
Role of COMT in ADHD: a Systematic Meta-Analysis. Mol Neurobiol 2013; 49:251-61. [DOI: 10.1007/s12035-013-8516-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/11/2013] [Indexed: 12/30/2022]
|
22
|
Catechol-O-methyltransferase gene polymorphism and chronic human pain: a systematic review and meta-analysis. Pharmacogenet Genomics 2013; 22:673-91. [PMID: 22722321 DOI: 10.1097/fpc.0b013e3283560c46] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In human studies, low COMT (catechol-O-methyltransferase) activity has been associated with increased sensitivity to acute clinical preoperative or postoperative pain. We explored the association between the COMT genotype and three chronic pain conditions: migrainous headache, fibromyalgia, or chronic widespread pain and chronic musculoskeletal pain. Furthermore, we evaluated whether COMT genotype affects the efficacy of opioids in chronic pain. After a systematic literature review, we carried out meta-analyses on the three chronic pain conditions. The efficacy of opioids was evaluated using a systematic review only. The meta-analyses showed that fibromyalgia or chronic widespread pain is the only type of chronic pain that could be associated with the COMT single nucleotide polymorphism rs4680 (Val158Met). Met158, which results in the low-activity variant of COMT, is the risk allele. In chronic clinical pain, the effect of the COMT polymorphism depends on the pain condition. Low COMT activity is not associated with migrainous headache or chronic musculoskeletal pain conditions, but it may increase the risk for fibromyalgia or chronic widespread pain. Low COMT activity increases opioid receptors and enhances opioid analgesia and adverse effects in some cancer pains. Findings from animal studies that have utilized COMT inhibitors elucidate the mechanism behind these findings. In rodent pain models, COMT inhibitors are pronociceptive, except for neuropathic pain models, where nitecapone was found to be antiallodynic. The complex interplay between enhanced adrenergic and dopaminergic activity in different parts of the nociceptive system probably explains the complicated actions of low COMT activity.
Collapse
|
23
|
Bisaglia M, Greggio E, Beltramini M, Bubacco L. Dysfunction of dopamine homeostasis: clues in the hunt for novel Parkinson's disease therapies. FASEB J 2013; 27:2101-10. [PMID: 23463698 DOI: 10.1096/fj.12-226852] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Parkinson's disease is the second most common neurodegenerative disorder and, at present, has no cure. Both environmental and genetic factors have been implicated in the etiology of the disease; however, the pathogenic pathways leading to neuronal degeneration are still unclear. Parkinson's disease is characterized by the preferential death of a subset of neurons in the mesencephalon that use dopamine as neurotransmitter for synaptic communication. Dopamine is a highly reactive molecule that can lead to cytotoxicity if not properly stored and metabolized. Targeting any of the pathways that tightly control this neurotransmitter holds great therapeutic expectations. In this article we present a comprehensive overview of the cellular pathways that control dopamine fate and discuss potential therapeutic approaches to counteract or slow Parkinson's disease onset and progression.
Collapse
Affiliation(s)
- Marco Bisaglia
- Molecular Physiology and Biophysics Unit, Department of Biology, University of Padova, Padua, Italy.
| | | | | | | |
Collapse
|
24
|
Pereira PA, Romano-Silva MA, Bicalho MAC, de Moraes EN, Malloy-Diniz L, Pimenta GJGS, Mello MP, Bozzi ICRS, de Marco LA, Nicolato R, Miranda DM. Catechol-O-methyltransferase genetic variant associated with the risk of Alzheimer's disease in a Brazilian population. Dement Geriatr Cogn Disord 2013; 34:90-5. [PMID: 22922787 DOI: 10.1159/000341578] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/20/2012] [Indexed: 11/19/2022] Open
Abstract
The aim of the present study was to examine the association between polymorphism in the catechol-O-methyltransferase(COMT) gene and Alzheimer's disease (AD) in a Brazilian population. The case-control method was used to study the association between AD and genetic variants of COMT. Six tag single-nucleotide polymorphisms(SNPs) in the COMT gene were genotyped by RT-PCR. Our findings showed that the 6 tag SNPs analyzed in this study were not associated with AD at the allele and genotype levels in comparison with the control group. No statistical difference was found between groups with and without behavioral and psychological symptoms of dementia (BPSD). Our results do not support the hypothesis that the polymorphisms of the COMT gene may be associated with susceptibility to AD with and without BPSD.
Collapse
Affiliation(s)
- Patricia Araújo Pereira
- INCT - de Medicina Molecular, Faculdade de Medicina,Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhang H, Zhang Z, Wu J, Xu Y, Cheng R, Li L. Lack of Association between COMT Val158Met Polymorphism and Prostate Cancer Susceptibility. Urol Int 2013; 91:213-9. [DOI: 10.1159/000345633] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 11/05/2012] [Indexed: 11/19/2022]
|
26
|
In Silico Analyses of COMT, an Important Signaling Cascade of Dopaminergic Neurotransmission Pathway, for Drug Development of Parkinson’s Disease. Appl Biochem Biotechnol 2012; 167:845-60. [DOI: 10.1007/s12010-012-9725-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 04/30/2012] [Indexed: 10/28/2022]
|
27
|
Lee HY, Nakayama J, Xu Y, Fan X, Karouani M, Shen Y, Pothos EN, Hess EJ, Fu YH, Edwards RH, Ptácek LJ. Dopamine dysregulation in a mouse model of paroxysmal nonkinesigenic dyskinesia. J Clin Invest 2012; 122:507-18. [PMID: 22214848 DOI: 10.1172/jci58470] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 11/16/2011] [Indexed: 11/17/2022] Open
Abstract
Paroxysmal nonkinesigenic dyskinesia (PNKD) is an autosomal dominant episodic movement disorder. Patients have episodes that last 1 to 4 hours and are precipitated by alcohol, coffee, and stress. Previous research has shown that mutations in an uncharacterized gene on chromosome 2q33-q35 (which is termed PNKD) are responsible for PNKD. Here, we report the generation of antibodies specific for the PNKD protein and show that it is widely expressed in the mouse brain, exclusively in neurons. One PNKD isoform is a membrane-associated protein. Transgenic mice carrying mutations in the mouse Pnkd locus equivalent to those found in patients with PNKD recapitulated the human PNKD phenotype. Staining for c-fos demonstrated that administration of alcohol or caffeine induced neuronal activity in the basal ganglia in these mice. They also showed nigrostriatal neurotransmission deficits that were manifested by reduced extracellular dopamine levels in the striatum and a proportional increase of dopamine release in response to caffeine and ethanol treatment. These findings support the hypothesis that the PNKD protein functions to modulate striatal neuro-transmitter release in response to stress and other precipitating factors.
Collapse
Affiliation(s)
- Hsien-yang Lee
- Department of Neurology, UCSF, San Francisco, California, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Chen J, Song J, Yuan P, Tian Q, Ji Y, Ren-Patterson R, Liu G, Sei Y, Weinberger DR. Orientation and cellular distribution of membrane-bound catechol-O-methyltransferase in cortical neurons: implications for drug development. J Biol Chem 2011; 286:34752-60. [PMID: 21846718 DOI: 10.1074/jbc.m111.262790] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Catechol-O-methyltransferase (COMT) is a key enzyme for inactivation and metabolism of catechols, including dopamine, norepinephrine, caffeine, and estrogens. It plays an important role in cognition, arousal, pain sensitivity, and stress reactivity in humans and in animal models. The human COMT gene is associated with a diverse spectrum of human behaviors and diseases from cognition and psychiatric disorders to chronic pain and cancer. There are two major forms of COMT proteins, membrane-bound (MB) COMT and soluble (S) COMT. MB-COMT is the main form in the brain. The cellular distribution of MB-COMT in cortical neurons remains unclear and the orientation of MB-COMT on the cellular membrane is controversial. In this study, we demonstrate that MB-COMT is located in the cell body and in axons and dendrites of rat cortical neurons. Analyses of MB-COMT orientation with computer simulation, flow cytometry and a cell surface enzyme assay reveal that the C-terminal catalytic domain of MB-COMT is in the extracellular space, which suggests that MB-COMT can inactivate synaptic and extrasynaptic dopamine on the surface of presynaptic and postsynaptic neurons. Finally, we show that the COMT inhibitor tolcapone induces cell death via the mechanism of apoptosis, and its cytotoxicity is dependent on dosage and correlated with COMT Val/Met genotypes in human lymphoblastoid cells. These results suggest that MB-COMT specific inhibitors can be developed and that tolcapone may be less hazardous at low doses and in specific genetic backgrounds.
Collapse
Affiliation(s)
- Jingshan Chen
- Clinical Brain Disorders Branch, Genes, Cognition, and Psychosis Program, NIMH, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Tammimäki A, Käenmäki M, Kambur O, Kulesskaya N, Keisala T, Karvonen E, García-Horsman JA, Rauvala H, Männistö PT. Effect of S-COMT deficiency on behavior and extracellular brain dopamine concentrations in mice. Psychopharmacology (Berl) 2010; 211:389-401. [PMID: 20617305 DOI: 10.1007/s00213-010-1944-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 06/03/2010] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Catechol-O-methyltransferase (COMT) has soluble (S-COMT) and membrane bound (MB-COMT) isoforms. Our aims were to assess the behavioral phenotype of S-COMT mutant mice and to clarify the role of MB-COMT in dopamine metabolism in different brain areas. METHODS Behavioral phenotype of the S-COMT mutant mice was assessed using a test battery designed to describe anxiety phenotype, spontaneous locomotor activity, sensorymotor gating, social behavior, and pain sensitivity. Microdialysis was used to explore the effect of S-COMT deficiency on extracellular dopamine under an L: -dopa load (carbidopa /L: -dopa 30/10 mg/kg i.p.). RESULTS In behavioral tests, mature adult S-COMT mutants that only possessed MB-COMT exhibited enhanced acoustic startle without alterations in sensorimotor gating. They also showed barbering of vibrissae and nonaggressive social dominance, suggesting a change in their social interactions. In addition, S-COMT deficiency slightly and sex-dependently affected spinal pain reflex and the effect of morphine on hot-plate latency. In microdialysis studies under L: -dopa load, S-COMT mutants of both sexes had higher accumbal dopamine levels, but male S-COMT mutant mice showed paradoxically lower prefrontal cortical dopamine concentrations than wild-type animals. S-COMT deficiency induced the accumulation of 3,4-dihydroxyphenylacetic acid in all brain areas, which was accentuated after L: -dopa loading. The lack of S-COMT decreased extracellular homovanillic acid levels. However, after L: -dopa loading, homovanillic acid concentrations in the prefrontal cortex of S-COMT mutants were similar to those of wild-type mice. CONCLUSION A lack of S-COMT has a notable, albeit small, brain-area and sex-dependent effect on the O-methylation of dopamine and 3,4-dihydroxyphenylacetic acid in the mouse brain. It also induces subtle changes in mouse social interaction behaviors and nociception.
Collapse
Affiliation(s)
- Anne Tammimäki
- Division of Pharmacology and Toxicology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Käenmäki M, Tammimäki A, Myöhänen T, Pakarinen K, Amberg C, Karayiorgou M, Gogos JA, Männistö PT. Quantitative role of COMT in dopamine clearance in the prefrontal cortex of freely moving mice. J Neurochem 2010; 114:1745-55. [PMID: 20626558 DOI: 10.1111/j.1471-4159.2010.06889.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Catechol-O-methyltransferase (COMT) plays an active role in the metabolism of dopamine (DA) in the prefrontal cortex (PFC). Because of low levels of dopamine transporter (DAT), it is proposed that the majority of released DA is taken up by either norepinephrine transporter (NET) and subsequently metabolized by monoamine oxidize (MAO) or by uptake(2) (to glial cells and post-synaptic neurons) and metabolized by COMT. However, a comprehensive in vivo study of rating the mechanisms involved in DA clearance in the PFC has not been done. Here, we employ two types of microdialysis to study these pathways using DAT, NET and MAO blockers in conscious mice, with or without Comt gene disruption. In quantitative no-net-flux microdialysis, DA levels were increased by 60% in the PFC of COMT-knockout (ko) mice, but not in the striatum and nucleus accumbens. In conventional microdialysis studies, we showed that selective NET and MAO inhibition increased DA levels in the PFC of wild-type mice by two- to fourfold, an effect that was still doubled in COMT-ko mice. Inhibition of DAT had no effect on DA levels in either genotype. Therefore, we conclude that in the mouse, PFC COMT contributes about one half of the total DA clearance.
Collapse
Affiliation(s)
- Mikko Käenmäki
- Division of Pharmacology and Toxicology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Myöhänen TT, Schendzielorz N, Männistö PT. Distribution of catechol-O-methyltransferase (COMT) proteins and enzymatic activities in wild-type and soluble COMT deficient mice. J Neurochem 2010; 113:1632-43. [PMID: 20374420 DOI: 10.1111/j.1471-4159.2010.06723.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Catechol-O-methyltransferase (COMT) has both soluble (S-COMT) and membrane-bound (MB-COMT) isoforms. A specific COMT antibody was used in immunohistochemical and confocal co-localization studies to explore the distribution of COMT in general in normal mice and MB-COMT in particular, in an S-COMT deficient mouse line. In the peripheral tissues, high COMT protein and activity levels were observed in liver and kidney, whereas in the brain, COMT expression and activity were much lower. MB-COMT was widely distributed throughout all tissues, and overall, the MB-COMT distribution mimicked the distribution of S-COMT. MB-COMT displayed some preference for brain tissue, notably in the hippocampus. MB-COMT related enzymatic activity was also pronounced in the cerebral cortical areas and hypothalamus. MB-COMT, like S-COMT, was found to be an intracellular enzyme but it was not associated with plasma membranes in the brain. Both COMT forms were abundantly found in microglial cells and intestinal macrophages, but also in astroglial cells. COMT was also present in some neuronal cells, like pyramidal neurons, cerebellar Purkinje and granular cells and striatal spiny neurons, but not in major long projection neurons. Finally, it seemed that nuclear COMT is not visible in S-COMT deficient mice.
Collapse
Affiliation(s)
- Timo T Myöhänen
- Division of Pharmacology and Toxicology, Faculty of Pharmacy, University of Helsinki, Finland.
| | | | | |
Collapse
|
32
|
Tunbridge EM. The catechol-O-methyltransferase gene: its regulation and polymorphisms. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2010; 95:7-27. [PMID: 21095457 DOI: 10.1016/b978-0-12-381326-8.00002-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The catechol-O-methyltransferase (COMT) gene is of significant interest to neuroscience, due to its role in modulating dopamine function. COMT is dynamically regulated; its expression is altered during normal brain development and in response to environmental stimuli. In many cases the underlying molecular basis for these effects is unknown; however, in some cases (e.g., estrogenic regulation in the case of sex differences) regulatory mechanisms have been identified. COMT contains several functional polymorphisms and haplotypes, including the well-studied Val158Met polymorphism. Here I review the regulation of COMT and the functional polymorphisms within its sequence with respect to brain function.
Collapse
|
33
|
Myöhänen TT, Männistö PT. Distribution and functions of catechol-O-methyltransferase proteins: do recent findings change the picture? INTERNATIONAL REVIEW OF NEUROBIOLOGY 2010; 95:29-47. [PMID: 21095458 DOI: 10.1016/b978-0-12-381326-8.00003-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Old and new results show that both catechol-O-methyltransferase (COMT) forms are found in all mouse tissues, demonstrating that COMT is a ubiquitous enzyme. Some novel findings are obvious when considering differences between old and new distribution data. In addition to the brain, membrane-bound form of COMT (MB-COMT) is found also in most peripheral mouse tissues at about equal amounts as soluble form of COMT (S-COMT), suggesting that their functions do not need to be very different. There are large differences between the species in the relative distribution of S-COMT and MB-COMT. According to the new data, it is evident that even in the animal tissues MB-COMT is not associated with the plasma membranes but with intracellular membranes, and that S-COMT resides not only in the cytoplasm but even in the nucleus.
Collapse
Affiliation(s)
- Timo T Myöhänen
- Division of Pharmacology and Toxicology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
34
|
|
35
|
Wahlstrom D, White T, Luciana M. Neurobehavioral evidence for changes in dopamine system activity during adolescence. Neurosci Biobehav Rev 2009; 34:631-48. [PMID: 20026110 DOI: 10.1016/j.neubiorev.2009.12.007] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 12/10/2009] [Accepted: 12/12/2009] [Indexed: 11/26/2022]
Abstract
Human adolescence has been characterized by increases in risk-taking, emotional lability, and deficient patterns of behavioral regulation. These behaviors have often been attributed to changes in brain structure that occur during this developmental period, notably alterations in gray and white matter that impact synaptic architecture in frontal, limbic, and striatal regions. In this review, we provide a rationale for considering that these behaviors may be due to changes in dopamine system activity, particularly overactivity, during adolescence relative to either childhood or adulthood. This rationale relies on animal data due to limitations in assessing neurochemical activity more directly in juveniles. Accordingly, we also present a strategy that incorporates molecular genetic techniques to infer the status of the underlying tone of the dopamine system across developmental groups. Implications for the understanding of adolescent behavioral development are discussed.
Collapse
Affiliation(s)
- Dustin Wahlstrom
- Department of Psychology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
36
|
Zeng BY, Balfour RH, Jackson MJ, Rose S, Jenner P. Expression of catechol-O-methyltransferase in the brain and periphery of normal and MPTP-treated common marmosets. J Neural Transm (Vienna) 2009; 117:45-51. [DOI: 10.1007/s00702-009-0315-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 09/10/2009] [Indexed: 12/28/2022]
|
37
|
Luu-The V, Duche D, Ferraris C, Meunier JR, Leclaire J, Labrie F. Expression profiles of phases 1 and 2 metabolizing enzymes in human skin and the reconstructed skin models Episkin and full thickness model from Episkin. J Steroid Biochem Mol Biol 2009; 116:178-86. [PMID: 19482084 DOI: 10.1016/j.jsbmb.2009.05.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 05/18/2009] [Accepted: 05/22/2009] [Indexed: 11/26/2022]
Abstract
BACKGROUND Episkin and full thickness model from Episkin (FTM) are human skin models obtained from in vitro growth of keratinocytes into the five typical layers of the epidermis. FTM is a full thickness reconstructed skin model that also contains fibroblasts seeded in a collagen matrix. OBJECTIVES To assess whether enzymes involved in chemical detoxification are expressed in Episkin and FTM and how their levels compare with the human epidermis, dermis and total skin. METHODS Quantification of the mRNA expression levels of phases 1 and 2 metabolizing enzymes in cultured Episkin and FTM and human epidermis, dermis and total skin using Realtime PCR. RESULTS The data show that the expression profiles of 61 phases 1 and 2 metabolizing enzymes in Episkin, FTM and epidermis are generally similar, with some exceptions. Cytochrome P450-dependent enzymes and flavin monooxygenases are expressed at low levels, while phase 2 metabolizing enzymes are expressed at much higher levels, especially, glutathione-S-transferase P1 (GSTP1) catechol-O-methyl transferase (COMT), steroid sulfotransferase (SULT2B1b), and N-acetyl transferase (NAT5). The present study also identifies the presence of many enzymes involved in cholesterol, arachidonic acid, leukotriene, prostaglandin, eicosatrienoic acids, and vitamin D3 metabolisms. CONCLUSION The present data strongly suggest that Episkin and FTM represent reliable and valuable in vitro human skin models for studying the function of phases 1 and 2 metabolizing enzymes in xenobiotic metabolisms. They could be used to replace invasive methods or laboratory animals for skin experiments.
Collapse
Affiliation(s)
- Van Luu-The
- Oncology, Molecular Endocrinology and Genomic Research Center, Quebec University Hospital Research Center (CRCHUQ) and Laval University, 2705 Laurier Boulevard, Quebec G1 V 4G2, Canada.
| | | | | | | | | | | |
Collapse
|
38
|
Andersen S, Skorpen F. Variation in the COMT gene: implications for pain perception and pain treatment. Pharmacogenomics 2009; 10:669-84. [PMID: 19374521 DOI: 10.2217/pgs.09.13] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Catechol-O-methyltransferase (COMT) is an enzyme that inactivates biologically-active catechols, including the important neurotransmitters dopamine, noradrenaline and adrenaline. These neurotransmitters are involved in numerous physiological processes, including modulation of pain. Genetic variation in the COMT gene has been implicated in variable response to various experimental painful stimuli, variable susceptibility to develop common pain conditions, as well as the variable need for opioids in the treatment of cancer pain. Increased insight into how genetic variants within the COMT locus affect pain perception will contribute to improved understanding of the mechanisms involved in the development of common human pain disorders and may lead to improved strategies for pain treatment. So far, a remarkable complex relationship between COMT genotypes or haplotypes and pain phenotypes has been revealed.
Collapse
Affiliation(s)
- Sonja Andersen
- Department of Laboratory Medicine Children's & Women's Health, Laboratory Centre, Faculty of Medicine, Norwegian University of Science & Technology (NTNU), N-7489 Trondheim, Norway
| | | |
Collapse
|
39
|
Low enzymatic activity haplotypes of the human catechol-O-methyltransferase gene: enrichment for marker SNPs. PLoS One 2009; 4:e5237. [PMID: 19365560 PMCID: PMC2664927 DOI: 10.1371/journal.pone.0005237] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 03/17/2009] [Indexed: 12/18/2022] Open
Abstract
Catechol-O-methyltransferase (COMT) is an enzyme that plays a key role in the modulation of catechol-dependent functions such as cognition, cardiovascular function, and pain processing. Three common haplotypes of the human COMT gene, divergent in two synonymous and one nonsynonymous (val(158)met) position, designated as low (LPS), average (APS), and high pain sensitive (HPS), are associated with experimental pain sensitivity and risk of developing chronic musculoskeletal pain conditions. APS and HPS haplotypes produce significant functional effects, coding for 3- and 20-fold reductions in COMT enzymatic activity, respectively. In the present study, we investigated whether additional minor single nucleotide polymorphisms (SNPs), accruing in 1 to 5% of the population, situated in the COMT transcript region contribute to haplotype-dependent enzymatic activity. Computer analysis of COMT ESTs showed that one synonymous minor SNP (rs769224) is linked to the APS haplotype and three minor SNPs (two synonymous: rs6267, rs740602 and one nonsynonymous: rs8192488) are linked to the HPS haplotype. Results from in silico and in vitro experiments revealed that inclusion of allelic variants of these minor SNPs in APS or HPS haplotypes did not modify COMT function at the level of mRNA folding, RNA transcription, protein translation, or enzymatic activity. These data suggest that neutral variants are carried with APS and HPS haplotypes, while the high activity LPS haplotype displays less linked variation. Thus, both minor synonymous and nonsynonymous SNPs in the coding region are markers of functional APS and HPS haplotypes rather than independent contributors to COMT activity.
Collapse
|
40
|
Tchivileva IE, Nackley AG, Qian L, Wentworth S, Conrad M, Diatchenko LB. Characterization of NF-kB-mediated inhibition of catechol-O-methyltransferase. Mol Pain 2009; 5:13. [PMID: 19291302 PMCID: PMC2662804 DOI: 10.1186/1744-8069-5-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 03/16/2009] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Catechol-O-methyltransferase (COMT), an enzyme that metabolizes catecholamines, has recently been implicated in the modulation of pain. Specifically, low COMT activity is associated with heightened pain perception and development of musculoskeletal pain in humans as well as increased experimental pain sensitivity in rodents. RESULTS We report that the proinflammatory cytokine tumor necrosis factor alpha (TNFalpha) downregulates COMT mRNA and protein in astrocytes. Examination of the distal COMT promoter (P2-COMT) reveals a putative binding site for nuclear factor kappaB (NF-kappaB), the pivotal regulator of inflammation and the target of TNFalpha. Cell culture assays and functional deletion analyses of the cloned P2-COMT promoter demonstrate that TNFalpha inhibits P2-COMT activity in astrocytes by inducing NF-kappaB complex recruitment to the specific kappaB binding site. CONCLUSION Collectively, our findings provide the first evidence for NF-kappaB-mediated inhibition of COMT expression in the central nervous system, suggesting that COMT contributes to the pathogenesis of inflammatory pain states.
Collapse
Affiliation(s)
- Inna E Tchivileva
- Center for Neurosensory Disorders, School of Dentistry, University of North Carolina, Chapel Hill, NC 27599-7455, USA
| | - Andrea G Nackley
- Center for Neurosensory Disorders, School of Dentistry, University of North Carolina, Chapel Hill, NC 27599-7455, USA
| | - Li Qian
- Comprehensive Center for Inflammatory Disorders, School of Dentistry, University of North Carolina, Chapel Hill, NC 27599-7455, USA
| | - Sean Wentworth
- Center for Neurosensory Disorders, School of Dentistry, University of North Carolina, Chapel Hill, NC 27599-7455, USA
| | - Matthew Conrad
- Center for Neurosensory Disorders, School of Dentistry, University of North Carolina, Chapel Hill, NC 27599-7455, USA
| | - Luda B Diatchenko
- Center for Neurosensory Disorders, School of Dentistry, University of North Carolina, Chapel Hill, NC 27599-7455, USA
| |
Collapse
|
41
|
Gao L, Li H, Li K, Shen Z, Liu L, Li C, Zhang Z, Liu Y. Polymorphism of the catechol-O-methyltransferase gene in Han Chinese patients with psoriasis vulgaris. Genet Mol Biol 2009; 32:32-6. [PMID: 21637643 PMCID: PMC3032959 DOI: 10.1590/s1415-47572009005000002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 06/26/2008] [Indexed: 11/22/2022] Open
Abstract
Psoriasis vulgaris is defined by a series of linked cellular changes in the skin: hyperplasia of epidermal keratinocytes, vascular hyperplasia and ectasia, and infiltration of T lymphocytes, neutrophils and other types of leukocytes in the affected skin. Catechol-O-methyltransferase (COMT) 158 polymorphism can reduce the activity of the COMT enzyme that may trigger defective differentiation of keratinocytes in psoriasis. Immunocytes can degrade and inactivate catecholamines via monamine oxidase (MAO) and COMT in the cells. We hypothesized that the COMT-158G > A polymorphism was associated with the risk of psoriasis vulgaris in Han Chinese people. In a hospital-based case-control study, 524 patients with psoriasis vulgaris and 549 psoriasis-free controls were studied. COMT-158 G > A polymorphism was genotyped using the PCR sequence-specific primer (PCR-SSP) technique. We found no statistically significant association between the COMT-158 allele A and the risk of psoriasis vulgaris (p = 0.739 adjusted OR = 1.03; 95% CI = 0.81-1.31). This suggests that the COMT-158 G > A polymorphism may not contribute to the etiology of psoriasis vulgaris in the Han Chinese population.
Collapse
Affiliation(s)
- Lin Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Shaanxi China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Lee HJ, Lee MS, Kim JS, Kim ER, Kang SW, Kim SK, Chung JH, Yoon KL, Han MY, Cha SH. The relationship between catechol-O-methyltransferase gene polymorphism and coronary artery abnormality in Kawasaki disease. KOREAN JOURNAL OF PEDIATRICS 2009. [DOI: 10.3345/kjp.2009.52.1.87] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Hyo Jin Lee
- Department of Pediatrics, Sung-Ae General Hospital, Seoul, Korea
| | - Myung Sook Lee
- Department of Pediatrics, Sung-Ae General Hospital, Seoul, Korea
| | - Ji Sook Kim
- Department of Pediatrics, Sung-Ae General Hospital, Seoul, Korea
| | - Eun Ryoung Kim
- Department of Pediatrics, Sung-Ae General Hospital, Seoul, Korea
| | - Sung Wook Kang
- Kohwang Medical Research Institute, School of Medicine, Kyunghee University, Seoul, Korea
| | - Soo Kang Kim
- Kohwang Medical Research Institute, School of Medicine, Kyunghee University, Seoul, Korea
| | - Joo Ho Chung
- Kohwang Medical Research Institute, School of Medicine, Kyunghee University, Seoul, Korea
| | - Kyung Lim Yoon
- Department of Pediatrics, East-West Neo-medical Center, Kyunghee University, Seoul, Korea
| | - Mi Young Han
- Department of Pediatrics, College of Medicine, Kyunghee University, Seoul, Korea
| | - Seong Ho Cha
- Department of Pediatrics, College of Medicine, Kyunghee University, Seoul, Korea
| |
Collapse
|
43
|
Li K, Li C, Gao L, Yang L, Li M, Liu L, Zhang Z, Liu Y, Gao T. A functional single-nucleotide polymorphism in the catechol-O-methyltransferase gene alter vitiligo risk in a Chinese population. Arch Dermatol Res 2008; 301:681-7. [PMID: 19112571 DOI: 10.1007/s00403-008-0920-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 11/02/2008] [Accepted: 12/02/2008] [Indexed: 10/21/2022]
Abstract
Vitiligo is an acquired hypomelanotic skin disorder resulting from the loss of functional melanocytes. The COMT-158 polymorphism can reduce COMT enzyme activity and may thus lead to the overproduction of toxic radicals in the melanocyte microenvironment. To determine whether this polymorphism in the COMT gene is associated with an increased risk of vitiligo in Chinese populations, we used a polymerase chain reaction sequence-specific primer (PCR-SSP) technique to determine the frequency of the polymorphism COMT-158 G > A in 749 vitiligo patients and 763 healthy controls. We found that compared to the COMT-158 GG genotype, the COMT-158 GA genotype (adjusted odds ratio [OR], 1.39; 95% confidence interval [CI], 1.13-1.72) and the combined GA + AA genotype (adjusted OR, 1.41; 95% CI, 1.15-1.74) were associated with an increased risk of generalized vitiligo. The association was more pronounced in patients with early-onset vitiligo (adjusted OR, 1.95; 95% CI, 1.45-2.60), those with a family history of vitiligo (adjusted OR, 3.84; 95% CI, 2.47-5.96), and female patients (adjusted OR, 1.74; 95% CI, 1.29-2.36). When we further clinically stratified the vitiligo patients according to their disease types, we found that the combined GA + AA genotype was associated with vitiligo vulgaris (adjusted OR, 1.31; 95% CI, 1.02-1.68), focal vitiligo (adjusted OR, 1.62; 95% CI, 1.17-2.25), and universal vitiligo (adjusted OR, 1.50; 95% CI, 0.98-2.30), but not with acrofacial vitiligo (adjusted OR, 1.53; 95% CI, 0.86-2.73) or segmental vitiligo (adjusted OR, 1.35; 95% CI, 0.72-2.51). In conclusion, this COMT gene polymorphism may have contributed to the etiology of vitiligo in our Chinese population. Larger population-based studies are required to verify our findings.
Collapse
Affiliation(s)
- Kai Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Prasad SE, Howley S, Murphy KC. Candidate genes and the behavioral phenotype in 22q11.2 deletion syndrome. ACTA ACUST UNITED AC 2008; 14:26-34. [PMID: 18636634 DOI: 10.1002/ddrr.5] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is an overwhelming evidence that children and adults with 22q11.2 deletion syndrome (22q11.2DS) have a characteristic behavioral phenotype. In particular, there is a growing body of evidence that indicates an unequivocal association between 22q11.2DS and schizophrenia, especially in adulthood. Deletion of 22q11.2 is the third highest risk for the development of schizophrenia, with only a greater risk conferred by being the child of two parents with schizophrenia or the monozygotic co-twin of an affected individual. Both linkage and association studies of people with schizophrenia have implicated several susceptibility genes, of which three are in the 22q11.2 region; catechol-o-methyltransferase (COMT), proline dehydrogenase (PRODH), and Gnb1L. In addition, variation in Gnb1L is associated with the presence of psychosis in males with 22q11.2DS. In mouse models of 22q11.2DS, haploinsufficiency of Tbx1 and Gnb1L is associated with reduced prepulse inhibition, a schizophrenia endophenotype. The study of 22q11.2DS provides an attractive model to increase our understanding of the development and pathogenesis of schizophrenia and other psychiatric disorders in 22q11.2DS and in wider population.
Collapse
Affiliation(s)
- Sarah E Prasad
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Republic of Ireland.
| | | | | |
Collapse
|
45
|
Madadi P, Koren G. Pharmacogenetic insights into codeine analgesia: implications to pediatric codeine use. Pharmacogenomics 2008; 9:1267-84. [DOI: 10.2217/14622416.9.9.1267] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Codeine has been used medicinally since the 1800s as an analgesic and antitussive agent. Although very few studies have methodically examined the safety of codeine use in the pediatric age group, it is nonetheless commonly prescribed to children and breastfeeding mothers. Empirical evidence over the last century has suggested variability in the efficacy of codeine, and recent genomic advancements have shed important light on the mechanisms leading to such variability. Aside from evaluating the role of genetic variability in drug-metabolizing enzymes, receptors and transporters, the development of the blood–brain-barrier and the ontogeny of drug-metabolizing enzymes must also be considered in newborns and young children.
Collapse
Affiliation(s)
- Parvaz Madadi
- Department of Physiology & Pharmacology and The Ivey Chair in Molecular Toxicology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada
| | - Gideon Koren
- Department of Physiology & Pharmacology and The Ivey Chair in Molecular Toxicology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada
- Motherisk Program, The Hospital for Sick Children, Toronto, Canada
- The University of Toronto, Toronto, Canada
| |
Collapse
|
46
|
Bai HW, Shim JY, Yu J, Zhu BT. Biochemical and molecular modeling studies of the O-methylation of various endogenous and exogenous catechol substrates catalyzed by recombinant human soluble and membrane-bound catechol-O-methyltransferases. Chem Res Toxicol 2007; 20:1409-25. [PMID: 17880176 DOI: 10.1021/tx700174w] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Catechol-O-methyltransferase (COMT, EC 2.1.1.6) catalyzes the O-methylation of a wide array of catechol-containing substrates using s-adenosyl-L-methionine as the methyl donor. In the present study, we have cloned and expressed the human soluble and membrane-bound COMTs (S-COMT and MB-COMT, respectively) in Escherichia coli and have studied their biochemical characteristics for the O-methylation of representative classes of endogenous catechol substrates (catecholamines and catechol estrogens) as well as exogenous catechol substrates (bioflavonoids and tea catechins). Enzyme kinetic analyses showed that these two recombinant human COMTs are functionally active, with catalytic and kinetic properties nearly identical to those of crude or purified enzymes prepared from human tissues or cells. Kinetic parameters for the O-methylation of various substrates were characterized. In addition, computational modeling studies were conducted to better understand the molecular mechanisms for the different catalytic behaviors of human S- and MB-COMTs with respect to s-adenosyl-L-methionine, various substrates, and also the regioselectivity for the formation of mono-methyl ether products. Our modeling data showed that the binding energy values (Delta G) calculated for most substrates agreed well with the measured kinetic parameters. Also, our modeling data precisely predicted the regioselectivity for the O-methylation of these substrates at different hydroxyl groups, the predicted values matched nearly perfectly with the experimental data.
Collapse
Affiliation(s)
- Hyoung-Woo Bai
- Department of Pharmacology, Toxicology and Therapeutics, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | |
Collapse
|
47
|
Apud JA, Weinberger DR. Treatment of cognitive deficits associated with schizophrenia: potential role of catechol-O-methyltransferase inhibitors. CNS Drugs 2007; 21:535-57. [PMID: 17579498 DOI: 10.2165/00023210-200721070-00002] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In the last two decades, understanding of the dynamics of dopamine function in the prefrontal cortex and its role in prefrontal cortex physiology has opened up new avenues for therapeutic interventions in conditions in which prefrontal cortex function is compromised. Neuropsychological and imaging studies of prefrontal information processing have confirmed specific cognitive and neurophysiological abnormalities in individuals with schizophrenia. Because such findings are also observed in the healthy siblings of patients with schizophrenia, they may represent intermediate phenotypes related to schizophrenia susceptibility genes.Catechol-O-methyltransferase (COMT) represents an important candidate as a susceptibility gene for cognitive dysfunction in schizophrenia because of the unique role this enzyme plays in regulating prefrontal dopaminergic function. A functional COMT polymorphism (Val158Met) predicts performance in tasks of prefrontal executive function and the neurophysiological response measured with electroencephalography and functional magnetic resonance imaging in tasks assessing working memory. In fact, individuals with the Val/Val genotype, which encodes for the high-activity enzyme resulting in lower dopamine concentrations in the prefrontal cortex, perform less well and are less efficient physiologically than Met/Met individuals. These findings raise the possibility of new pharmacological interventions for the treatment of prefrontal cortex dysfunction and of predicting outcome based on COMT genotype. One strategy consists of the use of CNS-penetrant COMT inhibitors such as tolcapone. A second strategy is to increase extracellular dopamine concentrations in the frontal cortex by blocking the noradrenaline (norepinephrine) reuptake system, a secondary mechanism responsible for the disposal of dopamine from synaptic clefts in the prefrontal cortex. A third possibility involves the use of modafinil, a drug with an unclear mechanism of action but with positive effects on working memory in rodents. The potential of these drugs to improve executive cognitive function by selectively increasing dopamine load in the frontal cortex but not in subcortical territories, and the possibility that response to them may be modified by a COMT polymorphism, provides a novel genotype-based targeted pharmacological approach without abuse potential for the treatment of cognitive disorder in schizophrenia and in other conditions involving prefrontal cortex dysfunction.
Collapse
Affiliation(s)
- José A Apud
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
48
|
Tanaka Y, Hirata H, Chen Z, Kikuno N, Kawamoto K, Majid S, Tokizane T, Urakami S, Shiina H, Nakajima K, Dhir R, Dahiya R. Polymorphisms of catechol-O-methyltransferase in men with renal cell cancer. Cancer Epidemiol Biomarkers Prev 2007; 16:92-7. [PMID: 17220335 DOI: 10.1158/1055-9965.epi-06-0605] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The estrogen metabolite, 4-hydroxy-estrogen, has been shown to play a role in malignant transformation of male kidneys. To counteract the effects of this catechol-estrogen, the catechol-O-methyltransferase (COMT) enzyme is capable of neutralizing the genotoxic effects of this compound. A polymorphic variant of COMT has been shown to have a reduced enzyme activity, and thus, we hypothesize that single nucleotide polymorphisms of the COMT gene can be a risk factor for renal cell cancer (RCC). To determine this hypothesis, a study of a Japanese male population was used and the genetic distributions of COMT polymorphisms at codons 62 (C-->T), 72 (G-->T), and 158 (G-->A) were analyzed in 157 normal healthy subjects and 123 sporadic RCC (clear cell type) samples by using a sequence-specific PCR technique. These experiments show that the variant genotype (P = 0.025) and allele (P = 0.011) at codon 62 is a risk factor for RCC. The odds ratio and 95% confidence interval for cancer were 3.16 and 1.29 to 7.73, respectively, for the T/T genotype as compared with wild-type. No associations for renal cancer were found at either codons 72 or 158 in this Japanese male population. However, codons 62 and 158 were observed to be in linkage disequilibrium, and haplotype analysis shows the combined forms of T-A, T-G, and C-A to be associated with RCC as compared with C-G (P < 0.001). When evaluating the risk of COMT polymorphisms with grade of cancer, no associations were observed for any of the genotypes. This study is the first to report COMT polymorphism to be associated with RCC. These results are important in understanding the role of COMT polymorphisms in the pathogenesis of RCC.
Collapse
Affiliation(s)
- Yuichiro Tanaka
- Department of Urology, Veterans Affairs Medical Center and University of California at San Francisco, 4150 Clement Street, San Francisco, CA 94121, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Weimer JM, Benedict JW, Elshatory YM, Short DW, Ramirez-Montealegre D, Ryan DA, Alexander NA, Federoff HJ, Cooper JD, Pearce DA. Alterations in striatal dopamine catabolism precede loss of substantia nigra neurons in a mouse model of juvenile neuronal ceroid lipofuscinosis. Brain Res 2007; 1162:98-112. [PMID: 17617387 PMCID: PMC4790084 DOI: 10.1016/j.brainres.2007.05.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 05/11/2007] [Accepted: 05/14/2007] [Indexed: 12/21/2022]
Abstract
Batten disease, or juvenile neuronal ceroid lipofuscinosis (JNCL), results from mutations in the CLN3 gene. This disorder presents clinically around the age of 5 years with visual deficits progressing to include seizures, cognitive impairment, motor deterioration, hallucinations, and premature death by the third to fourth decade of life. The motor deficits include coordination and gait abnormalities, myoclonic jerks, inability to initiate movements, and spasticity. Previous work from our laboratory has identified an early reduction in catechol-O-methyltransferase (COMT), an enzyme responsible for the efficient degradation of dopamine. Alterations in the kinetics of dopamine metabolism could cause the accumulation of undegraded or unsequestered dopamine leading to the formation of toxic dopamine intermediates. We report an imbalance in the catabolism of dopamine in 3 month Cln3(-/-) mice persisting through 9 months of age that may be causal to oxidative damage within the striatum at 9 months of age. Combined with the previously reported inflammatory changes and loss of post-synaptic D1alpha receptors, this could facilitate cell loss in striatal projection regions and underlie a general locomotion deficit that becomes apparent at 12 months of age in Cln3(-/-) mice. This study provides evidence for early changes in the kinetics of COMT in the Cln3(-/-) mouse striatum, affecting the turnover of dopamine, likely leading to neuron loss and motor deficits. These data provide novel insights into the basis of motor deficits in JNCL and how alterations in dopamine catabolism may result in oxidative damage and localized neuronal loss in this disorder.
Collapse
Affiliation(s)
- Jill M. Weimer
- Center for Aging and Developmental Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Jared W. Benedict
- Center for Aging and Developmental Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Yasser M. Elshatory
- Center for Aging and Developmental Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Douglas W. Short
- Center for Aging and Developmental Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Denia Ramirez-Montealegre
- Center for Aging and Developmental Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Deborah A. Ryan
- Center for Aging and Developmental Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Noreen A. Alexander
- Pediatric Storage Disorders Laboratory, King's College London, Institute of Psychiatry, De Crespigny Park, London, SE5 8AF, UK
- Department of Neuroscience, Centre for the Cellular Basis of Behaviour, King's College London, Institute of Psychiatry, De Crespigny Park, London, SE5 8AF, UK
| | - Howard J. Federoff
- Center for Aging and Developmental Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Jonathan D. Cooper
- Pediatric Storage Disorders Laboratory, King's College London, Institute of Psychiatry, De Crespigny Park, London, SE5 8AF, UK
- Department of Neuroscience, Centre for the Cellular Basis of Behaviour, King's College London, Institute of Psychiatry, De Crespigny Park, London, SE5 8AF, UK
| | - David A. Pearce
- Center for Aging and Developmental Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
- To whom reprint requests should be addressed at: David A. Pearce, University of Rochester School of Medicine and Dentistry, Center for Aging and Developmental Biology, Box 645, Rochester, New York 14642, (585) 273-1514, (585) 276-1972 Fax,
| |
Collapse
|
50
|
Ruiz-Sanz JI, Aurrekoetxea I, Ruiz del Agua A, Ruiz-Larrea MB. Detection of catechol-O-methyltransferase Val158Met polymorphism by a simple one-step tetra-primer amplification refractory mutation system-PCR. Mol Cell Probes 2007; 21:202-7. [PMID: 17337160 DOI: 10.1016/j.mcp.2006.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 10/31/2006] [Accepted: 12/21/2006] [Indexed: 11/15/2022]
Abstract
The G-->A transition at nucleotide 21881 of the human catechol-O-methyltransferase (COMT) gene represents a functional genetic polymorphism (Val158Met), rendering an enzyme with reduced activity that has been associated with psychiatric disorders and estrogen-related cancers. A new method for the detection of this polymorphism is described, based on the tetra-primer amplification refractory mutation system-polymerase chain reaction (ARMS-PCR), with a single PCR to discriminate both alleles. Two primers amplify a common amplicon independently of the allele considered. At the same time, two primers are used, differing in the 3' base. In the Val/Val or Met/Met conditions, amplification occurs both in the general amplicon and in the specific allele; in the Val/Met condition three different amplicons are produced. Direct DNA sequencing of a COMT region containing the G/A polymorphism demonstrates the validity of this tetra-primer ARMS-PCR method. Reevaluation by PCR-RFLP revealed 100% accordance for genotype adscription. Subjects carrying the COMT(HH) genotype in a Spanish population comprised 28%, and the COMT(LL) homozygotes amounted to 21%. The described method provides a fast and reliable approach for determining COMT polymorphism that can be useful in large clinical studies using minimal quantity of DNA, avoiding the timely and costly use of restriction enzymes.
Collapse
Affiliation(s)
- José Ignacio Ruiz-Sanz
- Department of Physiology, Medicine School, University of the Basque Country, 48080 Bilbao, Spain
| | | | | | | |
Collapse
|